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and a computational assessment of its validity
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A complete quasilinear model is derived for the electrostatic acceleration-driven lower hybrid drift instability
in a uniform two-species low-beta plasma in which current is perpendicular to the background magnetic
field. The model consists of coupled nonlinear velocity space diffusion equations for the volume-averaged ion
and electron distribution functions. Each species’ diffusion coefficient depends on a time-evolving spectral
density of the electric-field energy per unit volume and a time-evolving dispersion relation. The dispersion
relation is expressed analytically in integral form without the use of asymptotic limits and applies to arbitrary
distribution functions, so long as they can be expressed as a function of one velocity coordinate, e.g., f (vy )
or f (v⊥). The quasilinear model conserves energy and is complete in that it fully describes the evolution of
the distribution functions, including resonant and nonresonant particle-wave interactions, while accounting for
distribution-function-dependent mixed-complex frequencies. The quasilinear diffusion model is solved numer-
ically and self-consistently using a Crank-Nicolson temporal discretization and a second-order finite-volume
velocity-space discretization. Numerical solutions are compared to nonlinear fourth-order accurate continuum
kinetic Vlasov-Poisson simulations. Evolution of electric-field energy, growth rates, distribution functions, and
diffusion coefficients are shown to be in agreement with Vlasov simulations. The quasilinear model is shown to
predict anomalous transport terms, like resistivity and heating, to within a factor of order unity. Discrepancies
between the quasilinear model and Vlasov simulations are assessed and attributed primarily to lack of damping
in the quasilinear description and to the use of unperturbed-orbit susceptibilities in the linear theory dispersion
relation. The results illuminate the predictive accuracy of the quasilinear model, place approximate bounds on
its validity, and provide much needed vetting of quasilinear theory’s ability to predict the nonlinear state of a
microturbulent plasma.

DOI: 10.1103/PhysRevE.110.025201

I. INTRODUCTION

A common driver of kinetic instabilities is the relative drift
between ions and electrons. Such instabilities give rise to
nonlinear electromagnetic field fluctuations and particle-wave
interactions that enhance macroscopic transport properties
like resistivity and heating. This microturbulence-driven
transport, also known as anomalous transport, is important
because it can exceed classical collision-induced transport
by orders of magnitude. Accurately characterizing anoma-
lous transport is challenging because existing theoretical
descriptions of nonlinear kinetic behavior, whether analyti-
cally or empirically derived, are not universally applicable
and because computational investigations are limited by the
computational cost of high-fidelity kinetic simulations. The
lower hybrid drift instability (LHDI), which is caused by drift
due to gradients [1,2] or acceleration [3,4] perpendicular to a
background magnetic field, is a well-known nonlinear kinetic
microturbulence phenomenon that gives rise to difficult-to-
predict anomalous transport.

While LHDI microturbulence is important in magnetized
fusion experiments [5,6] and in the magnetosphere [7–9],
the motivation for the present investigation of the LHDI
stems from pulsed power high energy density Z-pinch exper-
iments [10] at the Z facility at Sandia National Laboratory.

These experiments, which rely on magnetically insulated
transmission lines (MITLs) to deliver mega-amps of current to
a Z-pinch load, can be unpredictably affected by collisionless
plasmas produced at electrode surfaces of MITLs [11]. The
MITL environment is characterized by a several-megavolt
potential drop across the centimeter-scale anode-cathode gap
and orthogonal magnetic fields that can range from zero to
200 Tesla over the course of a 100 ns current pulse [11,12].
See Fig. 1 for a simplified schematic of the configuration.
The electric field within the pulsed power device is, in gen-
eral, obtained by solving the full Maxwell equations and
cannot be described as purely electrostatic or inductive. The
low-density surface-produced plasmas are low-beta, such that
the ratio of thermal pressure to magnetic pressure is much
less than unity. These plasmas can bridge the anode-cathode
gap [11,12] and are subject to time-dependent E × B drift, i.e.,
they undergo acceleration that induces a relative drift between
ions and electrons. The resulting parasitic current is parallel
to the electric field and orthogonal to the magnetic field, and,
in principle, can be well-characterized, provided density is
known and kinetic instabilities are absent. In the presence of
LHDIs, plasma resistivity and heating are strongly affected by
collisionless kinetic physics and therefore dynamics are not
captured by classical resistive magnetohydrodynamic (MHD)
models. Since experimental designs often rely on MHD
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FIG. 1. A simplified schematic of a magnetically insulated transmission line (left), which is characterized by orthogonal time-dependent
electric and magnetic fields. Collisionless low-beta plasmas produced at electrode surfaces bridge the anode-cathode gap, facilitate current
pathways (denoted by white arrows), and are subject to time-dependent E × B drift. The rate of change of E × B velocity is denoted by the
x-directed acceleration g. In a noninertial, i.e., accelerated frame comoving with the plasma (right), the electric field is zero and g points in the
−x direction. In both frames the acceleration induces a drift in the +y direction for ions (denoted by red arrow) and in the −y direction for
electrons (blue arrow). To simplify theoretical analysis, the y direction of the accelerating-frame plasma is taken to be periodic.

simulations, LHDI-induced microturbulence effectively limits
predictive modeling of power flow and load dynamics. The
lack of predictive capability calls for reduced models [13,14]
that can accurately translate nonlinear kinetic physics into
resistivity and heating transport terms that can be included
in MHD or multifluid simulations. The accuracy of existing
treatments across the large range of possible plasma param-
eters is unknown but is something we hope to shed light on
with this work.

The leading candidate theory for describing drift micro-
turbulence is quasilinear theory. Originally developed in the
1960s [15–19], quasilinear theory is a weak turbulence the-
ory that represents the aggregate effect of nonlinear kinetic
dynamics in phase space by a coarse-grained diffusion in
velocity space. The diffusion is nonlinear and the diffusion
coefficient depends on a time-evolving dispersion relation.
In a collisionless plasma, a diffusion description that encap-
sulates stochastic motion of particles through phase space
can be applicable if there is a sufficiently broad spectrum of
waves satisfying the Chirikov criterion [20] and/or a wave
has sufficiently large amplitude [21]. For the theory to be
applicable, the energy density of nonequilibrium oscillations
must be small compared to thermal energy [17]. The the-
ory further assumes that nonlinearities are small and yield
small corrections to linear behavior, that mode coupling (i.e.,
wave-wave interaction) is negligible such that wave propa-
gation can be described by linear theory, and that there is
a separation of scales between a low-frequency background
and high-frequency fluctuations. In effect, the theory cap-
tures nonlinearities in low-frequency average dynamics, but
neglects nonlinearities in high-frequency dynamics [22].

In principle, if the nonlinear diffusion system can be
solved self-consistently, then quasilinear theory provides a
reduced model description for the effect of microturbu-
lence on fluid transport—an important aim of turbulence
studies more broadly [23]. Indeed, a common practical ap-
plication of quasilinear theory is that it is used to derive
microinstability-associated transport terms for single-fluid or
multifluid plasma equations. Unfortunately, many applica-
tions of quasilinear theory, including for spatially uniform
plasmas and for the LHDI [2], lack self-consistency be-
cause in solving the quasilinear equations they oversimplify
dispersion relations, neglect nonresonant particle-wave inter-
actions, and/or apply shortcuts to determine saturated-state

conditions. A notable exception is the self-consistent ap-
plication of quasilinear theory presented in Ref. [24] for
the bump-on-tail instability. A common simplification that
leads to inconsistency is restricting the kinetic theory disper-
sion relation and/or its numerical solutions to Maxwellian
distribution functions [2]. This precludes self-consistently
solving the quasilinear governing equations, since the dis-
persion relation is not consistent with the time-evolving
distribution function. Another inconsistency is commonly
introduced when the velocity-space diffusion coefficient is
evaluated in the small-growth-rate limit, which effectively
ignores the effects of nonresonant (i.e., reversible) particle-
wave interactions, which are known to contribute significantly
to diffusion [25,26]. In the absence of self-consistent math,
quasilinear models often rely on heuristic saturation rules
that effectively guess saturated state plasma conditions and
transport terms, without solving the quasilinear diffusion
equations. Such rules have been informed by thermodynamic
arguments [2], experimental studies, and dimensional argu-
ments [27]. Consequently, the predictive accuracy and validity
of self-consistent quasilinear models, let alone their simpli-
fied counterparts, remains a subject of debate, as explored in
Refs. [24,28,29] for the bump-on-tail instability.

This paper shows that for the electrostatic acceleration-
driven two-species LHDI, it is possible to derive and solve
a mathematically complete self-consistent quasilinear model
that avoids the aforementioned simplifications. The general-
ization is facilitated in part by examining the drift instability
in the context of a uniform-density, uniformly accelerating
plasma, with analysis performed in the noninertial plasma
rest frame. Unique features of the derivation are that the
associated dispersion relation is expressed in integral form,
does not rely on asymptotic approximations, and applies to
arbitrary velocity distribution functions—so long as they can
be expressed as a function of one velocity coordinate: either
velocity along the current flow direction, when distribution
function dynamics are faster than gyromotion; or perpendic-
ular velocity when distribution function dynamics are slower
than gyromotion. This enables self-consistent time-dependent
numerical solutions to the quasilinear diffusion model, which
are not possible for fixed-distribution-function dispersion re-
lations.

This paper is organized as follows. Section II describes
the plasma configuration of interest and the associated
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Vlasov-Poisson kinetic description. Section III presents a
derivation of the linear theory kinetic dispersion relation for
the acceleration-driven LHDI. Section IV presents a deriva-
tion of the quasilinear model for the acceleration-driven
LHDI, describes the model’s conservation properties, and
presents quasilinear expressions for anomalous momentum
and energy transport. Importantly, the model is shown to con-
serve energy, capture magnetized and unmagnetized species
dynamics, and encapsulate both resonant and nonresonant
particle-wave interactions. Section V describes the numer-
ical solvers used to solve the dispersion relation and the
quasilinear diffusion model, along with associated initial
conditions. Section VI describes the nonlinear fourth-order
accurate Vlasov-Poisson simulations, which are used to assess
the accuracy of the quasilinear model. Section VII presents
a detailed cross-comparison between quasilinear model nu-
merical solutions and Vlasov-Poisson numerical solutions,
specifically in terms of the time-evolving electric-field energy,
spectral density of the electric-field energy, the structure of
species distribution functions, the structure of diffusion coef-
ficients, and anomalous transport. Energy balance is likewise
assessed. Predictive capability is shown to be limited by the
lack of damping mechanism in the quasilinear description
and the fact that unperturbed-orbit species susceptibilities that
comprise the dispersion relation eventually become inaccurate
in the nonlinear stage of LHDI evolution, consistent with
known limitations of plasma turbulence models [23]. Sec-
tion VIII presents concluding remarks on the validity and
predictive accuracy of the quasilinear model.

II. ASSUMPTIONS AND NONINERTIAL
FRAME DESCRIPTION OF AN ACCELERATING

KINETIC PLASMA

Far away from the load, which sits on axis of the Z ma-
chine, curvature effects are negligible and the current-carrying
collisionless plasma can be analyzed in Cartesian slab geom-
etry, as shown in Fig. 1. At LHDI-relevant scales, which are
much smaller than experimental scales, the background mag-
netic field B = Bzẑ and acceleration g = gxx̂ associated with
the time-dependent E × B drift can be approximated as being
constant in space and time, implying a linearly increasing
but spatially uniform electric field E = Eyŷ in the laboratory
frame. Since it is convenient to choose a frame in which this
background electric field is zero, we proceed to carry out all
theoretical analysis in an accelerating noninertial frame of ref-
erence, comoving with the plasma in the x̂ direction, as shown
in Fig. 1. The use of a noninertial frame of reference simplifies
analysis and has precedent in other applications, including
Rayleigh-Taylor instabilities in rotating plasmas [30], rotating
tokamak plasmas [31], and imploding Z-pinches [32,33].

Considering only the most unstable modes, in which the
perturbation wave number k = kyŷ such that k · B = 0, the
low-beta system can be treated as electrostatic and magneto-
static. Limiting to y-direction perturbations means that electric
fields cannot develop in the x̂ direction, which means that
dynamics can be captured in 3D (y, vx, vy) phase space. In
the accelerating frame, the plasma is in equilibrium with a
relative y-directed drift between ions and electrons and expe-
riences a fictitious gravitylike force in the −x̂ direction, which

does not exist in an inertial frame. In the laboratory or other
inertial frame, the drift would be identified as the polarization
drift due to a time-varying electric field. The evolution of the
plasma in the accelerating frame is described by the Vlasov-
Poisson equation system

0 = ∂ fs

∂t
+ v · ∂ fs

∂x
+

[
qs

ms
(E + v × B) − g

]
· ∂ fs

∂v
, (1)

−∇2� = 1

ε0

∑
s

qsns, (2)

ns =
∫

fsdv, (3)

where ε0 is the permittivity of free space, fs(x, v, t ) is the
probability distribution function, qs is the particle charge,
ms is the particle mass, and ns is the number density for
species s. The electric field E can be expressed in terms of the
electrostatic potential �, such that E = −∇�. This kinetic
theory description provides a basis for quasilinear theory anal-
ysis, and for the linear theory analysis on which quasilinear
theory relies.

