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Electron-proton relaxation in hot-dense plasmas with a screened quantum statistical potential
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Modeling the nonequilibrium process between ions and electrons is of great importance in laboratory fusion
ignition, laser-plasma interaction, and astrophysics. For hot and dense plasmas, theoretical descriptions of
Coulomb collisions remain complicated due to quantum effect at short distances and screening effect at long
distances. In this paper, we propose an analytical screened quantum statistical potential that takes into account
both the short-range quantum diffraction effect and the long-range screening effect. By implementing the
newly developed potential into the binary scattering framework, the electron-proton temperature relaxation in
hot-dense hydrogen plasmas is investigated. In both the classical and quantum limits, analytical expressions for
the Coulomb logarithm have been obtained, which are generally embedded in an asymptotic matching formula.
Quantitative comparisons with molecular dynamics simulations and recent OMEGA experiments demonstrate
that the present modeling is well suited to describe the temperature relaxation process between electrons and
ions in hot-dense plasmas.
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I. INTRODUCTION

Nonequilibrium between electrons and ions is an im-
portant phenomenon that occurs in extreme and transient
conditions, such as laboratory fusion ignition [1–8], laser-
driven plasmas [9–11], ultracold plasmas [12–14], and
astrophysics [15,16]. Accurate modeling of the nonequilib-
rium process requires reliable relaxation models between
electrons and ions.

Pioneering works on the temperature relaxation between
electrons and ions in weakly coupled plasmas were ac-
complished by Landau [17] and Spitzer [18] (LS), and the
electron-ion temperature relaxation time can be analytically
expressed as

τei = 3memi

8
√

2πZ2e4ni

(
kBTe

me
+ kBTi

mi

)3/2 1

ln �
, (1)

where ni is the number density of ions, me(mi ) is the electron
(ion) mass, Te(Ti ) is the electron (ion) temperature, e and Z
are the electron charge and ion charge states, respectively,
and kB is the Boltzmann constant. Applying this expression to
specified plasmas conditions, the accuracy of the electron-ion
relaxation time relies uniquely on the so-called Coulomb log-
arithm ln �, which principally accounts for complex effects
of charged particles’ collision physics in plasmas. Usually,
it is simplified as ln � = ln(bmax/bmin), where bmax and bmin
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are truncating limits in the integral of the form
∫

db/b; other-
wise, the integral would be divergent [19]. The divergence as
b → ∞ is caused by the absence of a long-range many-body
screening effect, and bmax is typically truncated at the electron
Debye screening length λD =

√
kBTe/4πe2ne. The divergence

as b → 0 is caused by a weak-scattering assumption, and bmin

is usually assigned as the maximum of the Landau length
λL = Ze2/kBTe and the electron thermal de Broglie wave-
length λth = h̄

√
2π/mekBTe, where h̄ is the reduced Planck

constant.
Theories have been developed to deal with the long-range

screening and short-range quantum effects [20–33], so as to
obtain more self-consistent expressions of ln �. Typically,
Brown, Preston, and Singleton (BPS) utilized dimensional
continuation to obtain a new result accurate to second order
in the plasma coupling parameter [28,29]. For nondegenerate
plasmas, their result can be written as

ln �BPS = ln �QM + ln ��C,

ln �QM = ln
4
√

πλD

λth
− γ + 1

2
,

ln ��C = − eH

kBTe
Z2

[
ζ3

(
ln

kBTe

Z2eH
− γ

)
− 2ζ ′

3

]
, (2)

where ln �QM incorporates quantum diffraction effect, ln ��C

is a classical correction when the plasma parameters depart
from the extreme quantum limit, γ is the Euler constant, eH

is the binding energy of the hydrogen atom, ζ3 = 1.20205,

and ζ ′
3 = −0.19812. On the other hand, Gericke, Murillo,

and Schlanges (GMS) developed a T-matrix theory to verify
various approximations of ln �, and they ultimately suggested
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an effective Coulomb logarithm [27]

ln �GMS = 1

2
ln

(
1 + λ2

D + R2
i

λ2
th/8π + λ2

L

)
, (3)

where Ri = (3/4πni ) is the ion sphere radius.
In the classical and weak-coupling limit, i.e., λth → 0 and

