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Transition to superdiffusive transport in turbulent plasmas
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We investigate the motion of charged particles in a turbulent electrostatic potential using guiding-center theory.
By increasing the Larmor radius, the dynamics exhibit close-to-ballistic transport properties. The transition from
diffusive to ballistic transport is analyzed using nonlinear dynamics. It is found that twistless invariant tori in the
guiding-center dynamics are responsible for this transition, drastically affecting transport properties of charged
particles.
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I. INTRODUCTION

Modeling and characterizing transport in magnetically
confined plasmas, such as encountered in tokamaks, is a
long-standing issue in plasma physics and a prerequisite
to the control of turbulence for better confinement properties
of the plasma. Several levels of description of charged particle
transport are being actively pursued from the more computa-
tionally intensive, such as kinetic or gyrokinetic modeling, to
the more theoretically palatable theories such as classical or
neoclassical theories. The nature of the transport of particles is
at the core of these latter theories, and strongly depends on the
type of charged particles. For instance, it is expected that the
nature of transport for alpha particles is much different than
the one for thermal ions due to a large Larmor radius, washing
out the fine-scale structures of the electrostatic potential [1].

The main objective of this article is to characterize the
transport properties in a rather simplified setting which cap-
tures some of the main features present in electrostatic
turbulence. We use this simplified setting to uncover the
phase-space structures organizing the dynamics and respon-
sible for transport properties.

In this article, we consider a constant and uniform mag-
netic field to focus on the transport properties caused by
electrostatic drift waves. The motion of a charged particle of
mass m and charge q in a strong magnetic field B = Bẑ and a
turbulent electrostatic potential �(x, t ) is given by

m
dv
dt

= q(−∇�(x, t ) + v × B), (1)
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where x = (x, y, z) and v = (vx, vy, vz ) are the position and
the velocity of the charged particle. We decouple the dynamics
along the magnetic field lines (i.e., along the z direction) and
perpendicular to the magnetic field lines [i.e., in the (x, y)
plane] by considering that the electrostatic potential � does
not depend on the longitudinal coordinate z. In the transverse
plane, the motion is composed of a fast gyration with Larmor
frequency � = qB/m (its sign indicating the rotational direc-
tion) and a slower drift motion across magnetic field lines.
The main question we address is to characterize the slow drift
motion as a function of the main parameters of the system,
namely, the Larmor radius ρ, the Larmor frequency �, and
the amplitude of the electrostatic potential.

II. EQUATIONS OF MOTION FOR FULL ORBITS
AND FOR GUIDING CENTERS

In our study, we only consider the nondimensional version
of the equations of motion. They are obtained through the use
of the following dimensionless variables, denoted with �̂:

x̂ = 2πx

λ
, ŷ = 2πy

λ
, and t̂ = 2πt

τ
,

where λ and τ are, respectively, the characteristic length and
characteristic period of the electrostatic fluctuations.

The main parameters of the system are

A = �0/B,

ρ =
√

2kBT/m

|�| ,

η = 1

2�
,

where T is the temperature in the direction perpendicular to
magnetic field lines and �0 is the amplitude of the electro-
static potential �(x, y, t ). Effectively, A is the amplitude of a
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potential φ(x, y, t ) = �(x, y, t )/B, which is the one governing
the dynamics of charged particles.

The amplitude �0 of the electrostatic fluctuations is mea-
sured through the quantity 
 = q�0/(kBT ). The dimension-
less version of the parameters as functions of (τ, λ,�, ρ,
 )
is given by

Â = π
�τρ2

λ2
,

ρ̂ = 2πρ

λ
,

η̂ = π

�τ
.

For example, if B = 2.2 T, λ = 6 cm, τ ≈ 2.1 × 10−4 s, � ≈
211 MHz (obtained by considering protons), T = 1.9 keV,
and 
 = 2.25 × 10−3, then the dimensionless parameters are
ρ̂ ≈ 0.3, η̂ ≈ 7.2 × 10−5 and Â ≈ 0.71. They correspond to
ρ ≈ 2.9 mm, η ≈ 2.37 ns, and A = 1.94 V/T. A Matlab
Live Script to perform the conversions for other values of
the parameters B, λ, τ , �, T, and 
 is available at [7].
The dimensionless values of the parameters correspond to the
case where the characteristic time scale and spatial scale of
the turbulent potential are rescaled to 2π . In what follows we
only use dimensionless quantities, so the notation with �̂ is
dropped for simplicity.