III. LINEAR THEORY
FOR THE ACCELERATION-DRIVEN LHDI

Expressing each variable in Eq. (1) in terms of an equi-
librium quantity plus a small perturbation, e.g., fs = fs0 + fs1

with fs1 � fs0, yields the linearized Vlasov equation,

∂ fs1

∂t
+ v · ∂ fs1

∂x
+ [�s(v × ẑ) − gx̂] · ∂ fs1

∂v
= − qs

ms
E1 · ∂ fs0

∂v
,

(4)

where �s = qsBz/ms is the species cyclotron frequency,
whose sign depends on the species charge. The method of
characteristics (see Ref. [34] for an example and Ref. [35]
for a detailed description) is applied to solve for the per-
turbed distribution function. Equation (4) can be expressed in
terms of a material derivative of dfs1/dt ′ along a characteristic
phase space trajectory (x′(t ′), v′(t ′), t ′) parameterized by t ′,
such that

dfs(x′, v′, t ′)
dt ′ = − qs

ms
E1(x′, t ′) · ∂ fs0

∂v′ . (5)

Setting the end point of the trajectory to be where t ′ = t, x′ =
x, and v′ = v and integrating Eq. (5) with respect to t ′ over
the interval t ′ ∈ (−∞, t] yields

fs1(x, v, t ) = − qs

ms

∫ t

−∞
E1 · ∂ fs0

∂v′ dt ′. (6)

Assuming a waveform solution for fs1 and E1, such that

fs1 = f̂s1ei(k·x−ωt ), (7)

E1 = Ê1ei(k·x′−ωt ′ ), (8)

and substituting Eqs. (7) and (8) into Eq. (6) yields

f̂s1 = − qs

ms

∫ t

−∞
Ê1 exp

(
i
[
k · [x′ − x]

− ω[t ′ − t]
]) · ∂ fs0

∂v′ dt ′. (9)
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If fs0 can be expressed in terms of constants of motion, then
the integral in Eq. (9) can be simplified. To that end, let
fs0 be a function of a single variable, Us, defined to be a
linear combination of the energy invariant Ws = 1

2 ms(v′2
x +

v′2
y ) + msgx′ and the rescaled canonical momentum invariant

Psy = v′
y/�s + x′ (see Ref. [36]), such that

Us = Ws − msgPsy = 1

2
ms

(
v′2

x + v′2
y

) − msgv′
y

�s
. (10)

Importantly, Us is independent of x′, such that we consider
spatially uniform equilibria. Using the chain rule, ∂ fs0

∂v′
y

=
∂ fs0

∂Us

∂Us
∂v′

y
, and the fact that electric fields cannot develop in the

x̂ direction when perturbations are in the ŷ direction, Eq. (9)
can be expressed as

f̂s1 = −qs
∂ fs0

∂Us

∫ t

−∞
Ê1y exp(iky[y′ − y]

+ iωs[t − t ′])
(

v′
y − g

�s

)
dt ′. (11)

In accordance with Eq. (1), the characteristic trajectory
(x′(t ′), v′(t ′), t ′) of a magnetized particle in phase space must
satisfy a system of coupled ordinary differential equations,

dx′

dt
= v′, (12)

dv′

dt
= �sv

′ × ẑ − gx̂, (13)

which are subject to the conditions x′|t ′=t = x and v′|t ′=t = v.
In Eqs. (12) and (13) it is assumed that the characteristic
trajectory is not affected by the perturbation electric field,
i.e., the trajectory is unperturbed. Solving the coupled system
yields expressions for y′ and v′

y,

v′
y =

(
vy − g

�s

)
cos(�s[t − t ′]) + vx sin(�s[t − t ′])

+ g

�s
, (14)

y′ = −
(

vy

�s
− g

�2
s

)
sin(�s[t − t ′]) + vx

�s
cos(�s[t − t ′])

− g(t − t ′)
�s

− vx

�s
+ y, (15)

where g/�s is the y-directed drift induced by the gravitylike
force. The primed characteristic trajectory variables can be
expressed in cylindrical velocity coordinates by setting θ to be
the angle from the +vy axis and using the coordinate mapping

vx = v⊥ sin θ, (16)

vy = v⊥ cos θ + g

�s
. (17)

In cylindrical coordinates, the characteristic trajectory vari-
ables of interest are

v′
y = v⊥ cos θ cos(�s[t − t ′]) + v⊥ sin θ sin(�s[t − t ′])

+ g

�s
, (18)

y′ = −v⊥
�s

cos θ sin(�s[t − t ′]) + v⊥
�s

sin θ cos(�s[t − t ′])

− g(t − t ′)
�s

− v⊥ sin θ

�s
+ y. (19)

Substituting Eqs. (18) and (19) into Eq. (11), using trigono-
metric identities and the variable substitution τ = �s(t − t ′),
and noting that ∂/∂Us = (msv⊥)−1∂/∂v⊥, yields an expres-
sion for the perturbed distribution function for a magnetized
species

f̂s1(ky, ω, v⊥, θ )

= − qs

ms�s

∂ fs0

∂v⊥

∫ ∞

0
Ê1y exp

[
−2ikyv⊥

�s
cos

(
θ − τ

2

)

× sin
(τ

2

)
+ iWsτ

]
cos(θ − τ )dτ, (20)

where

Ws = ω

�s
− kyg

�2
s

. (21)

The choice of having fs0 be a function of the constant of
motion in Eq. (10) effectively restricts applicability of the
analysis to equilibrium distribution functions that are in-
dependent of the gyrophase. With additional mathematical
manipulations, outlined in Appendix A, Eq. (20) and the
linearized Poisson equation are used to obtain the implicit
function dispersion relation ε(ω, ky) = 0, i.e., the plasma di-
electric, that relates mixed-complex frequency ω = ωR + iωI

and wave number ky:

ε(ω, ky) ≡ 1 +
∑

s

χmag
s (ω, ky) = 0, (22)

where, for the magnetized species of interest, the susceptibil-
ity χ

mag
s is

χmag
s (ω, ky) = ω2

ps

�2
s

∫ 2π

0

exp (iWsφ)

1− exp(2π iWs)
sin(φ)Hs(ky, φ)dφ,

Hs(ky, φ) =
∫ ∞

0
fs0(v⊥)J0

(
2kyv⊥
�s

sin

[
φ

2

])
v⊥dv⊥,

(23)

and where ωps is the species plasma frequency and Ws is given
in Eq. (21).

In the derivation above, the frame of reference is noniner-
tial in the x direction and additionally, for convenience, can
include a uniform y-directed velocity vy,shift. As expressed
in Eq. (21), vy,shift = 0 and each species has bulk y-directed
velocity g/�s. For an electron-ion plasma in a frame where
the ions have zero y-directed velocity (we will refer to this
as the ion “rest frame”), vy,shift = −g/�i and the frequency
is Doppler shifted such that ω is replaced by ω − kyvy,shift in

Eq. (21), resulting in Wi = ω/�i and We = ω
�e

+ kyg
�e�i

− kyg
�2

e
.

In the limit where instability frequency is much larger
than ion cyclotron frequency, ions can be treated as unmagne-
tized in the perturbed response. In this unmagnetized case the
characteristic trajectories are straight lines and magnetic field
effects are included in the equilibrium distribution function,
but are neglected in perturbation fi1 because the �i term in
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Eq. (4) is much smaller than the ∂ f /∂t ′ term and is thereby
taken to be negligible. The resulting expressions for f̂i1 and
the susceptibility for an unmagnetized ion species are

f̂ unmag
i1 = − iqi

mi

1

ω − kyvy
Ê1y

∂ fi0

∂vy
, (24)

χ
unmag
i (ω, ky) = ω2

pi

k2
y

∫ ∞

−∞

1

ω/ky − vy

∂ fi0

∂vy
dvy. (25)

Equations (24) and (25) are evaluated in the rest frame of the
unmagnetized ion species.

While the analysis above admits any number of particle
species, we will explore the acceleration-driven LHDI in the
context of a two-species electron-ion plasma. We will con-
sider two versions of the dispersion relation: one in which
electrons and ions are both magnetized, as in Eq. (22), and one
in which electrons are magnetized and ions are unmagnetized,
such that

ε(ω, ky) ≡ 1 + χ
mag
e + χ

unmag
i = 0. (26)

Note that both the ion and electron susceptibilities in Eqs. (22)
and (26) need to be evaluated in the same reference frame.

An advantageous feature of the susceptibility expression
in Eq. (23) is that it is in integral form and does not involve
infinite sums, which means that the dispersion relations of
Eqs. (22) and (26) can be solved numerically to a high degree
of accuracy without making asymptotic approximations and
while fully accounting for gyroresonances. The utility of the
integral form over the more common infinite-sum form, has
been substantiated in other linear studies of finite-temperature
kinetic instabilities [37–39]. By contrast, with few excep-
tions [37], dispersion relation derivations for gradient-driven
LHDI often rely on summation-form expressions [1,2,40–42]
of which only the first term is typically retained, thus restrict-
ing applicability to low-frequency (ω � �e) long-wavelength
modes [1,2,40,41,43]. Furthermore, the dispersion relations of
Eqs. (22) and (26) [with susceptibilities defined in Eqs. (23)
and (25)] do not impose commonly used asymptotic limits
on the temperature ratio Ti/Te, the frequency ratio ωpe/�e, or
the ratio of wavelength to electron gyroradius. In contrast to
dispersion relations in Refs. [2,5,44], the dispersion relations
here are not restricted to Maxwellian distribution functions.
Since the plasma under consideration is uniform, the local
approximation used in LHDI analyses in Refs. [2,37,45], is
not employed here. Importantly, the dispersion relations in
Eqs. (22) and (26) capture scales associated with thermal
speed and Larmor radius—features that limit growth rates, are
characteristic of finite-temperature kinetic plasmas, and are
missing in cold-fluid linear theory analysis, which is summa-
rized in Appendix B.

IV. QUASILINEAR THEORY
FOR THE ACCELERATION-DRIVEN LHDI

The quasilinear analysis of the acceleration-driven LHDI
proceeds as follows. Let 〈·〉 denote spatial average over one-
dimensional volume L. Define distribution function fs as the
sum of a slowly evolving spatial average fs0(v, t ) ≡ 〈 fs〉 =
1
L

∫
L fs(x, v, t )dx and a rapidly evolving portion fs1(x, v, t ),

whose spatial average 〈 fs1〉 is zero. Likewise, noting that for

the system of interest background electric field is zero and
magnetic field and gravitylike force are constant, define E =
E1 with 〈E1〉 = 0, B = B0 = B0ẑ, and g = g0 = g0x̂. Note
that we have used the 0 and 1 subscripts to draw an analogy
to the linear theory analysis presented in Sec. III, with the un-
derstanding that here the definitions of subscripted terms are
different than in Sec. III. Substituting fs = fs0 + fs1 and these
other definitions into Eq. (1), and taking the spatial average of
the resulting expression yields an evolution equation for fs0,

0 =
[

∂

∂t
+ v · ∂

∂x
+

(
qs

ms
v × B0 − g0

)
· ∂

∂v

]
fs0

+ qs

ms

〈
E1 · ∂ fs1

∂v

〉
. (27)

Subtracting Eq. (27) from Eq. (1) yields an evolution equa-
tion for fs1,

0 =
[

∂

∂t
+ v · ∂

∂x
+

(
qs

ms
v × B0 − g0

)
· ∂

∂v

]
fs1

+ qs

ms
E1 · ∂ fs0

∂v
+ qs

ms

∂

∂v
· (E1 fs1 − 〈E1 fs1〉). (28)

Quasilinear theory assumes that the last term in Eq. (28),
which contains products of E1 and fs1, is negligible. This
means that the evolution of fs1 is linear in perturbed quantities
and can thereby be described by linear theory. Consequently,
the nonlinear evolution of the spatially averaged distribution
fs0 [driven by the last term in Eq. (27)] is second-order in per-
turbed quantities. Another consequence of the assumption is
that mode-coupling and three-wave interactions are neglected.

The only nonlinear contribution to the evolution of the
background distribution function fs0 is the last term in
Eq. (27); however, the spatial and velocity derivative terms in
the square brackets are not necessarily negligible and whether
they are important can depend on the details of the physics
of interest. If spatial variation is sufficiently small (i.e., the
background distribution function is close to uniform), then
the ∂/∂x term in Eq. (27) can be neglected. If any vx-drift
is negligible compared to vy-drift, then the g0 term can also
be neglected. If timescales of interest are much shorter than a
gyroperiod, as would be the case for unmagnetized species,
then B0 term in Eq. (27) can be neglected. The nonlinear
dynamics of the spatially averaged distribution function in this
case are governed by

∂ fs0

∂t
= − qs

ms

〈
E1y

∂ fs1

∂vy

〉
. (29)

Equation (29) can be rewritten as a velocity-space diffusion
equation, as shown below.

For magnetized species, if the growth rates do not signif-
icantly exceed a species’ gyrofrequency, then on timescales
of order the gyroperiod and characteristic wave period, the
spatially averaged distribution functions can be approximated
as being constant and independent of the gyrophase [19].
Thus, Eq. (27) reduces to Eq. (29) for the magnetized species
as well, where f0(vx, vy) can be replaced by f0(v⊥) through
the coordinate transformations in Eqs. (16) and (17) and f0 is
independent of gyrophase θ . In effect, for magnetized species,
it is assumed that the mean diffusion time for a given species is
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greater than a gyroperiod. This is consistent with magnetized-
ion linear theory analysis in Sec. III, where it was assumed
that equilibrium distribution functions are independent of gy-
rophase [see Eq. (20)]. The validity of these assumptions is
assessed in Sec. VII C.

To rewrite Eq. (29) as a diffusion equation, real-valued
quantities E1y and fs1 in Eq. (29) are expressed as inverse
Fourier transforms of Ê∗

1k (ky, t ) and f̂s1(ky, v, t ) with f̂s1 given
by Eq. (20). Making use of the fact that for real-valued E1y,
conjugate symmetry properties

E1k (ky) = Ê∗
1k (−ky), (30)

ωR(−ky) = −ωR(ky), (31)

ωI (−ky) = ωI (ky) (32)

hold, and also noting that in (v⊥, θ ) velocity space ∂ fs1

∂vy
=

∂ fs1

∂v⊥
cos θ − ∂ fs1

∂θ
sin θ
v⊥

yields the one-dimensional velocity-
space diffusion equation for magnetized species

∂ fs0

∂t
= 1

v⊥

∂

∂v⊥

(
v⊥Dmag

vs

∂ fs0

∂v⊥

)
, (33)

with diffusion coefficient

Dmag
vs (v⊥) = q2

s

m2
s �sε0

∫ ∞

−∞
Dmag

vsk (v⊥, ky)dky,

Dmag
vsk (v⊥, ky) = Ek

∫ 2π

0
Re

[
exp (iWsφ)

1 − exp (2π iWs)

]

×
[

J0

(
2kyv⊥
�s

sin

[
φ

2

])
cos(φ) (34)

− J2

(
2kyv⊥
�s

sin

[
φ

2

])]
dφ,

with Wi = ω/�i and We = ω
�e

+ kyg
�e�i

− kyg
�2

e
in the ion rest

frame. For a given wave number ky and distribution function
fs0, mixed-complex frequency ω = ωR + iωI is obtained by
solving the dispersion relation in Eq. (22) with susceptibilities
defined in Eq. (23). In Eq. (34), Ek is the spectral density of
the electric-field energy per unit volume and is defined as

Ek = 1

2πL

1

2
ε0|Ê1k (ky, t )|2, (35)

and its evolution depends on the time-evolving growth rate ωI ,
such that

∂Ek

∂t
= 2ωIEk . (36)

Ek is related to the total electric-field energy density E in the
system by Plancherel’s theorem, such that

E = 1

L

∫ ∞

−∞

1

2
ε0|Ey|2dy = 1

2πL

∫ ∞

−∞

1

2
ε0|Ê1k (ky, t )|2dky.