λL � λD, theories of Kihara and Aono (KA) [23], BPS [29],
and Baalrud and Daligault (BD) [30] all converge to a same
result of ln � → ln(C/ge) with ge = λL/λD and C = 0.77,
and this result has been confirmed through molecular dy-
namics simulations by Dimonte and Daligault [34]. However,
for hot-dense plasmas such as the fusion-burning regime in
inertial confinement fusion, λth becomes much larger than λL,
then quantum effect would dominate in short-range collisions.
In the quantum limit, if we write ln � as ln(D/he) where he =
λth/λD, then DBPS = 3.22 while DGMS = 5.01. The difference
between BPS and GMS is apparent, indicating that there exists
inconsistency in our understanding of the quantum effect in
electron-ion relaxation. As the electron-ion relaxation in plas-
mas mostly concerns the energy transfer between two species,
the application of binary scattering method has a long history
in this field, but it requires a vigorous effort to adequately and
accurately address both the short-range quantum effect and
the long-range screening effect. In this study, we propose a
screened quantum statistical potential (SQSP) that is applied
in the binary scattering method to study the electron-proton
temperature relaxation in hot-dense hydrogen plasmas. Re-
sults have been obtained, and comparisons with molecular
dynamics simulations and existing experiments demonstrate
the accuracy of the present modeling.

This paper is organized as follows. Section II introduces
the SQSP. Section III presents our results for electron-proton
relaxation and its validations. Finally, a brief summary is
given in Sec. IV.

II. SCREENED QUANTUM STATISTICAL POTENTIAL

The binary scattering method treats electrons and ions as
classical particles and thus requires an effective potential to
account for both the quantum and screening effects. Even
though there are numerous effective approaches that address
these two effects separately or jointly, we still lack a solution
that properly addresses both of these two effects. First, for the
quantum effect, several quantum statistical potentials (QSPs)
have been proposed and are widely used in molecular dynam-
ics (MD) simulations [35–39]. Following the derivations in
Ref. [40], the QSP for a pair of particles could be defined as

U (r) = − 1

β
ln

[
ρ2(r, r, β )

ρF(r, r, β )

]
, (4)

where ρ2(r, r, β ) is the pair density matrix, ρF(r, r, β ) is
the free particle density matrix, β = 1/kBT , and r = |r|. The
Dunn-Broyles (DB) potential [41], also known as the Hansen-
McDonald potential [42], adds a diffractive correction to the
Coulomb potential and is represented as

Uab(r) = qaqb

r
(1 − e−2π r̂ ), (5)

where r̂ = r/λab, and λab is the thermal de Broglie wave-
length with respect to the reduced mass of particles a and b.

TABLE I. Fitting parameters for e-p and e-e interactions in the
improved DB potential.

c0 c1 c2 c3 c4 c5

e-p 0.1637 25.72 −1.111 9.500 0.7389 12.86
e-e 0.07418 12.76 0.6461 9.066 0.6190 14.64

Simple as it is, the DB potential has a maximum error of more
than 10% when compared with the results calculated from
Eq. (4). The Kelbg or modified-Kelbg formula provides better
accuracy; however, its parameters are usually temperature de-
pendent [36,40]. In the present study, we propose an improved
DB potential as

U I
ab(r) = qaqb

r
[1 − e−(2π+c0λ̂ab )r̂ + η(r̂)], (6)

where

η(r̂) =
(

c1 + c2

λ̂ab

)
(e−c3 r̂ − c4e−c5 r̂ )r̂2, (7)

where ci (with i ranging from one to five) are dimensionless
and temperature-independent parameters, and λ̂ab = λab/a0

with a0 being the Bohr radius. The improvement associated
with c0 is used to recover the correct asymptotic behavior
at r = 0, and the term η(r̂) is added to retrieve the physical
profile of the distance-dependent potential. With these im-
provements, the maximum error of the improved DB potential
is satisfactorily controlled within 1% when compared with the
results of Eq. (4). For e-e pair interactions, it is recommended
to add the Pauli exclusion term, as suggested by Deutsch [43],
to Eq. (6). Table I lists the fitting parameters for electron-
proton (e-p) and electron-electron (e-e) pair interactions.