In the plane perpendicular to the magnetic field lines, the
rescaled equations of motion become

ẋ = ρv/(2|η|),
v̇ = −sgn(η)∇φ/ρ + v × ẑ/(2η).

The resulting Hamiltonian system has two and a half degrees
of freedom (one degree of freedom in each direction perpen-
dicular to the magnetic field and half a degree of freedom for
the explicit time dependence of the electrostatic potential).
In addition, the typical (fast) time scale of the dynamics is
π |η|. The phase space of the particle is of dimension five,
which does not allow for a facilitated visualization of the
phase-space structures responsible for transport properties. In
order to reduce the dynamics, we decouple the fast from the
slow temporal scales, by using the guiding-center theory in a
Hamiltonian setting [2–5]. The main ingredient is a change of
positions from the particles (at position x) to the guiding cen-
ters (at position X) defined by x = X + ẑ × vρ sgn(η) at the
lowest order. The fast oscillations are generated by the term
v × ẑ in the equation for v̇ which can be seen by introducing
a gyroangle θ which rotates with a frequency �. In order to
perform this dynamical reduction, we consider the following
assumptions on the electrostatic potential:

(i) low amplitude of the potential: εδ�(x, y, z, t ),
(ii) potential slowly varying in time: �(x, y, z, εωt ),
(iii) potential slowly varying along the magnetic field

lines: �(x, y, ε‖z, t ),
where εδ , εω, and ε‖ are small parameters. In the deriva-

tion of the guiding-center dynamics, we choose the standard
ordering [5]

εδ = εω = ε‖,

and we perform the reduction up to second order in these pa-
rameters. Using the guiding-center positions as variables and

performing a suitable change of coordinates (using, e.g., Lie
transforms) to eliminate the θ dependence in the Hamiltonian
at the lowest orders, the dynamics is reduced to the motion
of effective particles (guiding centers) subjected to an E × B
drift velocity in an effective electrostatic potential ψ (X,Y, t )
which depends parametrically on A, ρ, and η, and is given by
[4,5]

ψ = J0[φ] − η(J1[φ2] − 2J0[φ]J1[φ]),

where J0 is the gyroaverage operator defined by

J0[φ](X,Y, t ; ρ) = 1

2π

∫ 2π

0
φ(X + ρ cos θ,Y − ρ sin θ, t )dθ,

and J1[φ] = ρ−1(∂/∂ρ)J0[φ]. We compute numerically these
potentials in Fourier space (see Appendix A for more details).

The dynamics of the guiding centers is driven by the E ×
B drift where an effective electric field is generated by the
effective potential ψ (X,Y, t ), i.e., in the rescaled units:

Ẋ = −∇ψ × ẑ.

We notice that we use the guiding-center reduction at the
second order in the amplitude of the electrostatic potential in
order to have all three parameters of the particle dynamics,
namely A, ρ, and η, present in the reduced equations for the
guiding-center dynamics. At first order where the effective
potential ψ is given by J0[φ], the equations of motion are
independent of η, preventing the study of the influence of this
parameter in the dynamics. In addition, since the full-orbit
dynamics depends explicitly on η, the consideration of η in the
guiding-center dynamics will allow for a comparison between
the full-orbit trajectories and the guiding-center ones.

The main advantage of using the guiding-center dynamics
is that the fast dynamics of the velocities of the particles
are decoupled from the slow motion of the guiding centers,
and allows for the use of larger time steps which greatly
facilitates numerical simulations. In addition, this reduces the
dimensionality of the Hamiltonian system to one and a half
degrees of freedom, namely, the (X,Y ) degree of freedom in
addition to the explicit time dependence. The phase space of
the guiding centers is of dimension three, which allows for a
facilitated visualization of phase-space structures using, e.g.,
Poincaré sections. Here we take advantage of this reduction
to identify the phase-space structures governing the transport
properties in the system.