(37)

In the limit g → 0 in We, the integral-form diffusion coeffi-
cient in Eq. (34) can be shown to match the infinite-sum form
of the diffusion coefficient in Ref. [19] for perpendicularly
propagating waves in a nonaccelerating magnetized plasma.
Just as with the linear dispersion relation, the integral form

facilitates accurate numerical evaluation without asymptotic
approximations. The diffusion coefficient weakly depends on
the distribution function fs0 through ω. Notably, the diffusion
coefficient in Eq. (34) is zero unless growth rate ωI > 0.

Similarly, using Eq. (29), inverse Fourier transforms, and
the definition of f̂s1 in Eq. (24) yields the well-known
one-dimensional velocity-space diffusion equation for un-
magnetized ions

∂ fi0

∂t
= ∂

∂vy

(
Dunmag

vi

∂ f0

∂vy

)
, (38)

with diffusion coefficient

Dunmag
vi (vy) = 2q2

i

m2
i ε0

∫ ∞

−∞
Dunmag

vik (vy, ky)dky,

Dunmag
vik (vy, ky) = EkωI

(ωR − kyvy)2 + ω2
I

, (39)

with ω obtained by solving the dispersion relation in Eq. (26)
with susceptibilities defined in Eqs. (23) and (25).

Due to the conjugate properties in Eqs. (30) to (32), all
integrals over wave number that appear in Eqs. (34), (37),
and (39) have integrands that are even functions of ky. Con-
sequently, integrals over wave-number domain (−∞,∞) can
be replaced by integrals over wave-number domain [0,∞),
multiplied by two. Assuming that diffusion time is either
significantly smaller than a gyroperiod (for unmagnetized
species) or merely larger than a gyroperiod (for magne-
tized species) is ultimately what facilitates treating diffusion
as one-dimensional in both cases. Notably, both Eqs. (33)
and (38) encapsulate diffusion in velocity space associated
with both resonant (irreversible) and nonresonant (adiabatic)
wave-particle interactions. Accounting for nonresonant as
well as resonant contributions is important for wholistic treat-
ment of particle-wave interactions and for ensuring energy
conservation [24–26,46].

The quasilinear diffusion description above captures dy-
namics of a multispecies plasma, such that the variables
fe0, fi0, Ek, ω(ky) are self-consistently coupled and are all
time-evolving. Importantly, the quasilinear description here
admits arbitrary distribution functions, so long as they are a
function of a single velocity coordinate (either v⊥ or vy). This
stems from the fact that the dispersion relations can be, as
described in Sec. V A, numerically solved for ω(ky) given any
smooth fe(v⊥), fi(v⊥), and fi(vy). By contrast, many quasi-
linear descriptions (including those for the gradient-driven
LHDI [2,44,47,48]) are not truly self-consistent because they
assume Maxwellian or bi-Maxwellian distribution functions
when deriving or solving dispersion relations [2,47,49–51].
Such assumptions preclude a self-consistent time-dependent
description because a Maxwellian-specific ω(ky) does not re-
flect changes to the shape of the distribution function.

Conservation properties and anomalous transport

The velocity-space diffusion of the average background
distribution function due to the acceleration-driven LHDI
gives rise to momentum and energy transport, which can
be evaluated explicitly by taking vy-velocity moments of
Eq. (29). This anomalous transport is inherently nonlinear and
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is not captured by standard collisionality-based fluid descrip-
tions. For the transport model to be practical, the quasilinear
description must conserve momentum and energy. Here we
explore transport and conservation properties of the quasilin-
ear model and demonstrate that momentum and energy are,
in fact, conserved. Note that the zeroth velocity moment of
Eq. (29) is zero, implying mass is inherently conserved.

Taking the first vy-velocity moment of Eq. (29) and mul-
tiplying through by species mass ms yields an expression for
the rate of change of a species’ momentum density due to the
action of acceleration-driven LHDI. In effect, the anomalous
momentum transport is equivalent to a drag force per unit
volume, Fds, acting on species s:

Fds ≡ ∂

∂t
(msnsusy) = qs〈E1yns1〉. (40)

From the definition of induced polarization in an isotropic
medium (e.g., see Ref. [52]), qsns = −∇ · (ε0χsE ), where χs

is the species susceptibility—either for a magnetized or un-
magnetized species. Linearizing this expression and assuming
waveform solutions yields a relationship between perturbed
number density ns1 and the perturbed electric field, such that
qsn̂s1 = −ikyε0χsÊ1k . This relation is consistent with quasi-
linear estimates, in which nonlinear terms are second order in
perturbed quantities [2]. Using this relation, applying Fourier
transforms, and taking E1y to be real, the species drag force
per unit volume in Eq. (40) can be expressed as

Fds = 2
∫ ∞

−∞
kyIm[χs]Ekdky, (41)

where Im[·] denotes the imaginary part of the argument and
χs = χs(ky, ω) is evaluated at ω(ky) solutions to the dispersion
relation. Since for any (ky, ω) pair that satisfies the dispersion
relation, Im[χi] = −Im[χe], it follows that Fdi = −Fde, which
means that the quasilinear model conserves momentum.

In a two-fluid description of an electron-ion plasma, the
drag force per unit volume on electrons (which is equal
and opposite to that on ions) can be expressed as Fde =
−νanomme〈neuye − niuyi〉, where νanom is the anomalous effec-
tive electron-ion collision frequency. Using this definition of
electron drag and Eq. (41), one can solve for νanom and, by
extension, for anomalous resistivity ηanom = νanomme/(q2

e ne).
Resistivity is of interest when quantifying current flow
through a kinetic LHDI-unstable plasma.

Taking the second vy-velocity moment of Eq. (29) and
multiplying by 1

2 ms yields an expression for the anomalous
species heating rate ẆHs (i.e., the rate of change of the species
thermal energy density):

ẆHs = 〈E1y jsy1〉. (42)

The linearized continuity equation relates the perturbed
species current jsy1 = qs(nsusy)1 = qs

∫
fs1vydvy to perturbed

number density, such that ̂(nsusy)1 = (ω′/ky)n̂s1, where ω′
here is in a given species’ rest frame. Using this relation, the
polarization-based relationship between n̂s1 and Ê1k , the fact
that E1y is real, and Fourier transforms, the species heating
rate is

ẆHs = 2
∫ ∞

−∞
Re[−i(ω − kyus0y)χs]Ekdky, (43)

where Re[·] denotes the real part of the argument and us0y

is the species equilibrium drift velocity in a given frame of
reference so that in the ion rest frame ui0y = 0 and ue0y =
( g
�e

− g
�i

).
In addition to the rate of change of electric-field energy

density given by Ė = 2
∫ ∞
−∞ ωIEkdky [i.e., Eq. (36) integrated

over wave number], and the rate of change of species thermal
energy density in Eq. (43), there is also a rate of change
in the “gravitational energy density,” i.e., the energy den-
sity associated with the gravitylike acceleration. This rate is
given by

Ẇg = −
∑

s

msnsgusx =
∑

s

g

�s
Fds, (44)

where usx is the species x-directed velocity induced by y-
directed drag, and the last equality in Eq. (44) uses force
balance, such that Fds = −qsnsusxBz. Note that the y-directed
species drift energy Wys = 1

2 msnsu2
s0y is constant in the model.

The rate of change of kinetic energy density associated with
x-directed drift, i.e., Ẇxs = ∂

∂t ( 1
2 msnsu2

sx ), is fourth-order in
perturbed quantities and is not accounted for in the model.
Noting that Im[χi + χe] = 0 and Re[χi + χe] = −1 one can
show that the sum of Ė,ẆHi,ẆHe, and Ẇg is zero, which
means that the quasilinear model conserves energy.

Due to the conjugate symmetry properties in Eqs. (31)
to (32), one can show that χ (−ky, ω(−ky)) = χ∗(ky, ω(ky)).
Therefore, integrals over wave-number domain (−∞,∞) that
appear in Eqs. (41) and (43) and implicitly in Eq. (44) can be
replaced by the integral over wave-number domain [0,∞),
multiplied by two, such that

∫ ∞
−∞ · · · dky = 2

∫ ∞
0 · · · dky.

V. NUMERICAL SOLVERS FOR THE QUASILINEAR
GOVERNING EQUATIONS

The governing equations of the quasilinear model for
acceleration-driven LHDI—specifically the linear theory dis-
persion relation given in Sec. III and the coupled diffusion
equation system given in Sec. IV, are solved numerically, as
described in the following subsections.

A. Solving the dispersion relation

The dispersion relation for the acceleration-driven LHDI,
as defined in Sec. III in Eq. (22) or in Eq. (26), can be
solved directly to a numerical tolerance or can be solved ap-
proximately in the small-growth-rate limit. Both approaches
require efficient and accurate evaluation of the integrals in
Eqs. (23) and (25). Approaches for evaluating χ

mag
s and

χ
unmag
s , solving the dispersion relation directly, and solving

the dispersion relation approximately are described below.
Prior to solving the dispersion relation, it is convenient to

evaluate susceptibilities in the ion rest frame and to nondimen-
sionalize variables with respect to spatial scale g/(�i�e) and
temporal scale (�i�e)−1/2. The ion rest frame is convenient
since the real frequency for the instability falls between ion
Bernstein wave modes. The choice of nondimensionaliza-
tion facilitates making connections to cold-fluid theory (see
Appendix B), in which g/(�i�e) is the only spatial scale
in the system, and to gradient-driven LHDI theory [2,37],
in which the lower hybrid frequency ωLH is often evaluated

025201-7



G. V. VOGMAN AND J. H. HAMMER PHYSICAL REVIEW E 110, 025201 (2024)

in the high density limit such that (ωpe/�e)2  1, wherein
ωLH = (�i�e)1/2. Nondimensional variables will be denoted
by tilde ,̃ such that k̃y = kyg/|�i�e| and ω̃ = ω/(�i�e)1/2.

In general, it is desirable to solve the dispersion relation
directly for mixed-complex frequency ω̃ = ω̃R + iω̃I , without
invoking simplifying assumptions. This can be achieved so
long as the integrals in Eqs. (23) and (25) are computable. The
integrals that appear in the magnetized-species susceptibility
χ

mag
s [see Eq. (23)] are well-behaved so long as Ws is nonzero,

or equivalently so long as ω̃R �= 0 and phase velocity ω̃R/k̃y is
far from electron cyclotron resonance. For a smooth fs0(v⊥)
evaluated at discrete points v⊥, j , the integral can be evaluated
numerically by first applying adaptive quadrature for the φ-
integration and applying the trapezoidal rule for integration
over the v⊥ direction. If the equilibrium distribution function
happens to be Maxwellian, then the magnetized-species sus-
ceptibility given by Eq. (23) simplifies to

χmag
s (ω̃, k̃y)

∣∣
fs0=Maxwellian

= ω2
ps

�2
s

∫ 2π

0

sin(θ )

1 − exp (2π iWs)

× exp
(
k̃2

y r̃2
Ls[cos θ − 1] + iWsθ

)
dθ, (45)

where r̃Ls is the species Larmor radius. When k̃2
y r̃2

Ls  1, the
exponential term in Eq. (45) drops off rapidly to zero in the
middle of the integration interval. In this case, Taylor ex-
panding cos θ term about θ = 0 and θ = 2π facilitates more
efficient integration over θ while retaining accuracy.

The integral that appears in the unmagnetized species sus-
ceptibility χ

unmag
s [see Eq. (25)] is well-behaved so long as

ω̃I is finite. In this case, for a discrete fs(vy), ∂ fs/∂vy can
be computed using discrete Fourier transforms and the in-
tegral can be evaluated straightforwardly by multiplying the
numerator and denominator of the integrand by the complex
conjugate of (ω̃/k̃y − ṽy). In the small growth rate limit, i.e.,
when ω̃I � ω̃R, the Sokhotskyi-Plemelj formula is applicable
and χ

unmag
s can be approximated by

χunmag
s (ω̃, k̃y) ≈ ω̃2

pi

k̃2
y

[
p.v.

∫ ∞

−∞

1

ω̃R/k̃y − ṽy

∂ f̃0

∂ ṽy
d ṽy

−iπ f̃0

(
ω̃R

k̃y

)]
(46)

where p.v. denotes Cauchy principal value, which can be
evaluated using the Hilbert transform [24]. For a Maxwellian
equilibrium distribution, small-growth-rate approximations
are unnecessary, and the unmagnetized-species susceptibility
for ω̃ /∈ R is

χunmag
s

∣∣
fs0=Maxwellian = ω̃2

pi

k̃2
y ṽ

2
T s

(
1 + iπ1/2ξ exp(−ξ 2)

× [1 + erf(iξ )]
)
,

ξ = ω̃√
2ṽT sk̃y

, (47)

where ṽT s = √
Ts/ms is the species thermal speed and Ts is the

species temperature.