Another benefit of the improved DB potential is that it
enables us to obtain an analytical SQSP. Substituting U I

ep(r)/e
into the Poisson equation and noticing that me � mi, the elec-
tron charge density distribution function is derived as

ne(r) = − e

4πλ3
th

{
c2

6e−c6 r̂

r̂
+ c7[ς (c3, r̂) − c4ς (c5, r̂)]

}
,

(8)

where

ς (α, r̂) = −e−αr̂

r̂
(α2r̂2 − 4αr̂ + 2), (9)

c6 = (2π + c0λ̂th), and c7 = c1 + c2/λ̂th. Protons are still
treated as point charges, and its screened potential is assumed
to be classical, i.e.,

φS(r) = e/r · exp (−r/λD), (10)

then the SQSP for an e-p pair is derived as

U I-S
ep (r) =

∫
φS(|r − r′|)ne(r′)d3r′

= −e2

r
{�(r̂, r̃) + c7[�(c3, r̂, r̃) − c4�(c5, r̂, r̃)]},

(11)
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where

�(r̂, r̃) = e−r̃ − e−c6 r̂

1 − (λ̃th/c6)2
, (12)

�(α, r̂, r̃) = �2e−r̃ + (−�2 + �3r̃ + �4r̃2)e−αr̂

�1
, (13)

�1 = λ̃2
th(α − λ̃th)3(α + λ̃th)3, (14)

�2 = −2λ̃4
th

(
3α2 + λ̃2

th

)
, (15)

�3 = 4αλ̃3
th

(
α2 − λ̃2

th

)
, (16)

�4 = α2(α2 − λ̃2
th

)2
, (17)

r̃ = r/λD, and λ̃th = λth/λD.
It is worth noting that the SQSP satisfies the following two

limits: First, as r̃ → 0, the screening effect is negligible and it
approaches the pair interaction limit that U I-S

ep (r) → U I
ep(r);

Second, as λth → 0, it approaches the classical screened
potential limit that U I-S

ep (r) → −e · φS(r). For more general
situations, we utilize the effective potential theory (EPT)
developed in Ref. [30] to validate the SQSP. The effective
potential is related to the pair distribution function g(r) as
U EPT

ep (r) = −kBT ln[g(r)]. The pair distribution function g(r)
is numerically solved using the coupled Ornstein-Zernike re-
lation and the hypernetted chain closure [44].

In the present study, electrons are treated as negative-
charged particles rather than positrons as used in Ref. [30].
For bare Coulomb potential (Uep ∼ 1/r), the energy exchange
rate is symmetric with respect to the charge sign of the partic-
ipating particles. However, the charge-sign symmetry breaks
down when the particles collide at a distance comparable to
or shorter than the electronic thermal de Broglie wavelength,
which is often referred to as the “Barkas effect” [45,46]. It
has been stated in Ref. [28] that the “Barkas effect” is of order
O(g3

e) and is often neglected [34]. For plasmas temperature at
∼keV, it is most probably important and cannot be simply
discarded. Within the SQSP model, the “Barkas effect” is
intrinsically incorporated, such that we could achieve better
accuracy than neglecting it.

Figure 1 shows a comparison of the normalized e-p pair
potential obtained from the SQSP and the EPT for three dif-
ferent mass densities at T = 100 eV. Corresponding results of
the (density-independent) improved DB potential and the clas-
sical screened potential are also presented. For ρ = 0.1 g/cm3

and 1.5 g/cm3, the SQSP results agree excellently with those
of the EPT. As the density increases to 30 g/cm3 where
ge = 0.82, the accuracy of the SQSP begins to decrease due to
strong coupling effect. It is clear that the analytical SQSP pre-
serves the asymptotics at both the short and long distances; in
contrast, the improved DB potential overestimates it at longer
distances due to the absence of the screening effect, and the
classical screened potential without the quantum diffraction
effect overestimates it at shorter distances. For the SQSP, there
approximately exists a valid region by setting maxr[|U I-S

ep (r) −
U EPT

ep (r)|/U EPT
ep (r)] < 5%, in which the plasmas condition

must fulfill the relationship of T > 25.6ρ0.71 and ge < 0.9,
with T and ρ in units of eV and g/cm3, respectively.

FIG. 1. Normalized e-p pair potential obtained from the SQSP
(solid lines), the EPT of Ref. [30] (circles), the improved DB po-
tential (dashed line), and the classical screened potential (dash dot
lines) for T = 100 eV and ρ = 0.1 g/cm3, 1.5 g/cm3 and 30 g/cm3,
respectively. The horizontal axis is normalized by the Bohr radius a0.