In order to model the turbulent electrostatic potential, we
choose the following electrostatic potential in the rescaled
units [6]:

φ(x, y, t ) = A
M∑

n,m=1
n2+m2�M2

1

(n2 + m2)3/2
sin(nx + my + ϕnm − t ),

(2)
where ϕnm are random phases (uniformly distributed in
[0, 2π [). Together with the decrease of the amplitude asso-
ciated with small scales of typical size 2π/k as k−3, this
potential mimics some of the features of a turbulent electro-
static potential, notably electrostatic drift-wave turbulence. In
all our simulations, we select a fixed set of random phases.
In Fig. 1, contour plots of φ(x, y, t ) and ψ (x, y, t ) for this
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FIG. 1. Left panel: Contour plot of the electrostatic potential
φ(x, y, t ) at time t = 0. Right panel: Contour plot of the effective
potential ψ (x, y, t ) at time t = 0. The amplitude of the potentials
is in the rescaled units. The parameters are A = 0.7, η = 0.14, and
ρ = 0.3.

potential are represented at time t = 0. They show that the
main structures are basically identical and the main differ-
ences occur at small scales.

III. TRANSITION BETWEEN DIFFUSIVE AND BALLISTIC
TRANSPORT STEERED BY TWISTLESS INVARIANT TORI

A. For the guiding centers

In what follows, we fix M = 25 and A = 0.7 in the poten-
tial given by Eq. (2), and vary the other two parameters ρ and
η. For each value of the parameters, we integrate numerically
the equations of motion for the guiding centers for a large
ensemble of initial conditions in [0, 2π [2 (see Appendix B
for a brief description of the numerical scheme [7]). As it has
already been described in the literature, for ρ = η = 0, the
dynamics exhibit two main types of trajectories: the trapped
ones which remain inside elliptic islands forever, and chaotic
ones which resemble stochastic diffusion. The latter ones con-
tribute the most to transport properties of diffusive type. In
Fig. 2, we represent the expected diffusive (chaotic) dynamics
and the trapped particles (upper left panel).

In order to characterize the diffusion of untrapped parti-
cles, we compute time- and ensemble-averaged mean-square

FIG. 2. Upper left panel: Poincaré section in R2 of guiding-
center trajectories. Lower left panel: Values of MSD of guiding
centers as a function of time in log-log scale. The dark orange line
indicates a slope of two, and the light orange one a slope of one. Right
panel: Poincaré section in (R/(2πZ))2 of guiding-center trajectories.
The blue (black) dots correspond to trapped particles. The light
orange (light gray) dots correspond to chaotic trajectories. The pa-
rameters are A = 0.7, η = 0, and ρ = 0. All units are dimensionless.

FIG. 3. Upper left panel: Poincaré section in R2 of guiding-
center trajectories. Lower left panel: Values of MSD of guiding
centers as a function of time in log-log scale. The dark orange line
indicates a slope of two, and the light orange one a slope of one. Right
panel: Poincaré section in (R/(2πZ))2 of guiding-center trajectories.
The continuous black line on the right panel and on the upper left
panel corresponds to Poincaré sections of the twistless invariant torus
organizing the lower layer of super-diffusive transport. The blue
(black) dots correspond to trapped particles. The light orange (light
gray) dots correspond to chaotic trajectories. The dark orange (dark
gray) dots correspond to ballistic trajectories. The parameters are
A = 0.7, η = 0.14, and ρ = 0.3.

displacements (MSDs). For an ensemble of N guiding-center
trajectories, a MSD is computed at discrete and equally spaced
instants of time from t = 0 to t = 2π (K − 1), with K being
the total number of instants at which the particle position
is known and with the spacing between those instants being
equal to 2π , i.e., the period of the potential in the rescaled
units. For a generic time t = 2πk, with k ∈ N and k � K − 1,
the MSD is given by

MSD(2πk)

= 1

N

N∑
n=1

1

K − k

K−k−1∑
l=0

‖Xn(2π (k + l )) − Xn(2π l )‖2,

where Xn(2π l ) is the position at time t = 2π l of the nth
guiding center in the transverse plane.