Given the above strategy for evaluating the integrals in
ε(ω̃, k̃y) and provided the growth rate is larger than zero,
the dispersion relation can be solved for mixed complex fre-
quency ω̃ = ω̃R + iω̃I as a function of wave number using the
Nyquist method [53] combined with a bisection algorithm.
The Nyquist method facilitates determining whether an un-
stable root exists in a given region of the (ω̃R, ω̃I ) plane and
the bisection algorithm enables locating the root(s) to within a
tolerance. In practice, the Nyquist method is implemented as
follows. For fixed wave number, a closed rectangular contour
� is chosen in the upper half of the complex (ω̃R, ω̃I ) plane.
The region enclosed by � should contain the unstable root.
The choice of contour can be informed by roots obtained from
cold-fluid theory. Following � counterclockwise in discrete
steps, the parametric curve C given by [ 1

εR (�) ,
1

εI (�) ] is mapped
out, where subscripts denote the real and imaginary parts, such
that ε = εR + iεI . The integer number of times that C encircles
the origin, a.k.a. the winding number, is equal to the number
of unstable modes. An automated means of counting the wind-
ing number is described in Ref. [53]. The Nyquist method
effectively applies the residue theorem to count the number of
singularities, i.e., unstable solutions to the dispersion relation,
in the region enclosed by �. Since the Nyquist method only
provides an indication of whether an unstable root exists, it
is useful to embed the method in a bisection algorithm so
that the contour � is iteratively bisected (first in ω̃I then in
ω̃R) to locate, within a tolerance, the most unstable root. The
Nyquist method can be made more efficient by adapting the
size of the step taken along � based on the angle traversed
by the curve C. Likewise, choosing a smaller contour for
� can speed-up convergence. The Nyquist method is much
more computationally efficient for Maxwellian distribution
functions than for general distribution functions.

For purely real roots, one can use the bisection method
on its own to find solutions between ion cyclotron harmon-
ics. When choosing an interval to bisect, it is important that
the interval does not contain cyclotron resonances (Ws = 0),
where ε(ω̃, k̃y) blows up.

Anticipating the need to find roots repeatedly for evolv-
ing distribution functions, one can take advantage of known
solutions. For example, if ω̃M(k̃y) is the solution to the dis-
persion relation obtained using the Nyquist-bisection method
for a Maxwellian equilibrium distribution function, then a
minimum-finding optimization algorithm (e.g., Levenberg-
Marquardt) can be applied to find the zeros of |ε| for a slightly
different distribution function using ω̃M as the initial guess.

Solutions to the dispersion relation can also be approxi-
mated by assuming ω̃I � ω̃R and Taylor expanding ε(ω̃, k̃y)
about ω̃ = ω̃R in small parameter ω̃I [54]. Retaining terms
that are first order in ω̃I and assuming that εI is O(ω̃2

I ) or
smaller, the real frequency can then be obtained by solving
εR(ω̃R, k̃y ) = 0 for fixed wave number, while the imaginary
part of frequency is obtained from

ω̃I = − εI (ω̃R)
∂εR
∂ω̃R

∣∣
ω̃=ω̃R

. (48)

As will be discussed, the assumptions necessary for this ap-
proximation to be accurate are not always met.
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(a) (b) (c)

FIG. 2. Growth rate ωI in plot (a) and frequency ωR in plots (b) and (c) as a function of wave number for acceleration-driven LHDI,
assuming ion and electron equilibrium distribution functions are Maxwellian. The dispersion relation is evaluated for dimensionless parameters
mi/me = 25, �e/ωpe = 0.5, Ti/Te = 1,Vd/vTi = 3.12, β = 2.5 × 10−3. Plot (c) is a zoomed-in version of plot (b), and shows a smaller range
of wave numbers and frequencies to illustrate how unstable mode interconnects with ion Bernstein waves (gray lines). Solutions are shown
to three different forms of the dispersion relation: one in which both ions and electrons are magnetized [Eq. (22)], one where electrons are
magnetized and ions are unmagnetized [Eq. (26)], and an approximate dispersion relation based on Taylor expansion for the case where ions
are unmagnetized [see Eq. (48)]. In all cases, the threshold for the instability is kyg/|�i�e| � 1 and real frequency solutions fall near electron
cyclotron resonances. Treating ions as magnetized introduces fine-scale structure to the dispersion relation. The approximate dispersion relation
is inaccurate in the vicinity of kyg/(�i�e) ≈ 1.

Figure 2 shows solutions to three different forms of the
dispersion relation: one in which electrons and ions are both
magnetized, as defined in Eq. (22); one in which ions are
unmagnetized, as defined in Eq. (26); and one in which
ions are unmagnetized and the Taylor-series-based approx-
imation is applied such that ε(ω̃R, k̃y) = 0 is used to solve
for ω̃R and Eq. (48) is invoked to solve for growth rate.
The dispersion relations are solved assuming ion and elec-
tron distribution functions are Maxwellian for parameters
mi/me = 25, �e/ωpe = 0.5, Ti/Te = 1,Vd/vTi = 3.12, where
Vd = uyi − uye = (g/�i − g/�e) is the relative drift velocity.
Plasma beta, the ratio of thermal pressure to magnetic pres-
sure, is set to β = 2.5 × 10−3. The instability also exists at
realistic mass ratios, as demonstrated in Fig. 3, which shows
the growth rate as a function of wave number for the parame-
ter case mi/me = 1836, �e/ωpe = 0.107, Ti/Te = 1, Vd/vTi =
3.00, β = 2.5 × 10−3—again assuming distribution functions
are Maxwellian. All forms of the dispersion relation, inde-
pendent of parameters, have an instability threshold of k̃y ≈
kyrLe( Vd

vTi
)( me

mi
)1/2( Ti

Te
)1/2 � 1. This property is consistent with

the cold-fluid dispersion relation given by Eq. (B3) in Ap-
pendix B. All forms of the dispersion relation also have peak
growth rates at wave numbers that roughly coincide—see
Figs. 2(a) and 3. The approximate form of the unmagnetized-
ion dispersion relation is, as expected, not accurate at wave
numbers for which ω̃I = O(ω̃R) as evidenced by negative
growth rate solutions in Fig. 2—here the solution to the ap-
proximate dispersion relation does not satisfy ε(ω̃, k̃y) = 0
for k̃y values near unity. The accuracy of the Taylor series
approximation improves when mass ratio is increased. The
magnetized-ion dispersion relation exhibits fine-scale struc-
ture that is related to the presence of the ion gyroradius scale
length. In particular, the structure becomes finer as mi/me or
Te/Ti increases. The structure is observed both in the growth
rate ω̃I , as well as in the real frequency ω̃R(k̃y)—see Figs. 2(a)
and 2(c). As evidenced in Fig. 2(c), when ions are treated
as magnetized, mixed-complex frequencies branch with ion
Bernstein waves. The exact form of the unmagnetized-ion

dispersion relation does not include ion Bernstein waves, and
hence does not support purely real roots. Overall growth rates
increase with Vd/vTi and with ωpe/�e, i.e., when more drift
energy is available to drive the instability.

FIG. 3. Growth rate as a function of wave number obtained by
solving the acceleration-driven LHDI dispersion relation for real-
istic mass ratio with parameters mi/me = 1836, �e/ωpe = 0.107,
Ti/Te = 1, Vd/vTi = 3.00, β = 2.5 × 10−3. Ion and electron distri-
bution functions are taken to be Maxwellian. Solutions are shown to
three different forms of the dispersion relation: one in which both
ions and electrons are magnetized [Eq. (22)], one where electrons
are magnetized and ions are unmagnetized [Eq. (26)], and an ap-
proximate dispersion relation based on Taylor expansion for the case
where ions are unmagnetized [see Eq. (48)]. With increased mass
ratio, the magnetized-ion dispersion relation solution exhibits finer
structure (which is not fully resolved here) and the solution to the
approximate dispersion relation approaches the solution to the exact
dispersion relation. For this wave-number interval, real frequencies
for the instability (not shown) fall in the range ωR/(�i�e)1/2 ∈
[−82, 0].
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The main distinctive features are that magnetized-ion
dispersion relation exhibits fine-scale structure, that—as
expected—the approximate dispersion relation is inaccurate
in parameter regions where ω̃I ≈ ω̃R, and that all dispersion
relations have an instability threshold of k̃y � 1.

B. Solving quasilinear diffusion model

Given initial conditions and boundary conditions, the non-
linear coupled diffusion equation system in Sec. IV [defined
by Eq. (33) for magnetized electrons, Eq. (33) or Eq. (38) for
ions, and Eq. (36) for the electric-field energy spectrum] can
be discretized and solved numerically and self-consistently for
fi0, fe0, and Ek as a function of time. Here a second-order
Crank-Nicolson method with a second-order finite-volume
discretization is used.

Averaging Eq. (33) over a velocity-space cell volume,
denoted by cell-center index j with cell edges at indices
j ± 1

2 , facilitates recasting the magnetized-species diffusion
equation into weak form, such that the time derivative of the
cell-average distribution function 〈 f 〉 j is

∂

∂t
〈 f 〉 j =

[
v⊥Dv

∂ f

∂v⊥

] j+ 1
2

j− 1
2

, (49)

where in the interest of clarity we have omitted subscript s
denoting species and superscript mag denoting magnetized-
species diffusion coefficient, which is defined in Eq. (34). The
advantage of the weak form is that it admits solutions that can
have local discontinuities.

A second-order accurate finite-difference Crank-Nicolson
method is used for time discretization. Letting � be the time
index, then 〈 f 〉�+1 is related to 〈 f 〉� through

1

�t

(〈 f 〉�+1
j − 〈 f 〉�j

) = 1

2

([
v⊥Dv

∂ f

∂v⊥

] j+ 1
2

j− 1
2

)�+1

+ 1

2

([
v⊥Dv

∂ f

∂v⊥

] j+ 1
2

j− 1
2

)�

. (50)

To approximate the unknown nonlinear velocity-space dif-
fusion coefficient D�+1

v , we use a Taylor series expansion

and finite differences, such that D�+1
v = D�

v + dD�
v

dt �t = D�
v +

1
2 (D�

v − D�−2
v ). Equation (50) can be recast as a matrix time-

update equation for 〈 f 〉�j , in which each row j corresponds to
a different velocity-space cell:(

1

�t
− 1

2

[
v⊥D�+1

v

∂

∂v⊥

] j+ 1
2

j− 1
2

)
〈 f 〉�+1

j

=
(

1

�t
+ 1

2

[
v⊥D�

v

∂

∂v⊥

] j+ 1
2

j− 1
2

)
〈 f 〉�j, (51)

where �t is the time-step size (see Appendix C) and
derivatives ∂ f /∂v⊥ are evaluated using second-order finite-
difference stencils, which results in a second-order finite-
volume velocity-space spatial discretization. Equation (51)
can be solved for 〈 f 〉�+1

j using a linear algebra solver. The
unmagnetized-species diffusion equation of Eq. (38) can be
discretized in the same fashion.

Since diffusion is an initial-boundary value problem,
boundary conditions are needed for the distribution function
fs. To allow for diffusion everywhere in the velocity-space
domain and to ensure net conservation of mass, we set ho-
mogeneous Neumann boundary conditions, such that velocity
gradients are zero at all velocity boundaries. These boundary
conditions are implemented by modifying the boundary cell
stencils in Eq. (51).

The spectral electric-field energy density, Ek , is advanced
forward in time in accordance with Eq. (36), such that

Ek (t ) = Ek0 exp

(
2

∫ t

0
ωI (ky, t ′)dt ′

)
, (52)

where Ek0 is the initial t = 0 value and the cumulative time
integral is evaluated using a second-order trapezoidal rule.

Initial conditions are set as follows. The initial species
distribution functions are chosen to be Maxwellian, centered
at the origin, with normalization

∫
fsdv = 1. The initial spec-

tral electric-field energy density Ek0 is set to a constant value
independent of wave number so that the ratio of electric-field
energy [see Eq. (37)] to thermal energy is E/[n(Ti + Te)] ≈
1 × 10−9 at initial time, i.e., a very small value as is necessary
for quasilinear theory to be applicable. Alternatively, Ek0 can
be set to be the maximum of a near-zero value and a scalar
multiple of the growth rate ωI (ky) at initial time, as done in

(a) Electron diffusion coefficient (b) Ion diffusion coefficient

FIG. 4. The wave-number- and velocity-dependent structure of
Dmag

vsk (v⊥, ky ) (top), the integrand used to evaluate the quasilinear
theory velocity-space diffusion coefficient Dmag

vs (v⊥) in Eq. (34) for
magnetized electrons (left) and magnetized ions (right). The result-
ing species diffusion coefficient (electrons bottom left; ions bottom
right), obtained by integrating Dmag

vsk over wave number, is normalized
to the maximum value, and is plotted alongside the initial species
distribution function, which here is also normalized to its peak value.
The diffusion coefficient indicates which velocity-space portion of
the distribution function is most affected by the LHDI. Because
of the wave-number dependence of Ek and ωI , both of which appear
in the integral expression for the diffusion coefficient in Eq. (34),
wave numbers near peak growth rate strongly influence the velocity-
space structure of the diffusion coefficient. Here Dmag

vsk is evaluated
after a few instability growth times.
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Ref. [24] in exploration of the bump-on-tail instability. Both
initializations of Ek0 after a time-step result in a Ek spectrum
that is largely determined by the growth rate spectrum. Includ-
ing modes whose growth rates are initially zero allows for the
possibility of those modes developing finite growth rates later
in time.

In principle, the wave-number domain and the velocity-
space domain are infinite in the quasilinear model. In
practice, to obtain discrete solutions, both domains have to
be truncated. We consider the truncated wave-number domain
kyg/(�i�e) ∈ [1, 3], which is chosen because for parameter
cases explored here (which are by no means exhaustive),
modes outside this wave-number range appear to have a negli-
gible effect on the distribution functions. The velocity domain
is defined to be v⊥s/vT s ∈ [0, 5] for magnetized species and
vy/vTi ∈ [−5, 5] for unmagnetized ions. For the two-species
plasma under consideration, ions are treated either as mag-
netized or unmagnetized (not both). For magnetized species,

1000 wave numbers are used to resolve the detailed struc-
ture of the dispersion relation. For unmagnetized species, 392
wave numbers are used. Note that if an insufficient number of
wave numbers are used, then the ion diffusion coefficient can
become discontinuous in time and/or in velocity space. Wave
numbers need not be uniformly spaced. Figure 4 shows for a
given Ek0 how the diffusion coefficient depends on wave num-
ber and velocity coordinate. In the magnetized-ion quasilinear
model, 288 points are used to discretize velocity space. In the
unmagnetized-ion model 864 velocity grid points are used.
The exact number of discrete points in wave number and ve-
locity space is informed by computational cost considerations,
available parallelization, and the structure of the diffusion
coefficient integrand Dvsk [see Eqs. (34) and (39) and Fig. 4].
The parameter case considered is described after Eq. (48) in
Sec. V A. The algorithm for the updating cell-average 〈 fs〉 j

and Ek is given below.