III. RESULTS FOR ELECTRON-PROTON RELAXATION

A. Formulas for the Coulomb logarithm

Knowing the SQSP, it is straightforward to obtain the e-p
energy transfer rate following a routine procedure. First, the
scattering angle of a binary e-p collision in the center-of-mass
framework is written as

θ = π − 2b
∫ ∞

rmin

dr

r2

/√
1 − b2

r2
− U I-S

ep (r)

Eep
, (18)

where v, b, and rmin denote the e-p scalar relative velocity,
the impact parameter, and the minimum distance of collision,
respectively. The kinetic energy is defined as Eep = μv2/2
with the reduced mass μ = mpme/(mp + mp). Second, the
energy transfer cross section is given by

σ = 2π

∫ ∞

0
[1 − cos(θ )]bdb. (19)

Finally, the energy transfer rate between the electrons and
protons of two-temperature plasmas is obtained as

d
(

3
2 kBTe

)
dt

= −3kB(Te − Ti )

2τei

= −mnp

∫∫
(V · v)vσ f (ve) f (vp)dvedvp, (20)

where V and v are the center-of-mass velocity and relative ve-
locity of an e-p pair, and f represents the Maxwellian velocity
distribution of electrons or protons.

The e-p relaxation time or Coulomb logarithm is ready
to be obtained by solving the combined Eqs. of (1), (11),
and (18)–(20) numerically. When λth � λL or he � ge, it
approaches the classical limit where ln � depends solely on
ge. In practice, numerical calculations for the classical limit
have been carried out by using the classical screened potential,
i.e., U I-S

ep (r) = −e · φS(r). In order to obtain an analytical
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expression of the Coulomb logarithm, numerical results for
ge < 0.9 have been fitted as

ln �C = ln

[
1 + 0.77

min
(
ge, 0.55g0.88

e

)
]
, (21)

where the relative error is lower than 2.3%. It is to be noted
that Eq. (21) is reduced to ln(1 + 0.77/ge) in the weak-
coupling limit, which coincides with the well-established
results by KA [23], BPS [29], BD [30] et al. Likewise, when
λth � λL or he � ge, it approaches the quantum limit where
ln � only depends on he. To make it tractable, the quantum
limit is approximated by setting λL = 2%λth, or equivalently
Te = 10 keV, and evaluations with decreasing λL suggest that
the approximation error is much less than 1%. In the quantum
limit, ln � for he < 2.0 is fitted as

ln �Q = ln

(
0.52 + 2.39

he

)
, (22)

and the error relative to the numerical data is less than 1.5%.
The quantum limit of the present result is slightly lower than
that of BPS and GMS.

For a general case, an asymptotic matching formula is
generalized as

ln � = [(ln �C)−p + (ln �Q)−p]−1/p, (23)

where the parameter p depends on ge and he, and is
parametrized as

p(ge, he) = 0.61 − 1.14 ln(ge) + 0.45 ln(he). (24)

The relative error of Eq. (23) is less than 2.5% for T >

max(25.6ρ0.71, 121ρ0.45), where T and ρ are in units of
eV and g/cm3, respectively. In the valid region where the
maximum relative error between our SQSP and the EPT of
Ref. [30] is less than 5%, p is supposed to be larger than 0.8.
Then, a combination of Eqs. (1) and (21)–(24) represents the
result of the present modeling of e-p temperature relaxation
for hot-dense hydrogen plasmas.

B. Comparison with MD simulations

In this subsection, we compare our new model and the
widely used theories of LS, GMS, and BPS with MD simula-
tions. The MD simulations are performed by our parallel code,
FlexibleMD, using the improved DB potential as described
in Eq. (5) along with a Pauli exclusion term as suggested
by Deutsch [43]. The improved DB potential, as well as
the Pauli exclusion term, changes instantaneously with the
electron temperature which is updated every 100 time steps.
These simulations adopt the Velocity-Verlet algorithm [48]
and utilize periodic boundary conditions. By varying the sys-
tem size (i.e., the total number of electrons and protons) in
a wide range from 104 to 106, it is fixed at 13 824 since the
statistical noise of simulated temperature relaxation is already
negligible in this case, see the Appendix. The time step is
strictly controlled to conserve total energy (�E/E < 0.15%).
Mass scaling treatment using a proton-to-electron ratio of ∼90
is employed to accelerate MD simulations, and MD-simulated
e-p relaxation times should be rescaled to the real mass ratio
of protons to electrons. Besides, a correct initial state of MD

FIG. 2. Comparison of theoretical results (dash dot dot line for
the LS model, dash dot line for the GMS model, dash line for the
BPS model, solid line for the present model, and long dash line for
the result without “Barkas effect”) and MD simulations (dots with
error bars) of e-p relaxation time for ρ = 0.8 g/cm3 and 8.0 g/cm3.

simulations is a prerequisite for electron-proton temperature
relaxation, thus, a description of preparing the initial state of
a two-temperature plasma and its numerical examination is
provided in the Appendix.