The lower-left panel of Fig. 2 clearly evidences a normal
diffusion of untrapped particles for η = 0 and ρ = 0. In or-
der to correlate this statistical measure with the phase-space
structures, we plot a Poincaré section (stroboscopic plot), i.e.,
the positions [X (2nπ ),Y (2nπ )] for n ∈ N, of the guiding
centers at each period of the field (right panel). The Poincaré
section clearly evidences the chaotic dynamics of diffusive
particles and the regular motion associated with the trapped
particles.

We now increase ρ to investigate its role in the dynamics.
For potentials with few spatial Fourier modes, it was shown
[1,8–10] that the main effect is to reduce diffusion. In partic-
ular, it was shown in Ref. [10] that the effect of increasing the
Larmor radius was to regularize the dynamics by decreasing
the effective amplitude of the electrostatic potential [i.e., A
was replaced by AJ0(ρ

√
2) with the Bessel function of the first

kind J0]. Here we show that the role of ρ is more subtle when a
spatial structure of the electrostatic potential is introduced. In
Fig. 3, we represent the dynamics of guiding centers in R2
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FIG. 4. Left panel: Weighted-Birkhoff averages of rotation num-
bers computed for regular structures as a function of the initial
condition Y0 while X0 = π ; the reference values are Y ∗

0 = 0.58 and
r(Y ∗

0 ) ≈ 0.087647. The continuous black line on the left panel is
an inset of the twistless invariant torus depicted in Fig. 3. Right
panel: Inset of Poincaré section shown in Fig. 3. The parameters are
A = 0.7, η = 0.14, and ρ = 0.3.

(upper left panel) and the Poincaré section in (R/(2πZ))2

(right panel) for A = 0.7, ρ = 0.3, and η = 0.14. We no-
tice the same two types of trajectories as in Fig. 2, namely
the trapped and the chaotic trajectories. The main difference
with Fig. 2 is that a new type of trajectories emerges, very
elongated in one direction. The MSD 〈r2(t )〉 shown in
the lower left panel of Fig. 3 displays a close-to-quadratic
behavior in time, indicating a super-diffusive/ballistic
behavior.

By looking at the Poincaré section in the right panel of
Fig. 3 we notice that the trajectories leading to this super-
diffusive behavior are all organized in rather thin layers. A
zoom of one of these layers is displayed in Fig. 4. We clearly
see that this region is organized by invariant tori and resonant
islands of rather large periods, evidencing some regular struc-
tures as responsible for the super-diffusive behavior. In order
to get more insights into this region, we compute weighted-
Birkhoff averages of the rotation numbers of these regular
structures. Computation of rotational numbers as a function
of the initial conditions is usually done to obtain quantita-
tive information about the regular behavior (i.e., periodic or
quasiperiodic) of trajectories, by distinguishing them with
chaotic trajectories. In the present case, the rotation number
is computed to check for the presence of twistless invariant
curves (also referred to as shearless invariant curves in the
literature). The expression of rotational numbers is

r(Y0) = lim
S→∞

1

S

S−1∑
n=0

(Xn+1 − Xn) = lim
S→∞

XS − X0

S
,

where Xn = X (2πn) is the position of the guiding center along
the x axis at time t = 2πn, for a trajectory with initial condi-
tion (X0,Y0). For a better convergence, it is computed through
the use of a weighted Birkhoff average

r(Y0) = lim
S→∞

1

CS

S−1∑
n=1

ω
(n

S

)
(Xn+1 − Xn),

where

CS =
S−1∑
n=1

ω
(n

S

)
,

with ω(t ) = exp[−1/(t (1 − t ))] the so-called bump function.
In the left panel of Fig. 4, we display the weighted-Birkhoff

averages for these rotation numbers [11] as a function of the
initial condition Y0. These rotation numbers are on a bell-
shaped curve, clearly evidencing the presence of a twistless
invariant torus [12–14] at the center of the region where
super-diffusive behavior occurs. It should be noticed that
these invariant structures constitute barriers of transport in
the y direction while drastically enhancing transport in the
x direction. More precisely, Fig. 3 displays two regions of
superdiffusive transport, one containing a twistless invariant
torus, with another containing the remnants of a broken one.
The first leads to a superdiffusion in the positive x direction,
the second one in the negative x direction, as it can be seen in
the upper left panel in Fig. 3.