ALGORITHM 1. Solving quasilinear diffusion equation system.

As discussed in Sec. V A, using the Levenberg-Marquardt
optimization algorithm for finding roots of the dispersion re-
lation [either Eq. (22) or Eq. (26)] increases solution speed.
The computational efficiency of the algorithm is substantially
improved by parallelizing the wave number for-loop. Further
gains in efficiency are achieved by adapting time-step size so
that the relative changes (E�+1 − E�)/E� and max j (|〈 fs〉�+1

j −
〈 fs〉�j |/〈 fs〉�j ) are less than about 2%. Dispersion relations in
Eqs. (22) and (26) provide a useful check on the quasilinear
solver. For all numerical solutions to the quasilinear the-
ory governing equations that are presented here, it has been
verified that for finite ωI (i.e., finite diffusion), the equality

ε(ωR + iωI , ky) = 0 holds to a tolerance of about ±5 × 10−6

for all time—a very small value compared to the susceptibili-
ties, which are of order unity. To ensure this tolerance is met,
growth rates in the unmagnetized-ion quasilinear description
have to be zeroed out whenever the unmagnetized-ion approx-
imation is violated, i.e., when ωR/�i < 1. Furthermore, it was
found that using the commonly applied Taylor series approx-
imations to solve a given dispersion relation [see Eq. (48) and
surrounding text] could lead to ε(ωR + iωI , ky) being far from
zero—particularly as the instability transitions from linear to
nonlinear regime. This can potentially explain some of the dis-
crepancies seen between quasilinear calculations and Vlasov
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simulations in Ref. [24], where a Taylor series approximation
was employed. As such, Taylor series approximations of the
form in Eq. (48) are not employed here in numerical solutions
to the quasilinear governing equations.

VI. VLASOV SOLVER, INITIAL CONDITIONS,
BOUNDARY CONDITIONS, AND SETUP

Vlasov simulations are carried out using the parallel fourth-
order accurate (in space and time) conservative finite-volume
Vlasov Continuum Kinetics (VCK) code [38,55]. The code has
been benchmarked [38], has been demonstrated to have robust
convergence properties [38,55], and has been successfully
applied in investigations of the Dory-Guest-Harris instabil-
ity [38], dynamics of axisymmetric plasmas [55], nonuniform
equilibria [36], gyromotion-modulated Kelvin-Helmholtz in-
stabilities [12,56], and gradient-driven lower hybrid drift
instabilities [56]. When it comes to cross-comparisons with
quasilinear theory, an important strength of continuum kinetic
solvers like VCK is that they provide smooth differentiable
solutions. This advantage has been demonstrated previously
in quasilinear and nonlinear simulation studies of the bump-
on-tail instability [24].

For the purposes of modeling the acceleration-driven
LHDI, VCK is applied to solve the Vlasov-Poisson equa-
tion system in Eqs. (1) and (2) in 3D (y, vx, vy) phase space
with resolution Ny × Nvx × Nvy = 1152 × 512 × 512. At
initial time, ion and electron distribution functions are set to
be drifting Maxwellians, such that

fs(y, vx, vy)|t=0 = ms

2πTs
exp

⎛
⎝−ms

(
v2

x + [
vy − g

�s

]2)
2Ts

⎞
⎠,

(53)

where temperature Ts = msv
2
T s. The spatial domain is periodic

and of length Ly = 20π/kmax, where kmax is the fastest grow-
ing mode according to the dispersion relation in Eq. (22). In
effect, the domain is ten times longer than the wavelength of
the fastest growing mode. The velocity domain is set to span
18 thermal speeds in each velocity direction and to be centered
at the centroid of each velocity distribution function, such that
the vx velocity extent is vxs/vT s ∈ [−9, 9] for each species
and the vy velocity extent is vyi/vTi ∈ [−6, 12] for ions and
vye/vTe ∈ [−9.024, 8.976] for electrons. Zero flux boundary
conditions are applied at velocity boundaries to ensure con-
servation of the distribution function.

The equilibrium is perturbed with a sinc function
perturbation by multiplying fs by 1 + α sinc(h[y − Ly/2]),
with the sinc function defined as sinc(x) = sin(x)

x and
amplitude α = 8 × 10−5. The parameter h is chosen to ensure
the perturbation is periodic in the domain of length Ly and so
that modes in the approximate range ky ∈ [−2kmax, 2kmax] are
perturbed. In effect h ≈ 2kmax. The sinc function is a smooth
approximation to a delta function and is chosen because it
has a broad continuous wave-number spectrum that excites
all modes with the same amplitude. To assess sensitivity
of nonlinear solutions to different types of perturbations in
the context of the Vlasov-Poisson solver, we also consider
a sum-of-sines perturbation with 13 wavelengths. Unless

otherwise specified, the results presented will be
from the Vlasov simulation that uses a sinc function
perturbation. While we present results exclusively
from 1152 × 512 × 512 resolution Vlasov simula-
tions, to gauge sensitivity to resolution, we have
performed simulations with a lower velocity-space resolution
of Ny × Nvx × Nvy = 1152 × 256 × 256 and found that
the deviations between high-resolution and low-resolution
results are small and are on par with the deviation between
sum-of-sines perturbation and sinc-function perturbation
results shown in Fig. 5.

VII. COMPARING QUASILINEAR MODEL
AGAINST VLASOV SIMULATIONS

FOR THE ACCELERATION-DRIVEN LHDI

The nonlinear acceleration-driven LHDI is explored using
the Vlasov-Poisson solver and the quasilinear model solver
for the parameter case mi/me = 25, �e/ωpe = 0.5, Ti/Te =
1,Vd/vTi = 3.12, which is first discussed in Sec. V A. To keep
a clear distinction, we will refer to quasilinear model numeri-
cal solutions as “calculations” and Vlasov-Poisson numerical
solutions as “simulations” and cross-compare features of the
evolving plasma state within the two models. An artificial
mass ratio of mi/me = 25 is used to lower the computa-
tional cost of the Vlasov-Poisson solver and make simulations
tractable. See Appendix C for how mass ratio affects the
compute time of Vlasov and quasilinear model solvers.

A. Electric-field energy

Evolution of electric-field energy density as a function of
time provides one indicator of the linear-to-nonlinear tran-
sition of the acceleration-driven LHDI. Electric-field energy
is also an important measure of quasilinear theory’s pre-
dictive capability because it determines the magnitude of
diffusion and transport terms. Figure 5 shows electric-field en-
ergy evolution from a magnetized-ion quasilinear calculation,
unmagnetized-ion quasilinear calculation, and Vlasov simu-
lations using different initializations. Maximum growth rates
according to magnetized-ion [Eq. (22)] and unmagnetized-ion
[Eq. (26)] linear theory for acceleration-driven LHDI are also
shown for reference.

In Vlasov simulations, the electric-field energy initially
grows exponentially in time at a growth rate that is consistent
with unmagnetized-ion linear theory. As with all instabili-
ties, nonlinear effects eventually come into play, exponential
growth stops, and electric-field energy oscillates about a
nearly constant saturated value. Figure 5 shows that using
a sinc-function perturbation, which has a piecewise-uniform
wave-number spectrum, results in a slightly larger saturated
value of electric-field energy than when using a sum-of-sines
perturbation. Overall, however, Vlasov simulation results are
not particularly sensitive to the exact form or amplitude of
the initial perturbation, so long as the perturbation amplitude
is small.

In quasilinear calculations, the electric-field energy density
transitions from exponential growth at a rate predicted by
unmagnetized-ion linear theory to a much smaller growth rate,
but never saturates, as shown in Fig. 5. The lack of saturation
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FIG. 5. Evolution of electric-field energy density relative to initial thermal energy density, n(Ti + Te), in Vlasov simulation with sinc
function perturbation (Vlasov-1), Vlasov simulation with a sum-of-sines perturbation (Vlasov-2), quasilinear calculation with magnetized ions
(QL-A), and quasilinear calculation with unmagnetized ions (QL-B). Quasilinear calculation time traces are shifted in time to overlay with the
linear stage of the Vlasov-1 time trace. This time offset is equivalent to using a different perturbation amplitude in the linear phase. Vlasov
simulation low-pass filtered traces are shown in addition to the raw data. The evolution is shown on a linear scale (left) and a log scale (right).
The linear theory growth rates for the fastest growing mode, according to magnetized-ion dispersion relation and unmagnetized-ion dispersion
relation, are shown for reference. Vlasov simulations exhibit a clear transition from linear-theory-predicted exponential growth to a saturated
state, wherein the electric-field energy density oscillates around a nearly constant value. E-field energy density in quasilinear calculations also
exhibits a transition from linear-theory-predicted exponential growth to a much smaller growth rate, but never saturates.

is due to the fact that an LHDI driver (i.e., acceleration) is
always present and there is no damping mechanism (e.g., no
Landau damping) for the waves in the quasilinear descrip-
tion, which means that growth rates remain nonnegative for
all time. In principle, growth rates can become zero when
temperature reaches a sufficiently high value such that a stable
configuration is reached. Magnetized-ion and unmagnetized-
ion quasilinear calculations yield different time histories,
such that magnetized-ion treatment results in higher electric-
field energy density at the linear-to-nonlinear transition.
Vlasov simulation nonlinear time history appears to fall be-
tween the magnetized-ion and unmagnetized-ion quasilinear
calculations.

The choice of initialized Ek0 [see Eq. (52)] in quasilinear
calculations can modify the electric-field energy density dur-
ing the nonlinear stage, but as with Vlasov simulations, the
results are not particularly sensitive to the exact form of initial
condition. While Ek is real-valued and only depends on growth
rate, one can reintroduce phase information by evolving a
mixed-complex spectral electric field, according to

Ê1k = Ê1k0 exp

(
−i

∫ t

0
(ωR + iωI )dt ′

)
for ky ∈ (−∞,∞)

(54)

and with various choices for mixed complex Ê1k0 that sat-
isfy Eq. (30) one can verify that the resulting electric-field
energy evolution [see Eqs. (35) and (37) for the relationship
between these variables] is likewise not particularly sensi-
tive to initial conditions, including phase information. For all
initializations of Ek0 and Ê1k0 that we have tested, including
different wave-number dependence and different magnitudes
satisfying E/[n(Ti + Te)] � 1, saturated state conditions fall
within about 20% of each others.

As shown in Fig. 5, depending on what metric is used
to define “saturation” in the quasilinear calculations, the
quasilinear predictions of electric-field energy density can be

within a factor of two of Vlasov simulation results. This points
to a need for a metric that can be used to identify at which
point in instability evolution is quasilinear theory no longer
applicable. We will return to this topic later in the paper.

B. Electric-field spectrum and growth rates

Different wave-number modes contribute to the net
electric-field energy, and the overall spectrum ultimately dic-
tates anomalous transport. The validity of the quasilinear
description thus, in part, depends on its ability to capture the
relative contributions of different modes (even if the theory
does not capture damping). These relative contributions can
be measured by growth rate as a function of wave number
and time. While growth rate is explicitly solved for in the
quasilinear model, Vlasov simulations growth rates can be
obtained by taking the discrete spatial Fourier transform of
Ey(y, t ) to get Êk (ky, t ), multiplying by the complex conjugate
to get |Êk|2, applying a low-pass filter in time to smooth out
high-frequency variations, evaluating the time derivative of
the log of the result, and dividing by two. Fig. 6 compares
growth rates from a sinc-perturbation Vlasov simulation and
quasilinear calculations. The evolution of growth rates is sub-
ject to certain inherent features of the given model. The fine
scale structures in ωI (ky) from magnetized-ion quasilinear cal-
culation reflects the initial dispersion relation structure shown
in Fig. 2. Apart from this inherent difference, the evolution
of growth rate in the magnetized-ion and unmagnetized-ion
calculations is also markedly different at low wave numbers
because unmagnetized-ion quasilinear treatment is not valid
when ωR/�i is of order unity. This leads to disproportionately
high growth rates at low wave numbers next to zero growth
rates (where growth rates are explicitly zeroed out for not
satisfying the dispersion relation) in the unmagnetized-ion
quasilinear treatment. The Vlasov simulation has lower wave-
number resolution than quasilinear calculations since it only
captures wave numbers that are integer multiples of 2π/Ly.
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(a) (b)

(c) (d)

FIG. 6. Growth rate ωI/ωpi as a function of wave number and time from (a) Vlasov simulation with sinc perturbation, (b) quasilinear
calculation with magnetized ions, and (c) quasilinear calculation with unmagnetized ions. Dashed vertical white lines denote the wave number
of the fastest-growing mode at initial time. The temporal evolution of the growth rate for this initially fastest-growing mode is shown for all
three cases in panel (d). All contours are capped at 6 × 10−2 and are floored at −1 × 10−2. Vlasov simulations only capture wave numbers that
are integer multiples of 2π/Ly and thereby are not as resolved in wave-number space as the quasilinear calculations. While quasilinear growth
rates are nonnegative, Vlasov simulation growth rates can be negative, indicating the presence of damping. Vlasov simulation growth rates
have a much larger range than growth rates from the quasilinear calculations. Growth rates in the unmagnetized-ion quasilinear calculation are
zeroed out whenever the unmagnetized-ion approximation is violated, i.e., when ωR/�i < 1. Gray regions signify no data, e.g., due to time
shift of quasilinear calculations to match with Vlasov simulation. Quasilinear calculations and the Vlasov simulation both show that the growth
rate of the initially fastest-growing mode decreases in time, and that neighboring modes—including those that were initially stable—take on
larger growth rates and/or become more important.

