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Lagrangian flow networks for passive dispersal: Tracers versus finite-size particles
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The transport and distribution of organisms such as larvae, seeds, or litter in the ocean as well as particles in
industrial flows is often approximated by a transport of tracer particles. We present a theoretical investigation to
check the accuracy of this approximation by studying the transport of inertial particles between different islands
embedded in an open hydrodynamic flow aiming at the construction of a Lagrangian flow network reflecting the
connectivity between the islands. To this end, we formulate a two-dimensional kinematic flow field which allows
the placement of an arbitrary number of islands at arbitrary locations in a flow of prescribed direction. To account
for the mixing in the flow, we include a von Kármán vortex street in the wake of each island. We demonstrate that
the transport probabilities of inertial particles making up the links of the Lagrangian flow network essentially
depend on the properties of the particles, i.e., their Stokes number, the properties of the flow, and the geometry
of the setup of the islands. We find a strong segregation between aerosols and bubbles. Upon comparing the
mobility of inertial particles to that of tracers or neutrally buoyant particles, it becomes apparent that the tracer
approximation may not always accurately predict the probability of movement. This can lead to inconsistent
forecasts regarding the fate of marine organisms, seeds, litter, or particles in industrial flows.
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I. INTRODUCTION

The dynamics of passive advection of small finite-size par-
ticles are ubiquitous to many processes within marine ecology
and industrial systems. Precise predictions about the trajecto-
ries and final fate of these particles, representing organisms,
seeds, waste, or plastic particles are crucial for understand-
ing central phenomena in both settings. In marine systems,
passive transport by ocean currents significantly impacts the
dispersion of nutrients, pollutants, seeds, marine organisms,
and marine aggregates. Models of this transport contribute
to our understanding of ecological dynamics such as, e.g.,
the transport of harmful algal blooms [1], the connectivity
of habitats [2,3], biogeochemical cycles [4,5], and the spread
of contaminants in the marine environment [6,7]. Similarly,
in industrial settings, passive transport is a key factor in the
movement of particles within engineered systems, where the
objective is to manipulate trajectories, for example, to achieve
size-based segregation [8,9], to tune the outcome of mix-
ing or aggregation-fragmentation processes [10,11], or even
to guide targeted transport [12,13]. Moreover, for industrial
applications, it is important to study the dependence of the
rheological properties of the flow on the volume fraction of
the particles and their density [14–16].

Of particular interest is the long-distance passive transport
in marine environments. It ranges from the distribution of
seeds of plants among islands and coastal areas [17–20] via
the transport of larvae of different organisms between habi-
tats [21–23] up to the fate of litter which is transported through
the sea [24] or into the ocean from coastal areas [25]. This
transport is determined by ocean flows possessing preferred
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directions which are influenced by prevailing wind directions
and mesoscale hydrodynamic structures such as vortices, jets,
and fronts [26–28]. One of the challenges is the identification
of the major pathways of particles such as the pathways of
micro- and macroplastics [29] and the locations where this
litter concentrates in the ocean [30,31], the pathways of seeds
to understand the distribution of plant species on different
archipelagos in the world’s ocean [32], or the pathways of
larvae to get from spawning areas back to their reefs [33].

The simplest way to study this transport is to consider the
particles as pointlike tracers neglecting their size and densities
and use a Lagrangian approach for the transport of these
particles [34–36]. In this case, the particle trajectories exactly
follow the trajectories of the fluid parcels. To quantify the
transport between different locations, it is sufficient to follow
a large number of tracers from a release location to a target lo-
cation and count the number of particles which reach the latter.
This approach leads to Lagrangian flow networks which have
been constructed for several regions in the world such as the
Caribbean Islands [37] or connections between hydrodynamic
provinces in the Mediterranean [2]. These studies are mostly
based on ocean flows, while more theoretical approaches are
based on kinematic flows [38–41]. We note that the use of
the tracer approach, in general, offers very good predictions
to the long-distance dispersal dynamics of particles in marine
systems [42].