Moreover, given the shape of the upper superdiffusive
layer, the region of diffusive transport is pinched, and there-
fore the diffusive behavior is almost completely suppressed,
only a few particles diffuse through the holes of the broken
invariant structure, so extremely slowly. Transport properties
are dominated by this superdiffusive behavior.

The direction of the twistless invariant tori, and conse-
quently of the ballistic transport, is in the x direction for this
choice of parameters, notably for the random phases chosen
in our computations. From the symmetry of the potential
given by Eq. (2), if we replace ϕnm by ϕmn, the direction of
the twistless tori is changed to the y direction. The direction
of the ballistic transport is thus strongly dependent on the
chosen phases. In principle, if the phases are changed in the
simulations, the direction might change between the x and
the y direction, and hence, on average, annihilate the ballistic
transport on longer time scales. However, if we consider a
turbulent potential with slowly varying phases, we can still
expect a ballistic transport on short time scales (i.e., on a time
scale where these phases can be considered as constant) which
will significantly contribute to enhancing transport on longer
time scales.

B. Varying ρ and η

For ρ � 0.5, there are two invariant twistless tori in phase
space, one with a positive rotation number and one with a
negative one, meaning that the broken twistless invariant tori
is restored by increasing ρ (see also Ref. [14]). Figure 5
clearly highlights two twistless invariant curves for ρ = 0.5,
characterized by a local extremum in the plot of rotational
numbers.

In order to further evidence the two twistless invariant tori,
we increase the Larmor radius to much larger values of ρ,
e.g., ρ = 1.5. Figure 6 shows that the dynamics is extremely
regular, but no other preferential layer of superdiffusion is
generated, and no additional twistless invariant tori have been
observed.

The importance of twistless invariant tori resides in their
robustness with respect to perturbation, much more robust
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FIG. 5. Left panel: Weighted-Birkhoff average of rotation num-
bers as a function of the initial condition Y0 where X0 = π ,
the reference values are Y ∗

0 = 0.7552, Y ∗∗
0 = 1.41423, r(Y ∗

0 ) ≈
0.064606, and r(Y ∗∗

0 ) ≈ −0.031398. Right panels: Poincaré sec-
tion in (R/(2πZ))2 of guiding-center trajectories. The continuous
black lines on the right panel correspond to Poincaré sections of the
twistless invariant tori organizing the lower and the upper layers of
superdiffusive transport. The blue (black) dots correspond to trapped
particles. The light orange (light gray) dots correspond to chaotic
trajectories. The dark orange (dark gray) dots correspond to ballistic
trajectories. The parameters are A = 0.7, and ρ = 0.5.

than regular invariant tori, as present, e.g., in trapped islands
(blue regions). As a consequence of their robustness, we ex-
pect their presence in a rather large region in parameter space.

For each value of the parameters (ρ, η), we compute the
values of MSD of guiding centers as a function of time and in-
terpolate these values with a power law, i.e., MSD(t ) ≈ (at )b.
In Fig. 7, we represent the map of the values of b in parameter

FIG. 6. Poincaré section in (R/(2πZ))2 of guiding-center tra-
jectories. The blue (black) dots correspond to trapped particles. The
light orange (light gray) dots correspond to chaotic trajectories. The
dark orange (dark gray) dots correspond to ballistic trajectories.
The parameters are A = 0.7, η = 0.05, and ρ = 1.5.

FIG. 7. Values of b extracted from a power law interpolation
(at )b of the values of MSDs of guiding centers (obtained from
guiding-center dynamics) as functions of time t for different values
of the parameters ρ and η. The white region is where no significant
superdiffusive behavior was observed. A = 0.7 is fixed for all the
cases.

space (ρ, η). We notice that a large region of superdiffusive
behavior is present for ρ � 0.2 and |η| � 0.2. Poincaré sec-
tions confirm that this large region of superdiffusive behavior
is due to the presence of two twistless invariant tori or rem-
nants of broken twistless invariant tori. The transition toward
a superdiffusive/ballistic behavior occurs at around ρ ≈ 0.2–
0.25 which corresponds to 3–4% of the typical length scale of
the electrostatic potential.