While quasilinear calculations do not reflect the exact
growth rate values seen in the Vlasov simulation, they do cap-
ture aspects of nonlinear growth rate evolution. Specifically,
quasilinear calculations successfully capture the trend of ini-
tially fastest-growing modes diminishing in importance, and
initially smaller-growth-rate modes (including those at lower
wave numbers that are initially stable) becoming more impor-
tant. This trend is consistent with ion distribution function
deformation—as the distribution function flattens at phase
velocities associated with high growth rates, neighboring
velocity-space regions develop larger gradients that lead to
larger growth rates. The relationship between ωI (ky) and the
electron distribution function structure is less apparent. Quasi-
linear calculations are characterized by nonnegative growth
rates for all time, whereas in Vlasov simulations, after the
linear regime, mode damping (negative growth rates) oc-
curs intermittently with mode growth (positive growth rates).
Negative growth rates in Vlasov simulations confirm that a
damping mechanism is present that is not captured by the
quasilinear description. Interestingly, the Vlasov simulation

growth rates evolution in Fig. 6(a) is not indicative of strong
mode-mode coupling, which suggests that quasilinear the-
ory’s neglect of wave-wave interactions may be justified for
the parameter case considered.

C. Distribution function evolution

Another important measure of quasilinear theory’s ap-
plicability is the degree to which velocity-space diffusion
accurately captures the nonlinear evolution of the spatially
averaged ion and electron distribution functions. Here we ex-
amine the structure of the time-evolving distribution functions
and the associated diffusion coefficient in the magnetized-ion
quasilinear calculation and in the sinc-perturbation Vlasov
simulation.

The time-dependent velocity space structure of the ion dis-
tribution function and the electron distribution function from
the Vlasov simulation is shown in Figs. 7 and 8, respectively.
The distribution functions are plotted during the time interval
when the acceleration-driven LHDI transitions from linear to
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FIG. 7. The ion distribution function at different snapshots in time in the Vlasov simulation. The top row shows the ion distribution
function at a fixed y location. Overplotted is the phase velocity of the fastest growing mode (horizontal white dashed line), the minimum
phase velocity captured in quasilinear calculation (blue line), and the maximum phase velocity captured in the quasilinear calculation (red
line). A fixed unperturbed magnetized particle trajectory is denoted by a white dashed circle. The second row shows the spatially averaged
Vlasov simulation ion distribution function, overplotted with the same phase velocity reference lines. These results show that up to a point,
the Vlasov simulation spatially averaged ion distribution function diffuses radially outward in velocity space. Although the spatially averaged
ion distribution function is not axisymmetric, the minimal azimuthal variation suggests that ion distribution function evolution can—to some
degree—be represented as a function of a single v⊥ velocity coordinate, as done in the magnetized-ion quasilinear model.

nonlinear regime, i.e., when distribution function deformation
becomes significant. The top row of Fig. 7 shows contour
plots of the ion distribution function fi(y, vx, vy) at a fixed
y position, and the bottom row in Fig. 7 shows the spatially
averaged ion distribution function, 〈 fi〉. Analogously, Fig. 8
shows the Vlasov simulation evolution of the electron dis-
tribution function, with fe(y, vx, vy) at a fixed y location in
the top row and the spatially averaged electron distribution

function, 〈 fe〉 in the bottom row. Figs. 7 and 8 also show
a fixed unperturbed magnetized particle trajectory (denoted
by a white circle) and the phase velocity vph = ωR/k asso-
ciated with the fastest growing LHDI mode at initial time
(denoted by the horizontal white line) for the parameter case
modeled. Red and blue lines denote the maximum and mini-
mum phase velocities within which the LHDI is active for the
range of wave numbers under consideration in the quasilinear

FIG. 8. The electron distribution function at different snapshots in time in the Vlasov simulation. Top row shows the electron distribution
function at a fixed y location. Overplotted is the phase velocity of the fastest growing mode (horizontal white dashed line), the minimum
phase velocity captured in quasilinear calculation (blue line), and the maximum phase velocity captured in the quasilinear calculation (red
line). A fixed unperturbed magnetized particle trajectory is denoted by a white dashed circle. Bottom row shows the spatially averaged Vlasov
simulation electron distribution function, overplotted with the same phase velocity reference lines. These results show that up to a point, the
Vlasov simulation spatially averaged electron distribution function diffuses radially outward in velocity space and that it can be accurately
represented as a function of a single v⊥ velocity coordinate, as done in the quasilinear model description.
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calculation. When plotted at a fixed y position at fixed time,
the Vlasov-simulation ion distribution function fi(vx, vy)
(Fig. 7, first row) and electron distribution function fe(vx, vy)
(Fig. 8, first row) both exhibit complex fine-scale struc-
tures. Once spatially averaged, however, azimuthal variations
are largely absent—as shown in the second row of Figs. 7
and 8. The spatially averaged electron distribution function,
in particular, appears to be nearly axisymmetric. Negligible
azimuthal variation in 〈 fi〉 when plotted as a function of
(vx, vy) (see Fig. 7, second row) suggests that for the cho-
sen mass ratio, mi/me = 25, the magnetized-ion treatment is
more applicable than the unmagnetized-ion treatment. Note
that in the limit where ions are completely unmagnetized,
all diffusion would happen along the vy direction—hence the
choice of mass ratio can determine whether magnetized-ion or
unmagnetized-ion quasilinear treatment is more appropriate.
The lack of azimuthal variation also confirms that treating
each magnetized species’ spatially averaged background dis-
tribution function as being independent of gyrophase, as done
in the linear analysis in Sec. III and in the quasilinear analysis
in Sec. IV, is justified. Likewise, ignoring displacement in vx,
as done in the quasilinear analysis, also appears to be justified
since spatially averaged distribution functions largely retain
their original centroid.

Ion distribution function behavior in the Vlasov simulation
can be explained in part by resonant plasma-wave interactions
at phase velocities associated with the instability. When a par-
ticle trajectory passes through the resonance region (between
the blue and red line in contour plots in Figs. 7 and 8), it
receives a kick either in the +vy or −vy direction for ev-
ery wave it encounters, which leads to a deformation of its
orbit. The larger the amplitude of the wave, i.e., the larger
the electric-field energy, the larger the kick. In the ion dis-
tribution function evolution (Fig. 7, top row), the kicks are
evidenced by petal-like features and initially the number of
petals corresponds roughly to |ωR1/�i|, where ωR1 is the real
frequency of the fastest-growing mode. The aggregate effect
of these particle-wave interactions and orbit deformations,
leads to outward diffusion of the spatially averaged distribu-
tion function (Fig. 7, bottom row). The observed ion behavior
is consistent with theoretical description of stochastic ion
heating by a single large-amplitude lower hybrid wave [21]
(recall that for diffusion to be applicable, either wave am-
plitude has to be sufficiently large or the Chirikov criterion
must be satisfied). Resonant particle-wave interactions do not
straightforwardly explain the electron distribution function
evolution (Fig. 8, top row), which is more nuanced. Nonreso-
nant electrons undergo rapid coherent oscillations in response
to the fluctuating LHDI-amplified electric field. The associ-
ated amplification of electron kinetic energy is evidenced by
a broadening of the spatially averaged electron distribution
function (Fig. 8, bottom row). See Refs. [25,26,57–59] re-
garding nonresonant particle-wave interactions and how they
relate to temperature and entropy.

D. Diffusion coefficient structure

Since the magnetized-ion quasilinear treatment was found
to have a more accurate representation of ion distribu-
tion function evolution, we will henceforth focus on the

magnetized-ion calculation. To facilitate comparisons to the
magnetized-ion quasilinear calculation, wherein distribution
functions are a function of the v⊥ velocity coordinate, the
spatially averaged sinc-perturbation Vlasov simulation distri-
bution functions (second row in Figs. 7 and 8) are mapped
from (vx, vy) velocity coordinates to (v⊥, θ ) velocity coor-
dinates and averaged over θ . Figure 9 shows the spatially
averaged species distribution function as a function of the v⊥
velocity coordinate from the Vlasov simulation, the spatially
averaged background species distribution function from the
quasilinear calculation, and the normalized species diffusion
coefficient from the quasilinear calculation. Each column in
Fig. 9 corresponds to a single snapshot in time. Due to dif-
ferent time-step sizes, each snapshot is not exactly aligned
between Vlasov simulation and quasilinear calculation, but
are very close. Note that quasilinear calculation results in
Fig. 9 show a background spatially averaged distribution func-
tion and Vlasov simulation results correspond to a spatially
averaged background-plus-fluctuations distribution function.
We do not apply a temporal average to the Vlasov simulation
data since changes in the distribution function occur rapidly
during the linear-to-nonlinear transition and the choice of
averaging window would significantly affect results.

Figure 9 illustrates that the quasilinear calculation success-
fully captures the localized deformation of both the ion and
electron distribution functions, up to a point. In particular,
the quasilinear diffusion coefficient for each species accu-
rately predicts the velocity space regions of largest diffusion
and deformation in the Vlasov simulation. Notably, sloshing
fluctuations in the Vlasov simulation distribution functions
lead to nonmonotonic features, whereas quasilinear calcula-
tion distribution functions are monotonic for all time. Late in
time, ion distribution function dynamics around v⊥ = 0 are
not well captured by the quasilinear calculation because one-
dimensional diffusion is no longer an adequate description.
Interestingly, the quasilinear description appears to capture
the global features of the distribution function even when the
electron distribution function has evolved significantly away
from the initial condition. This is in contrast to the findings
in Ref. [24] for bump-on-tail instability, where quasilinear
theory was found to be predictive of very small changes in
the distribution function.

An effective species diffusion coefficient can be recov-
ered from Vlasov simulation data by solving Eq. (33) for
Dmag

vs . This is done at every velocity coordinate v′
⊥ by

evaluating ∂ fs/∂t and ∂ fs/∂v⊥ using discrete finite differ-
ences, multiplying Eq. (33) by v⊥, and integrating over the
interval [0, v′

⊥]. Figure 9 shows the species diffusion coef-
ficient from the Vlasov simulation alongside the quasilinear
diffusion coefficient. In evaluating the effective diffusion co-
efficient in this way, it is implicitly assumed that the diffusion
description is applicable, even though it may not be. Figure 10
shows the normalized species diffusion coefficient as a func-
tion of velocity and time from the Vlasov simulation and from
the quasilinear calculation. In each contour plot in Fig. 10,
at each point in time, the species diffusion coefficient is nor-
malized to maxv⊥∈[0,0.25vmax] Dmag

vs (v⊥, t ) to clearly show the
velocity-space structure, which would otherwise be obscured
by exponential growth in time. Note that because the velocity
derivative ∂ fs/∂v⊥ is close to zero at large velocities, the
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FIG. 9. The spatially averaged distribution function as a function of v⊥ from a magnetized-ion quasilinear calculation and from Vlasov
simulation. Also plotted is the diffusion coefficient from the quasilinear calculation and from the Vlasov simulation, both scaled to half of the
maximum value of the quasilinear distribution function. The quasilinear description successfully captures the changes in the species distribution
functions, up until the point where Vlasov simulation distribution functions become nonmonotonic. At this point diffusion does not adequately
describe dynamics in the Vlasov simulation.

effective species diffusion coefficient from the Vlasov simula-
tion takes on disproportionately large values in these regions,
whereas the bulk of the diffusive action is actually at smaller
v⊥ velocities. Consequently, Vlasov simulation contour plots
in Fig. 10 are capped at a value of unity.

Figure 10 shows that during the linear stage and the initial
transition to the nonlinear regime (i.e., up to time of about
tωpi = 220), the species-specific diffusion coefficient struc-
ture in the Vlasov simulation and quasilinear calculation are
very similar. However, at some point the diffusion description

FIG. 10. Effective ion and electron diffusion coefficients from Vlasov simulation (top row) and species diffusion coefficient
from the magnetized-ion quasilinear calculation (bottom row). At every point in time the diffusion coefficients are normalized to
maxv⊥∈[0,0.25vmax] Dmag

vs (v⊥, t ) to clearly show the velocity-space structure as a function of time. Vlasov simulation diffusion coefficient contours
are capped at unity. These results illustrate that up to time tωpi ≈ 220 the velocity-space structure of the diffusion coefficient is largely captured
by the quasilinear calculation. Gray regions signify no data due to time shift of quasilinear calculation to align with Vlasov simulation time
history.
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is no longer applicable in the Vlasov simulation, as evidenced
by the effective diffusion coefficient becoming discontinuous
in time and in velocity. At this point, distribution function
evolution is characterized more by back-and-forth sloshing
rather than by diffusion. By contrast, diffusion continues in-
definitely in the quasilinear calculation, due to the fact that
for some time-evolving set of wave numbers, growth rate
ωI (and hence diffusion) is strictly greater than zero for all
time. Notably, the effective electron diffusion coefficient in
the Vlasov simulation undergoes a rapid change in structure
around time tωpi = 220, which is not reflected in the quasilin-
ear calculation, wherein the structure of the electron diffusion
coefficient remains largely unchanged.

Overall, results in Figs. 9 and 10 illustrate that one-
dimensional diffusion, as described by quasilinear theory,
provides a predictive description of the nonlinear dynamics
of the two-species acceleration-driven LHDI—up to a point.
The point of failure can be quantified in the Vlasov simulation
by evaluating an effective diffusion coefficient and tracking
where it becomes discontinuous, which places an important
bound on the applicability of quasilinear theory. A signature
of when quasilinear theory is no longer applicable can also
be gleaned from the quasilinear calculation itself, as will be
shown in Sec. VII E.

E. Anomalous transport

An important practical application of quasilinear the-
ory is predicting anomalous transport [2]. Yet the theory’s
translation of a nonlinear collisionless kinetic description into
anomalous transport terms in a collisional fluid description
is only useful so far as it is accurate. Here we exam-
ine to what degree the self-consistent quasilinear theory for
acceleration-driven LHDI accurately predicts momentum and
energy transport.