A more sophisticated approach is to approximate those
particles as spheres with a certain size and density and treat
them as inertial particles experiencing various forces in the
flow. The trajectories of inertial particles in a given flow field
can then be computed by solving the Maxey-Riley-Gatinol
equation [43–45]. Those trajectories deviate notably from the
ones of tracers leading to preferential concentrations [46–50],
deviations in lateral transport [51], as well as sedimentation

2470-0045/2024/110(2)/025103(13) 025103-1 ©2024 American Physical Society

https://orcid.org/0000-0002-5139-7138
https://ror.org/033n9gh91
https://ror.org/03prydq77
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.025103&domain=pdf&date_stamp=2024-08-27
https://doi.org/10.1103/PhysRevE.110.025103


VALENTE, GUSEVA, AND FEUDEL PHYSICAL REVIEW E 110, 025103 (2024)

[52–54]. The flow fields employed in works using this de-
scription range from simple two-dimensional kinematic flows
mimicking, e.g., the flow in the wake of an island [27,55], to
random and turbulent flows [47,56,57].

Motivated by the many aforementioned possible appli-
cations, we provide here a theoretical study in which we
combine the idea of constructing Lagrangian flow networks,
which has been so far restricted to tracer transport between
release and target regions with the transport of inertial par-
ticles. Therefore, we use the Maxey-Riley equations to build
up such Lagrangian flow networks for inertial particles and
compare them with the ones obtained for tracers. We show
that depending on the size and density of particles, those
networks deviate from the ones realized by tracers. The
most striking observation is that the tracer transport over-
estimates the probabilities for certain pathways, leading to
flow network with many links, while the network obtained
for particles with large Stokes numbers are much sparser. It
has been demonstrated that particles having a density larger
than the fluid (aerosols) are expelled from the vortices, while
particles with a density lighter than the fluid (bubbles) are
gathered within vortices [56,58]. These properties of inertial
particles influence their paths and, hence, the development
of Lagrangian flow networks. To systematically study the
transport probabilities between different locations in the flow
under the influence of mesoscale hydrodynamic vortices, we
analytically construct a two-dimensional kinematic velocity
field mimicking major properties of an ocean flow such as a
preferred flow direction and the emergence of a von Kármán
vortex street in the wake of islands. Our flow field allows for
an arbitrary number of islands embedded in the flow in an
arbitrary geometry. Those islands are considered as the release
and target regions for the inertial particles. We quantify the
differences in the connectivity, i.e., the probability of transport
from one island to another, depending on the properties of the
particles, such as size and density, and the properties of the
flow, such as vortex strength and background velocity.

The paper is organized as follows. In Sec. II, we develop
the velocity field which mimics the transport between n is-
lands embedded in the flow and recall briefly the Maxey-Riley
equations which are used to compute the transport of spherical
inertial particles in this flow. Then, in Sec. III, we start with
the characterization of the main differences in the advection
dynamics between tracers and inertial particles. Next, we an-
alyze the spatial distribution of the particles depending on
the flow and particle properties and demonstrate the large
heterogeneities in the locations to which particles are trans-
ported. Furthermore, we measure the connectivity between the
different islands by computing the probabilities of transport
between the islands and work out the substantial differences
depending on the size and density in comparison to the usual
tracer approach. Finally, we quantify the deviations in the
transport probabilities when modeling inertial particles as
pointlike tracers. We discuss the results in Sec. IV.