The e-p relaxation time τep for a single MD simulation
is extracted by using a partial relaxation approach [39], in
which the temperature difference (�T = Te − Ti) is fitted to
an exponential formula �T0 exp(−2t/τep) during a short pe-
riod with �T0 being the initial temperature difference and τep

being the fitting parameter. In our recent study [39], we have
demonstrated that the partial relaxation approach is reliable.
In a short period, the electron temperature change is as little
as ∼1%, so that τep is associated with the initial electron
temperature. The e-p relaxation time is finally determined by
taking the ensemble average over 4–6 simulation samples, and
the standard deviation (1σ ) is used to represent the statistical
uncertainty. Figure 2 compares our new results [Eq. (23), solid
line] and widely used theories of LS (dash dot dot lines), GMS
(dash dot lines), and BPS (dashed lines) with MD simulations
(dots with error bars) for ρ = 0.8 g/cm3 and 8.0 g/cm3. For
a quantitative comparison, the results for density and tem-
perature states considered are listed in Table II. It is shown
that the LS results lead to the largest errors; the GMS results
have relative errors ranging from 19% to 27%; the BPS results
reduce the relative errors to 9%–14%. It is seen that the BPS
theory is more predictable than the LS and GMS models,
however, BPS results are not always within the error bars of
MD simulations for hot-dense plasma conditions considered
here; and the present model exhibits the highest level of ac-
curacy, with all results falling within the error bars of the
MD simulations, see Table II. To be intuitive, we also show
in Fig. 2 and Table II our corresponding results using like
charges where the “Barkas effect” is excluded. It is found that
the BPS results resemble our results without “Barkas effect.”
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TABLE II. For e-p relaxation time, quantitative comparison of theoretical results and MD simulations. The relaxation time is in units of
picoseconds (ps). Bold styles mark the results that are beyond the uncertainty of MD simulations.

ρ (g/cm3) Te (keV) MD LS GMS BPS Present No Barkas

0.8 0.5 2.649 ± 0.277 3.606 2.044 2.377 2.595 2.208
0.8 1.0 5.972 ± 0.803 7.622 4.828 5.435 5.891 5.178
0.8 1.5 10.41 ± 1.087 12.20 8.097 8.995 9.691 8.647
8.0 0.5 0.401 ± 0.028 0.823 0.293 0.377 0.409 0.344
8.0 1.0 0.882 ± 0.033 1.313 0.652 0.776 0.849 0.737
8.0 1.5 1.408 ± 0.084 1.923 1.063 1.231 1.344 1.184

Therefore, the inclusion of the “Barkas effect” in the present
model enables us to obtain better results than the BPS model.

C. Comparison with recent experiments

In this subsection, we do comparisons with OMEGA
experiments on the the ion-electron energy-transfer cross
section in the high-energy-density regime [49]. In these ex-
periments, shock-driven implosions of capsules filled with
D3He gas doped with a trace amount of argon are used to
generate hot-dense hot-spot conditions, and the energy loss
of 1 MeV DD tritons and 3.7 MeV D3He alphas that have
velocities lower than the average velocity of the thermal elec-
trons is measured, and is used to determine the ion-electron
energy-transfer cross section. Hot-spot conditions in these
experiments approach the quantum limit, and the Coulomb
logarithm should depend only on the electron density and
electron temperature. Therefore, these experiments are suit-
able for validating the present model in the quantum limit.