1. Anomalous momentum transport

LHDI microturbulence affects momentum by producing
an effective electron-ion drag, with anomalous electron-ion
collision frequency νanom. This drag, which is a colli-
sional multifluid representation of a collisionless kinetic
phenomenon, is commonly expressed as a resistivity in a
single-fluid MHD description. In the case of gradient-driven
LHDI precipitated by current perpendicular to a background
magnetic field, the drag simultaneously causes cross-field
diffusion, flattening of the gradient, and a decrease in each
species’ drift velocity [56]. In the present context, where we
examine an acceleration-driven LHDI in a uniform plasma,
a species’ y-directed drift velocity is largely unaffected by
the instability since gx and Bz are taken to be constant. The
main effect of LHDI on momentum is consequently y-directed
drag and drag-induced x-directed motion. These changes are
accompanied by heating of the plasma.

Taking the first velocity moment of the electron Vlasov
equation and evaluating the spatial average of each term as
a function of time using Vlasov simulation data, confirms that
〈qeneEy〉 (i.e., the drag, according to quasilinear theory) and
〈qeneuxBz〉 are in balance, and other terms have a negligible
contribution to the electron momentum equation. See Fig. 11.
This balance of terms in the electron momentum equation is

FIG. 11. The balance of volume-average terms in the electron
fluid momentum equation, evaluated by taking the first velocity
moment of the Vlasov equation using Vlasov simulation data. The
time history shows that the quasilinear drag force, 〈qeneEy〉, and
〈qeneuxeBz〉 nearly exactly balance each other whereas other terms
are negligible, as is expected for a plasma whose dynamics are
dominated by electron-ion drag and drag-induced x-directed motion.
With the exception of 〈qeneEy〉, for which a raw data trace is shown,
the evolution of each term is low-pass filtered to show the overall
trend. Since the drag force on electrons is negative of that on ions,
both species experience the same x-directed velocity uxs. In resistive
MHD terms, the y-directed anomalous resistivity induces x-directed
motion perpendicular to the background magnetic field according to
the Ohm’s law uxBz = ηanom jy.

consistent with the Ohm’s law, uxBz = ηanom jy, for a resistive
magnetohydrodynamic plasma, and gives zeroth order sup-
porting evidence that the quasilinear model’s description of
plasma dynamics being governed by drag is accurate. The
overall trend in the time history shown in Fig. 11, wherein
〈qeneEy〉 reaches a maximum and subsequently decreases, is
characteristic of all Vlasov simulations we have conducted
and appears to be independent of the choice of parameters and
initial conditions.

The LHDI-induced collision frequency νanom [see Eq. (41)
and surrounding text] is plotted as a function of time in
Fig. 12—from the Vlasov simulation, the magnetized-ion
quasilinear calculation, and the unmagnetized-ion quasi-
linear calculation. This anomalous collision frequency is
computed as

νanom = Fd

me(neuye − niuyi )
, (55)

with drag force per unit volume Fd evaluated as 〈qeneEy〉 in the
Vlasov simulation and evaluated using Eq. (41) in the quasi-
linear calculations. Note that uye and uyi are constant in the
quasilinear description, such that νanom is simply proportional
to the drag force.

Up to time of about tωpi = 250, the time evolution of
anomalous collision frequency follows the same qualitative
trend in all the models: monotonic increase up to a peak
value, followed by a decrease. For tωpi > 250, when quasi-
linear diffusion is no longer an accurate approximation, the
models exhibit significant deviations: νanom from the Vlasov
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FIG. 12. Time evolution of anomalous collision frequency νanom,
defined in Eq. (55), due to the acceleration-driven LHDI. The
collision frequency is computed from the Vlasov simulation, the
magnetized-ion quasilinear calculation, and the unmagnetized-ion
quasilinear calculation data. Up to time tωpi ≈ 250 the magnetized-
ion quasilinear treatment better captures the evolution of νanom, but
significantly underestimates the anomalous collision frequency. The
time at which νanom initially peaks can be used as a measure of when
quasilinear theory is no longer valid.

simulation and unmagnetized-ion quasilinear calculation con-
tinues to decline, whereas νanom from the magnetized-ion
quasilinear calculation increases to a larger value. The ini-
tial peak value of νanom occurs roughly at the same point in
time for all the models—tωpi ∈ [240, 250]. This point roughly
coincides with the time at which quasilinear diffusion stops
being applicable (see Fig. 10) and occurs when electric-field
energy growth rate has decreased to about 10% of the peak
growth rate value. This initial peak in νanom(t ) provides a
signature of when the quasilinear description ceases to be
valid. The peak value is also of interest when trying to develop
models for use in fluid codes, in which anomalous collision
frequency is typically described as a function of local plasma
temperature, drift velocity, etc. Early in time, the anoma-
lous collisionality increases because of mode growth, while
at times after the peak the presence of microinstability has
strongly distorted and raised the “temperature” of the distri-
bution functions such that anomalous collisionality weakens.
The initial peak drag is at a time when the modes have
grown to a high value yet the distribution function has not yet
strongly deviated from the original plasma parameters, hence
is most relevant to a local anomalous collisionality described
as a function of those parameters.

Quantitatively, quasilinear predictions of νanom disagree
with Vlasov simulation results. Using the initial peak value of
νanom(t ) as a reference point, the unmagnetized-ion quasilin-
ear calculations underpredicts the Vlasov collision frequency
by about a factor of five and the magnetized-ion quasilinear
calculation underpredicts the Vlasov collision frequency by
about 30%. These results underscore that treating the ions
as magnetized is a better approximation for the parame-
ter case under consideration. Interestingly, the discrepancies
between the Vlasov νanom and magnetized-ion quasilinear
νanom are substantially larger than the discrepancies between

the electric-field energies predicted by the two models. This
means that even when quasilinear calculations can accurately
predict the saturated electric-field energy (see electric field
energy evolution in Fig. 5 around tωpi = 240), this does
not necessarily translate to accurate prediction of anomalous
collision frequency and momentum transport (see Fig. 12).
The reason for this has to do with the fact that the time
evolution of νanom depends on the time evolution of both
Ek (k, t ) and Im[χs(k, t )]—see Eqs. (41) and (55) for how
these variables are related. As Ek (k, t ) increases in time,
the magnitude of the imaginary part of the species suscep-
tibility |Im[χs(k, t )]| decreases in time and decreases more
rapidly at the linear-to-nonlinear transition. Inaccuracy in
the linear-theory susceptibility χs can thus lead to inaccu-
racy of quasilinear theory’s prediction of anomalous collision
frequency. This suggests that the use of unperturbed-orbit
susceptibilities (characteristic of any linear-theory dispersion
relation) in the quasilinear model can lead to inaccuracies in
anomalous transport terms. Notably, the limitations of using
linear-theory dispersion relations in the context of nonlinear
kinetic turbulence theories have been conjectured since the
1960s [23,60].

2. Energy balance and anomalous heating

LHDI microturbulence causes a redistribution of plasma
energy and associated heating of electrons and ions. In the
kinetic picture, plasma-wave interactions lead to outward
velocity-space diffusion and associated heating of each dis-
tribution function. In a fluid interpretation, the LHDI-induced
anomalous collision frequency νanom and associated resistivity
lead to joule heating of the plasma.

The change in the different types of energy densities in
the Vlasov simulation and magnetized-ion quasilinear calcu-
lation are shown in Fig. 13. Noticeable changes in energy
balance occur when the instability transitions from the linear
to the nonlinear regime around tωpi = 200. While energy
distribution in the Vlasov simulation and quasilinear calcu-
lation exhibit similar trends, they do not match quantitatively.
In both models the increase in thermal energy comes at the
expense of the gravitational energy, i.e., the potential energy
associated with constant acceleration. Energy associated with
y-directed drift motion is constant in the quasilinear model
and is nearly constant with a sinusoidal ion-gyroperiod os-
cillation in the Vlasov simulation. Figure 13 also shows that
the contribution of electric-field energy to the total energy is
almost negligible—quantitatively less than one tenth of one
percent in both models. The plot in Fig. 13 confirms the fact
that electric-field energy is much smaller than thermal energy,
specifically, which was one of the requirements for quasilinear
theory to be applicable. Total energy in the Vlasov simulation
(which includes gravitational, electric-field, x-directed drift,
y-directed drift, and thermal) is conserved to within 0.02% of
the initial total energy. Total energy in the quasilinear calcula-
tions (which includes gravitational, electric-field, y-directed
drift, and thermal) is conserved to within 0.00002% of the
initial total energy. Interestingly, in the Vlasov simulation
x-directed drift energy grows from zero to a value on par with
electric-field energy—a physical feature that is not captured
by the quasilinear model.
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FIG. 13. Energy balance in the Vlasov simulation and the
magnetized-ion quasilinear calculation for the acceleration-driven
LHDI. Each type of energy is plotted relative to the initial-time
total energy Wtot(t = 0). The quasilinear model successfully captures
the main trends: nearly constant y-directed drift energy, decrease
in gravitational energy, increase in thermal energy, conservation of
total energy, and negligible change in electric-field energy when
compared to thermal energy. Quantitatively, the two models deviate
significantly, particularly late in time when the Vlasov simulation
appears to reach a steady state while the quasilinear calculation
energy densities continue to evolve. The x-directed drift energy is
small and finite in the Vlasov simulation and is exactly zero in the
quasilinear model.

The distribution of thermal energy among the two species
is also of interest. Figure 14 shows the heating rate of ions
and electrons in the Vlasov simulation, in the magnetized-ion
quasilinear calculation, and in the unmagnetized-ion quasilin-

FIG. 14. Species anomalous heating rates in Vlasov simulation
(unfiltered data and low-pass filtered data), magnetized-ion quasi-
linear calculation, and unmagnetized ion quasilinear calculation.
Quasilinear calculations underpredict the heating rates observed in
Vlasov simulations, particularly when ions are treated as unmag-
netized and electric-field energy density at saturation is likewise
underpredicted, as shown in Fig. 5.

FIG. 15. Fractional electron heating induced by the acceleration-
driven LHDI, according to Vlasov simulation, magnetized-ion
quasilinear calculation, and unmagnetized-ion quasilinear calcula-
tion. All of the models predict roughly a constant fractional electron
heating rate that is close to 70% of the total heating rate. Thus, even
in cases where species heating rates are significantly underpredicted
by the quasilinear description (see Fig. 14), the fractional heating
rates can be much more accurate.

ear calculation. In the Vlasov simulation, the species heating
rate is computed as the time derivative of thermal energy,
which is obtained from velocity moments of the distribution
function. In the quasilinear calculation, the species heating
rate is evaluated using Eq. (43). The same level of discrepancy
observed in νanom between the Vlasov simulation and quasilin-
ear calculations is present in the species heating rates, which
is expected since heating is proportional to the drag force Fds.
Specifically, the magnetized-ion quasilinear model is a better
predictor of species heating, but is only accurate to within a
factor of two.

The fractional heating rate, which indicates what fraction
of the total heating goes into heating the electrons, is also of
interest and is better captured by the quasilinear description.
Figure 15 shows the ratio of electron heating to the total
heating rate of the plasma. For the time duration over which
a quasilinear diffusion description is applicable, the fractional
electron heating rate is effectively constant in time and has a
value that is approximately consistent between all the mod-
els, such that about 70% of the instability-induced heating
goes into heating electrons and the rest into ions. The result
that electrons heat faster than ions for a Ti/Te = 1 plasma
is consistent with previous quasilinear and reduced-model
analysis of the gradient-driven LHDI [2,14] as well as other
drift-driven kinetic instabilities [61].

Fractional heating aside, the results presented in
Figs. 5, 12, and 14 suggest that even if the prediction of
the saturated electric-field energy value is accurate (as
in the magnetized-ion quasilinear treatment), quasilinear
calculations cannot predict anomalous transport properties
to an accuracy that is better than a factor of two. When
the electric-field energy at saturation is not accurately
predicted (as in the unmagnetized-ion quasilinear treatment),
then the accuracy of anomalous transport predictions
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diminishes further. The discrepancies between Vlasov
simulations and quasilinear calculations are likely due to
linear-theory susceptibilities becoming inaccurate during
the linear-to-nonlinear transition. Discrepancies can also be
attributed to nonlinear damping, which is not captured by
the quasilinear description. The limitations of a complete
quasilinear theory, such as the one presented here, bring
into question the accuracy of transport predictions from
more common quasilinear models that rely on further
simplifications. Nevertheless, given that anomalous resistance
can be orders of magnitude larger than classical resistance,
factor-of-two level of accuracy can yield powerful and
insightful transport predictions.

VIII. CONCLUSIONS

We have successfully derived a complete self-consistent
two-species quasilinear velocity-space diffusion model for
describing the nonlinear physics of the acceleration-driven
LHDI in a uniform low-beta plasma. The model contains
less information and less degrees of freedom than a Vlasov-
Poisson description of the instability, but still encapsulates
the average effect of nonlinear collisionless kinetic physics
on bulk fluid transport properties of the plasma. The model
has several unique features that make it more general than
existing quasilinear theory descriptions of LHDI and other
instabilities. These features are related to the form of the dis-
persion relation and to the mathematical form of the diffusion
coefficient. Specifically: (1) The dispersion relation applies to
arbitrary (Maxwellian or non-Maxwellian) distribution func-
tions, as long as they can be expressed as a function of a single
velocity coordinate (vy or v⊥). The dispersion relation is not
constrained to asymptotic limits for dimensionless parame-
ters �e/ωpe, Ti/Te, mi/me, and kyrLe. Furthermore, rather than
being expressed in summation form, as is common practice,
the dispersion relation is expressed in integral form, which
facilitates accurate evaluation without introducing truncation
errors. (2) The quasilinear diffusion model accounts for both
resonant and nonresonant particle-wave interactions. (3) The
model also accounts for multiple species, which can be treated
as magnetized or unmagnetized. (4) Importantly, because
spectral density of the electric-field energy per unit volume
and distribution functions have self-consistent evolution equa-
tions that encapsulate the time-evolving diffusion coefficient
and mixed-complex frequency, the model does not rely on
heuristic rules for predicting the saturated nonlinear state of
the plasma. (5) The model conserves energy and can be used
to obtain anomalous momentum and energy transport terms
for fluid equations using wave-number- and time-dependent
species susceptibilities and spectral density of the electric-
field energy.