As an example, Refs. [15–17] provide typical values
of e × �/T = 1%, �τ = 9.3 × 103, and λ/ρ = 20 in the
Tore Supra tokamak. These values correspond to dimen-
sionless parameters ρ = 0.3, η � 7 × 10−5, and A = 0.7. As
shown in Fig. 7, these values are well inside the red re-
gion where a superdiffusive behavior is expected. Indeed,
Fig. 8 shows that a twistless invariant torus, and the corre-
spondent ballistic/superdiffusive behavior are present for the
parameters obtained from the operating conditions provided
in Refs. [15–17].

The presence of twistless invariant tori in plasma physics
has been previously advocated for magnetic configurations
presenting locally a reversed shear in their safety factor profile
[18]. Here the source of creation of such twistless invariant
tori is completely different since there is no shear in the
magnetic configuration. The origin of the resulting transport
barrier is solely a consequence of the electrostatic turbulence,
and more precisely of the spatial structure of the electrostatic
potential.

C. For the full orbits

In order to evidence the importance of the twistless tori
identified for the guiding centers without the guiding-center
approximation, we display in Fig. 9 a Poincaré section of the
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FIG. 8. Upper left panel: Poincaré section in R2 of guiding-
centers trajectories. Lower left panel: Values of MSD of guiding
centers as a function of time in log-log scale. The dark orange line
indicates a slope of two, and the light orange one a slope of one. Right
panel: Poincaré section in (R/(2πZ))2 of guiding-center trajectories.
The continuous black line on the right panel and on the upper left
panel corresponds to Poincaré sections of the twistless invariant
torus organizing the lower layer of superdiffusive transport. The blue
(black) dots correspond to trapped particles. The light orange (light
gray) dots correspond to chaotic trajectories. The dark orange (dark
gray) dots correspond to ballistic trajectories. The parameters are
A = 0.7, η = 7 × 10−5, and ρ = 0.3.

guiding centers reconstructed from the full orbits obtained
with Eq. (1). Actually, guiding-center coordinates from the
full orbits (x, y, vx, vy) (in the rescaled coordinates) are ob-
tained using the following change of coordinates:

ρv = ρ

√
v2

x + v2
y ,

θ = π + atan2(vx, vy),

X = x − ρv cos θ,

Y = y + ρv sin θ.

FIG. 9. Upper left panel: Poincaré section in R2 of guiding-
center trajectories computed from full-orbit trajectories. Lower left
panel: Values of MSD of guiding centers as a function of time in
log-log scale. The dark orange line indicates a slope of two, and
the light orange one a slope of one. Right panel: Poincaré sec-
tion in (R/(2πZ))2 of guiding-center trajectories computed from
full-orbit trajectories. The blue (black) dots correspond to trapped
particles. The light orange (light gray) dots correspond to chaotic
trajectories. The dark orange (dark gray) dots correspond to bal-
listic trajectories. The black lines in the upper left panel and in
the right panel indicate the twistless invariant torus found in the
guiding-center approximation (same as in Fig. 3). The parameters
are A = 0.7, η = 0.14, and ρ = 0.3.

We notice that some of the structures present in the guiding-
center dynamics can still be observed and in particular, the
regions where superdiffusive behavior occurs. This observa-
tion validates the conclusions drawn using the guiding-center
approximation.

IV. CONCLUSION

Anomalous transport was observed in electrostatic drift-
wave turbulence (see, e.g., Refs. [18–20]) by tweaking the
electromagnetic configuration or the equilibrium density of
the particles. Here the main result is that, with the same
electric and magnetic field, the nature of transport of charged
particles can be completely different for different particles.
We identify a transition from diffusive to superdiffusive be-
havior in the plane perpendicular to the magnetic field as the
Larmor radius is increased. This superdiffusive behavior is
due to the presence of twistless invariant tori which constitute
robust barriers of transport in one spatial direction and is as-
sociated with ballistic transport in the other spatial direction.

ACKNOWLEDGMENTS

M.S. and F.A. contributed equally to this work. Centre de
Calcul Intensif d’Aix-Marseille is acknowledged for granting
access to its high performance computing resources. This
work has been carried out within the framework of the French
Federation for Magnetic Fusion Studies (FR-FCM).