Table III lists the experimental results and the theoretical
results computed from the quantum limits of LS, GMS, BPS,
and the present model. The Coulomb logarithms of the LS
model are the smallest among the four theoretical models,
and almost half of them fall outside the range of experimental
uncertainties. The present model results are approximately
0.7–0.8 smaller than the GMS model and about 0.3 smaller
than the BPS model. The GMS model tends to overestimate

TABLE III. Comparison of theoretical results (LS, GMS, BPS,
and the present one) and experimental results of Ref. [49]. Bold
styles mark the results that are beyond the uncertainty of the
experiments.

ne Te ln �

Shot (×1023cm−3) (keV) Exp Present LS GMS BPS

78608 21 ± 4.2 1.4 ± 0.1 2.9 ± 0.8 3.2 2.3 4.0 3.5
78609 21 ± 4.2 1.4 ± 0.1 3.4 ± 1.1 3.2 2.3 4.0 3.5
78611 11 ± 4.5 1.6 ± 0.2 4.1 ± 1.1 3.7 2.8 4.4 4.0
78612 11 ± 4.5 1.6 ± 0.2 4.0 ± 1.1 3.7 2.8 4.4 4.0
75694 6.6 ± 1.0 2.8 ± 0.3 5.8 ± 1.4 4.5 3.6 5.2 4.8
75695 4.6 ± 0.7 2.3 ± 0.2 5.1 ± 1.5 4.5 3.6 5.2 4.8
75698 4.8 ± 0.7 2.1 ± 0.2 5.3 ± 1.4 4.4 3.5 5.1 4.7
75699 3.9 ± 0.6 1.9 ± 0.2 5.4 ± 1.5 4.4 3.5 5.1 4.7
75700 3.8 ± 0.6 1.9 ± 0.2 4.4 ± 1.2 4.4 3.5 5.1 4.7
75701 5.1 ± 0.8 1.8 ± 0.2 4.2 ± 1.2 4.2 3.3 4.9 4.5
75702 3.8 ± 0.8 1.4 ± 0.2 3.9 ± 1.1 4.1 3.2 4.8 4.4

the Coulomb logarithm, due to the fact that its Coulomb
logarithm of shot 78 608 has exceeded the upper limit of the
experimental uncertainty. Nevertheless, the uncertainties of
these OMEGA experimental results are ranging from 24%
(shot 75 694) to 32% (shot 78 609) which is too appreciable
to distinguish the BPS theory and the present model, and
more accurate measurements are required to demonstrate our
improvements experimentally.

IV. SUMMARY

In conclusion, an analytical screened quantum statisti-
cal potential is derived and applied in the binary scattering
method to model the temperature relaxation between electrons
and protons in hot and dense hydrogen plasmas. This potential
provides a satisfactory description of both the short-range
quantum effect and the long-range screening effect. Com-
parisons with molecular dynamics simulations and existing
experiments demonstrate the accuracy of the present model-
ing. The present model has limitations for strongly coupled
plasmas or relativistic cases, which also exists in other well-
known models and will be addressed in the near future.

FIG. 3. Temperature relaxation within 1 ps for the plasma condi-
tion of ρ = 8.0 g/cm3 and Te = 1.5 keV.
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FIG. 4. Initial radial distributions. Solid curves are results ob-
tained by the EPT method [30]. Plasma condition is the same as
Fig. 3.
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APPENDIX: THE INITIAL STATE OF MD SIMULATIONS

An initial plasma state with separate electron and proton
temperatures is well prepared in MD simulations following
two main steps. First, the electrons and protons are generated
with random positions in the selected simulation domain,
and initial particle velocities are randomly sampled from the
Maxwell-Boltzmann distribution at room temperature. Sec-
ond, two thermostats [47] are separately applied for electrons
and protons, in order to heat them up to different temperatures.

FIG. 5. Initial velocity distributions. Solid curves are analytical
MB function. To compare the electrons and ions on the same scale, it
is normalized by

√
kT/m where m is electron or proton mass. Plasma

condition is the same as Fig. 3.

A sufficient time interval is maintained to ensure that the
particles of the same kind are fully relaxed, i.e., the elec-
trons/protons follow Maxwell-Boltzmann (MB) distributions
in the velocity space and satisfy correct initial radial distribu-
tions in the spatial space.

As an illustration, Figs. 3–5 present the electron-proton
temperature relaxation within 1 ps, initial radial distribu-
tion, and particle’s velocity distribution, respectively, for
one of the MD simulations with plasma condition of ρ =
8.0 g/cm3, Te = 1.5 keV, and Ti = 0.5 keV. As can be seen,
MD-simulated initial two-temperature plasma states should be
correct, since both initial particles’ radial distributions (Fig. 4)
and velocity distributions (Fig. 5) agree satisfactorily with
analytical theories. On this basis, electron-proton temperature
relaxation in our MD simulations has been correctly carried
out with negligible statistical errors (Fig. 3).
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