We have presented a methodology for solving the quasilin-
ear theory system of governing partial differential equations.
The numerical solver is based on a second-order Crank-
Nicholson time advance method coupled with a second-order
finite-volume velocity space discretization. Efficient means
of solving the dispersion relation numerically, based on the
Nyquist method and the Levenberg-Marquardt algorithm,
are described. The numerical solver efficiency is improved

through the use of adaptive time steps and parallelization in
wave number.

The quasilinear model’s predictive capabilities are assessed
by comparing numerical solutions of the quasilinear model to
numerical solutions of the Vlasov-Poisson equation system.
Numerical solutions of the Vlasov-Poisson equation system
are obtained using VCK, a benchmarked parallel conserva-
tive continuum kinetic fourth-order finite-volume solver. Due
to the computational cost of Vlasov simulations, a mass ra-
tio of mi/me = 25 is used, for which a magnetized-ion and
magnetized-electron quasilinear treatment is found to be more
predictive.

Numerical results demonstrate that the quasilinear model
is effective at predicting volume-average plasma behavior,
including: electric-field energy evolution and magnitude, the
relative importance of different wave-number modes, the
velocity-space structure of the species diffusion coefficients
and distribution functions, and the qualitative energy and
momentum balance associated with the nonlinear stage of
the acceleration-driven LHDI. The model is less predictive
of anomalous transport properties, like anomalous collision
frequency and anomalous species heating rate, which rely on
the correctness of both the spectral density of the electric-field
energy and the species susceptibilities. The quasilinear model
predicts anomalous transport terms to within a factor of two,
up until the time at which anomalous collision frequency
peaks. The peak in the time-dependent anomalous collision
frequency, or equivalently a peak in the drag force, is identi-
fied as a signature of when a quasilinear diffusion description
is no longer valid according to Vlasov simulations.

Discrepancies between the quasilinear model and the
Vlasov-Poisson description are expected and can be attributed
to several factors. First, the quasilinear description considers
a continuous wave-number spectrum for an infinite-domain
plasma, whereas Vlasov simulations capture a discrete wave-
number spectrum for a periodic-domain plasma, which results
in different modes in the two models. The quasilinear model
description ignores certain physics, including dependence
of the average distribution function on the gyrophase and
changes in drift velocity, both of which are observed in Vlasov
simulations. Likewise, the quasilinear description does not
incorporate nonlinear damping physics, which is evident in
Vlasov simulations. The use of unperturbed-orbit susceptibil-
ities (which account for changes to the distribution function,
but still treat all magnetized-species trajectories as circles) in
the quasilinear model can be problematic, as evidenced by the
fact that the model is more predictive of electric-field energy
than of anomalous transport terms. This constitutes an impor-
tant nonlinearity that is not captured in the quasilinear model.
A well-known limitation is that the quasilinear model neglects
nonlinearities associated with wave-wave interactions, which,
although not evidenced in the present study, can also poten-
tially affect instability evolution.

The present study was limited in scope in that it did
not exhaustively explore the vast parameter space associ-
ated with the acceleration-driven LHDI, including different
Ti/Te, mi/me,�e/ωpe,Vd/vTi ratios. In particular, it remains
to be seen whether the results here extend to more realistic
mass ratios and multiple ion species. Likewise, the study did
not explore the vast space of numerical solver parameters
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available, including domain size in velocity space, domain
size in wave-number space, resolution, tolerances, etc., all
of which can potentially affect the accuracy of quasilinear
calculations. Such studies are left as a topic for future work.
Another limitation is the lack of a grid convergence study for
the Vlasov simulations. A convergence study, which can be fa-
cilitated by more compute resources and/or code performance
optimization, would provide a rigorous measure of how close
simulations are to the true solution. This is also left as a topic
for future work.

Beyond its validity and accuracy, it is also important to
factor in the computational cost of the quasilinear model.
While the quasilinear model has less degrees of freedom
than a Vlasov-Poisson simulation and can be trivially paral-
lelized in wave number, it is still computationally expensive
to solve—primarily because it requires iteratively solving
the dispersion relation at every time step and every wave
number. For the calculations conducted here, Vlasov simula-
tions were ran on 9216 cores and the quasilinear calculations
(which were not optimized for performance) were ran on 56
cores—both took about 24 hours. Therefore, the quasilinear
model presented here does not provide compute-time savings,
but can provide larger throughput of calculations and more
expedient parameter space exploration—particularly for real-
istic mass ratios, which can result in prohibitively expensive
Vlasov simulations. Quasilinear calculations can thus be used
to predict nonlinear physics in parameter regimes that are
otherwise, due to limits of today’s Vlasov solvers, difficult
or impossible to access. A quasilinear-model mapping from
local plasma parameters to nonlinear conditions can facilitate
efficient anomalous transport models for global fluid-based
simulations of experiments. Because changes in parameters
would still have to be vetted against Vlasov simulations,
the quasilinear model described here is unlikely to serve
as a reliable substitute to nonlinear kinetic simulations. The
quasilinear model does, however, provide valuable theoretical
insights into nonlinear physics that can be difficult to glean
from Vlasov simulations. Of particular value is the insight
into the velocity-space structure of each species’ diffusion
coefficient and how it depends on the plasma state—an impor-
tant mathematical link between linear- and nonlinear-regime
physics.

The present results provide a rigorous assessment of a com-
plete quasilinear model for a nonlinear acceleration-driven
lower hybrid instability in a magnetized low-beta multispecies
collisionless plasma. The limitations of the theory suggest
that quasilinear models, especially those that are incomplete
or rely on additional approximations to infer saturated state
conditions, can be expected to give at best only order-of-
magnitude accuracy for transport predictions. Quantitative
bounds on quasilinear theory’s applicability, such as those
explored here, warrant further investigation and provide much
needed vetting of quasilinear descriptions for anomalous
transport.

ACKNOWLEDGMENTS

G.V.V. gratefully acknowledges illuminating discussions
with U. Shumlak, D. D. Ryutov, J. B. Parker, D. W. Crews,
M. A. Dorf, V. I. Geyko, and M. R. Dorr. This work was per-
formed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07NA27344.

APPENDIX A: LINEAR KINETIC THEORY DISPERSION
RELATION DERIVATION DETAILS

In using Eq. (20) expression for f̂s1 and the linearized
Poisson equation to derive a dispersion relation, the objective
is to arrive at an integral form expression to avoid infinite
sums and to facilitate accurate numerical solutions. The math-
ematical manipulations used here are largely based on the
analysis presented in Ref. [34]. Starting with the expression
in Eq. (20), using the variable substitution ψ = θ − τ/2,
rewriting cos(ψ − τ

2 ) as cos ψ cos( τ
2 ) + sin ψ sin( τ

2 ), and av-
eraging over the gyrophase angle ψ (i.e., integrating with
respect to ψ over the interval [0, 2π ] and dividing by 2π

yields

f̂s(ky, ω, v⊥) = − qs

2πms�s

∂ fs0

∂v⊥

∫ ∞

0

{
Ê1y exp (iWτ )

×
∫ 2π

0
exp

[
−2ikyv⊥

�s
cos (ψ ) sin

(τ

2

)]

×
[

cos ψ cos

(
τ

2

)
+ sin ψ sin

(τ

2

)]
dψ

}
dτ,

(A1)

where f̂s(ky, ω, v⊥) = 1
2π

∫ 2π

0 f̂s(ky, ω, v⊥, ψ )dψ and

where Ws = ω
�s

− kyg
�2

s
, as defined in Eq. (21). The

sin ψ sin( τ
2 ) term integrates to zero since it is of the form∫ 2π

0 exp(−ia cos ψ )d (cos ψ ) for constant a. The cos ψ cos( τ
2 )

term can be integrated using the Bessel function identity
Jn(z) = in

2π

∫ 2π

0 e−iz cos ψ cos(nψ )dψ , where Jn is the Bessel
function of the first kind with n ∈ Z and z ∈ C. Equation (A1)
can then be expressed as

f̂s1(ky, ω, v⊥) = qs

ms�s

∂ fs0

∂v⊥

∫ ∞

0

{
Ê1y exp (iWsτ )

× iJ1

(
2kyv⊥
�s

sin
[τ

2

])
cos

(τ

2

)}
dτ. (A2)

The integral over [0,∞) can be replaced by an infinite sum
of integrals over the interval [2πn, 2π (n + 1)] for integer
n = {0, 1, · · · }. Using the substitution φ = τ − 2πn and sim-
plifying yields

f̂s1(ky, ω, v⊥) = qsi

ms�s

∂ fs0

∂v⊥

∫ 2π

0

{
Ê1y

exp (iWsφ)

1 − exp(2π iWs)

× J1

(
2kyv⊥
�s

sin

[
φ

2

])
cos

(
φ

2

)}
dφ.

(A3)

Substituting Eq. (A3) into the linearized Poisson equation,

k2
y �̂1 = 1

ε0

∑
s

qs

∫ ∞

0
f̂s1v⊥dv⊥, (A4)

noting that Ê1y = −iky�̂1 and applying integration by parts
yields the dispersion relation given in Eq. (22), with suscepti-
bilities defined in Eq. (23).

025201-22



COMPLETE QUASILINEAR MODEL FOR THE … PHYSICAL REVIEW E 110, 025201 (2024)

APPENDIX B: COLD-FLUID LINEAR THEORY FOR
THE ACCELERATION-DRIVEN LHDI

Interestingly, some features of the acceleration-driven
LHDI can be recovered even in the cold-fluid limit—a regime
in which kinetic theory and fluid theory are exactly consis-
tent. The linearized continuity and momentum equations for a
zero-temperature fluid species in the presence of a gravitylike
force are

0 = ∂ns1

∂t
+ ns0∇ · us1 + us0 · ∇ns1, (B1)

0 = msns0
∂us1

∂t
+ msns0u0 · ∇us1 − qs(ns0E1 + ns0us1

× B0 + ns1us0 × B0) + msns1g, (B2)

where us0 is the equilibrium species drift velocity and us1

is the perturbed velocity. Assuming waveform solutions,
e.g., n1 = n̂1 exp(i[k · x − ωt]), solving for n̂s1, using the lin-
earized Poisson equation, and noting that equilibrium drift
velocity is us0y = g/�s yields the cold-fluid dispersion rela-
tion for the acceleration-driven LHDI,

0 = 1 + ω2
pi/�

2
i

1 − (
ω
�i

− kyg
�2

i

)2 + ω2
pe/�

2
e

1 − (
ω
�e

− kyg
�2

e

)2 . (B3)

The dispersion relation in Eq. (B3) captures the effects of
mass ratio and magnetization level as measured by ωps/�s

ratio, but does not encapsulate scales associated with thermal
speed and Larmor radius, which are captured by the full
kinetic theory analysis in Eqs. (1) to (26). Cold-fluid theory
does not capture the fact that as the ratio of drift veloc-
ity Vd = uyi − uye to thermal speed decreases, the instability
growth rate decreases. Consequently, for a finite-temperature
plasma, cold-fluid growth rates can far exceed kinetic theory
growth rates.

APPENDIX C: TIME-STEP SIZE, MASS RATIO,
AND COMPUTATIONAL COST

Realistic mass ratios significantly limit the time-step
size in Vlasov simulations, particularly for multispecies
simulations that include electron dynamics. Vlasov simu-
lations use explicit RK4 time advance and are subject to
the Courant–Friedrichs–Lewy (CFL) condition. For the 3D
(y, vx, vy) phase space dynamics under consideration, the con-

straint on time-step size is

�t � σ · min

{
hy

vy,max
,

hvx

max |ax| ,
hvy

max
∣∣ay

∣∣
}

,

ax = qs

ms
(Ex + vyBz ) − gx, (C1)

ay = qs

ms
(Ey − vxBz ),

where σ is a dimensionless Courant number with σ � 0.6
for the finite-volume method used [38,55], and {hy, hvx , hvy}
are the cell spacings along each coordinate direction. The
maximum/minimum values are taken over phase space and
over species, such that electrons tend to restrict the time step
more severely. For the acceleration-driven LHDI, the mag-
netic field term is the largest-magnitude term in ax and ay.
Note that for Te = Ti, a decrease in electron mass relative
to ion mass results in a relative increase in electron thermal
speed, which requires extending the velocity domain, nomi-
nally by (mi/me)1/2. Thus, the time-step size scales roughly as
(mi/me)3/2, which means that for a fixed cell spacing, a sim-
ulation with mi/me = 1836 would be about 630 times slower
than a mi/me = 25 simulation. However, for a fixed number of
cells, a Vlasov simulation with mi/me = 1836 would be about
73 times slower than a mi/me = 25 simulation. Depending on
the choice of dimensionless parameters, a larger mass ratio
can also result in smaller peak growth rates, which can further
extend the compute time needed to run a simulation.

In the quasilinear diffusion model, which uses an im-
plicit unconditionally stable Crank-Nicolson time advance,
the time-step size is nominally subject to the constraint �t �
1
2 min( h2

v

Dvs
) to avoid spurious oscillations. Here hv is the

cell spacing and the minimum value is over velocity space
and over species. The time-step size is thus independent of
mass ratio. Mass ratio can come into play indirectly through
the diffusion coefficient, e.g., resolving the structure of the
each species’ diffusion coefficient to accurately compute the
integral in Eq. (34) (see Fig. 4) in a realistic mass-ratio
magnetized-ion plasma can require orders of magnitude more
wave-number resolution. This computational expense can be
ameliorated by parallelizing further in wave-number space
and by using the unmagnetized-ion susceptibility, which re-
sults in smoother ωI (ky) (see Figs. 2 and 3) and thereby
smoother (in wave-number) diffusion coefficient integrands
Dvsk (v, ky ). As with Vlasov simulations, realistic mass ratios
can result in smaller peak growth rates, which can extend the
quasilinear solver calculation time.
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