II. METHODS AND THEORETICAL BACKGROUND

A. The hydrodynamic flow

To study the connectivity among different islands embed-
ded in a hydrodynamic flow in detail, it is useful to have an

analytical two-dimensional (2D) flow field which allows for
an arbitrary choice of the number of islands and their location
in the flow. In this way, one can systematically change the
geometry of the setup and the properties of the flow field. To
achieve this goal, we extend a well-known kinematic flow to
an arbitrary number of islands. The starting point is the flow
field developed by Jung et al. [55], which considers one island
embedded in the flow with a given flow direction in which the
island acts as an obstacle, giving rise to a von Kármán vortex
street in its wake. As an extension of this framework, we
consider a two-dimensional kinematic flow with n embedded
islands of circular shape with radius ri (i = 1, . . . , n) and
of the same size, ri = r ∀i. The position of the islands is
fixed according to an arbitrary, but prescribed geometry. We
consider a two-dimensional observation area in which a main
flow is assumed to flow from left to right along the x direction
with different islands along is path. Far away from the position
of the islands, in the y direction, the flow is expected to be uni-
form. Behind each island, a pair of counter-rotating vortices is
created, at locations slightly below and above the center of the
corresponding island, with a time difference of half a period,
Tc/2. They move a distance L along the x direction during one
period Tc, until they disappear due to dissipation. This process
mimics the emergence of a von Kármán vortex street in the
wake of each island. Since the flow under consideration is in-
compressible, a stream function ϕ = ϕ(x, y, t ) can be defined
such that the two velocity components can be computed as
derivatives of this stream function,

ux = ∂ϕ

∂y
, uy = −∂ϕ

∂x
. (1)

The stream function for a velocity field with an arbitrary
number of islands, say, n islands, at arbitrary positions
[(hi, ki ), i = 1, . . . , n] is given by

ϕ =
n∑

i=1

[ fi(x, y)gi(x, y, t )] − u0(n − 1)y. (2)

The terms from left to right are explained as follows: the first
factor fi(x, y) ensures the presence of a boundary layer around
each island such that the velocity field goes to zero at the
boundary of each island,

fi(x, y) = 1 − e−ai (
√

(x−hi )2+(y−ki )2−ri )2
,

i = 1, . . . , n, (3)

where (hi, ki ) are the spatial coordinates of the centers of
each island i. The coefficient 1/

√
ai mimics the width of the

boundary layer. This assures that at the boundary of each
island, the tangential velocity tends linearly to zero, while
the radial velocity component decreases quadratically with the
distance from the boundary.

The second factor gi(x, y, t ) models the von Kármán vortex
street and the main background flow u0 reads

gi(x, y, t ) = ω1iH1ig1i + ω2iH2ig2i + u0ysi(x, y),

i = 1, . . . , n. (4)

The first two terms in Eq. (4) describe the presence of the
counter-rotating vortices in the wake of each island. These
vortices are of equal strength, but opposite in sign, ω1i=− ω2i.
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TABLE I. The representative parameters used in the model, un-
less specified otherwise, and their respective nondimensional values.

Parameter Symbol Dimensionless

Radius of the island ri 1
Period of the flow Tc 1
Main background flow u0 12
Strength of the vortex |ωpi| 40 or 60
Characteristic ratio αi 1
y coordinate of the vortex y0i 0.5
Travel distance of the vortices Li 4
Width of the boundary layer ai 1
Linear size of the vortices R0i 1

They are of Gaussian shape, formulated by the following
function:

gpi(x, y, t ) = e−R0i{−[x−xpi (t )]2+α2
i [y−ypi (t )]2},

p = 1, 2 and i = 1, . . . , n, (5)

with 1/
√

R0i and αi being the radius and the characteristic
ratio between the elongation of the vortices in the x and y
direction, respectively. The strength of the vortices, ωpi (p =
1, 2; i = 1, . . . , n), is modulated by

H1i(t ) = sin2(tπ ), (6a)

H2i(t ) = cos2(tπ ). (6b)

The centers of the vortices move, along the horizontal direc-
tion x, according to

x1i(t ) = hi + ri + Li mod (t, Tc), (7a)

y1i(t ) = ki + y0i, (7b)

x2i(t ) = x1i(t − Tc/2), (7c)

y2i(t ) = ki − y0i, i = 1, . . . , n. (7d)