APPENDIX A: COMPUTATION OF J0[φ] AND J1[φ]

The electrostatic potential (2) is rewritten as

φ(x, y, t ) = 
[φc(x, y)e−it ],

with a complex potential φc written as

φc(x, y) =
M∑

n,m=1
n2+m2�M2

Knmei(nx+my),

where Knm = Aeiϕnm/(n2 + m2)3/2. From

φc(X + ρ cos θ,Y − ρ sin θ )

=
M∑

n,m=1
n2+m2�M2

Knmei(nX+mY )ei(nρ cos θ−mρ sin θ ),

and using

1

2π

∫ 2π

0
ei(nρ cos θ−mρ sin θ )dθ = J0(ρ

√
n2 + m2),

where J0 is the Bessel function of the first kind, we have

J0[φc](X,Y ) =
M∑

n,m=1
n2+m2�M2

KnmJ0(ρ
√

n2 + m2)ei(nX+mY ).

Concerning the contribution to the effective potential at sec-
ond order, it becomes, in a similar way,

−η(J1[φ2] − 2J0[φ]J1[φ]) = η�[
φ

(0)
2 − φ

(2)
2 e−2it

]
,
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FIG. 10. Mean value of (h − h0 )/h0 for an ensemble of guiding-
center trajectories as a function of time, computed with different time
steps and N = 4096. The parameters are A = 0.7, η = 0.11, and ρ =
0.3.

where

φ
(0)
2 = J0[φc]J1[φ∗

c ] − 1
2J1[|φc|2],

φ
(2)
2 = J0[φc]J1[φc] − 1

2J1
[
φ2

c

]
.

For a generic complex potential ϕc with Fourier coefficients
Lnm, we have

J1[ϕc] = −
M∑

n,m=1
n2+m2�M2

Lnm

√
n2 + m2

ρ
J1(ρ

√
n2 + m2)ei(nX+mY ),

where we have used J ′
0(s) = −J1(s). As a consequence, the

effective potential for the guiding centers is

ψ = �[
J0[φc]e−it + ηφ

(0)
2 − ηφ

(2)
2 e−2it ].

APPENDIX B: NUMERICAL INTEGRATION SCHEME

The static fields φc, J0[φc], φ(0)
2 , and φ

(2)
2 (see Appendix A),

together with their spatial derivatives, are computed on an
N × N two-dimensional grid in (R/(2πZ))2 using the two-
dimensional fast Fourier transform before the integration of
the equations of motion for the full orbits and for the guiding
centers.

The value of the potential and its derivatives at a point
(x, y) not on the nodes of the grid are computed using a
linear interpolation of the nearby points of the grid taking
into account that the potential is 2π periodic in each spatial
direction. The trajectories are computed using an explicit
fourth-order Runge-Kutta method for solving the ordinary

FIG. 11. Mean value of (h − h0 )/h0 for an ensemble of guiding-
center trajectories as a function of time, computed for different values
of N and a time step of 0.005. The parameters are A = 0.7, η = 0.11,

and ρ = 0.3.

differential equations. One can find an extended description
of the code at [7].

In order to check the accuracy of the numerical scheme, we
autonomize the system, so that the total energy is conserved.
For instance, the total energy h of the guiding centers is

h = k + J0[φ] − η(J1[φ2] − 2J0[φ]J1[φ]),

where k is canonically conjugate to time. Two main param-
eters influence the accuracy of the numerical scheme: one
is related to a spatial discretization of the static potentials,
namely N , and another to the temporal discretization, the time
step of the Runge-Kutta integrator. Figure 10 displays the
mean value of the error in total energy, 〈(h − h0)/h0〉, as a
function of time for N = 4096 and for different time steps.
It clearly shows that a good accuracy is reached for a time
step approximately equal to 0.005. In fact, it appears that
the accuracy cannot be improved with a smaller time step,
indicating that the main source of error is not linked with
the temporal discretization, but with the spatial discretization.
Figure 11 displays the mean value of the error in total energy,
〈(h − h0)/h0〉, as a function of time for a time step equal to
0.005 and for different values of N . It shows that for N = 4096
the same order of magnitude of the error is reached for N =
8192. Given that with the latter value of N , the computation
is really memory consuming, N = 4096 has been chosen for
all the computations. Using the recommended values ensures
that the numerical error is controlled and that the numerical
simulation is accurate.
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