The third term in Eq. (4) provides the contribution of the main
background flow u0. The factor

si(x, y) = 1 − e[−(x−hi−ri )2/α2
i −(y−ki )2],

i = 1, . . . , n, (8)

is the shielding factor associated with each island. This factor
suppresses the impact of the background flow in the wake
of the corresponding island. We display the nondimensional
values of the parameters used in the model in Table I; a pos-
sible parametrization can be found in [40]. Note that Eq. (2)
is an extension of the velocity field developed in [55] to an
arbitrary number of islands at arbitrary positions. The pres-
ence of the last term in Eq. (2) is a direct consequence of
the linear superposition principle assumed for the construc-
tion of the flow field. This term is necessary to assure that
the main background flow u0 is not counted as often as the
number of islands. Furthermore, it is important to note that
the linear superposition principle is only valid provided that
the shielding areas, si, s j , associated with two neighboring
islands, respectively, do not overlap. This condition poses a
restriction on the distance between neighboring islands, such
that they cannot be placed too close to each other.

Nonetheless, one of the main advantages of our extended
velocity field is the generality which allows for the study of
an almost arbitrary location of the islands. This enables us to
systematically vary the flow properties and the geometry of
the arrangement of the islands to find out that the relationship
between the properties of the particles and the flow determines
the connectivity between the islands. We nondimensionalize
the stream function given by Eq. (1) by measuring the length
in terms of units of the radius of the island, r. As a unit of
time, we take the period of the flow, Tc.

B. Advection of particles

The simplest approach to describe the motion of particles
advected by fluid flows is to assume that these particles are
just passive pointlike tracers that take on the same velocity as
the surrounding fluid parcels. The velocity V of these pointlike
tracer particles, or shortly tracers, is therefore the same as the
velocity of the flow field u at the particle’s position X,

Ẋ = V(X, t ) = u(X, t ). (9)

However, there are many cases where these above assump-
tions do not hold, and one has to consider that particles have
a considerable size and density [59]. Such finite-size particles
have a delayed reaction response to the flow dynamics. Their
trajectories substantially deviate from the fluid parcels due
to the action of several forces and, for this reason, they are
also known as inertial particles in the literature. For spherical
particles, these forces are described using the Maxey-Riley-
Gatinol equations [43,44] with inclusion of a correction made
by Auton [45]. In this work, we use a simplified version of
these equations, neglecting the Faxén corrections [44] and the
history force [11,27]. This approximation in its dimensionless
form is given by

Ẋ = V(X, t ), (10a)

V̇ = βDt u(X, t ) − 1

St
[V(X, t ) − u(X, t )], (10b)

where Dt = ∂t + u · ∇ represents the derivative along the flow
trajectory. The first term in this equation includes the added
mass effect accounting for the necessary displacement of fluid
by a moving particle and the acceleration of the fluid. The
second term is the Stokes drag proportional to the difference
between the velocities of the particle and the fluid. The two
dimensionless parameters are β = 3ρ f /(ρ f + 2ρp), the ratio
between fluid ρ f and particle ρp densities, and the Stokes

number given by St = α2
p

3βντ f
, where αp is the size of the par-

ticle, ν is the kinematic viscosity, and τ f is the characteristic
flow time. If the particles are denser than the fluid, i.e., β < 1,
they are known as aerosols; if they are lighter than the fluid,
i.e., β > 1, we call them bubbles; and if β ≡ 1, they are
known as neutrally buoyant particles. The density of the fluid
(ρ f ) equals the density of water, approximated by the value
ρ f = 1000 kg/m3. Note that Eq. (9) is valid as long as the
particle Reynolds number is small, Rep � 1.

For our simulations, we choose two different Stokes num-
bers, which are St = 10−3 and St = 0.03, and hold the
following parameters fixed: β = 0.495 for aerosols, β =
1.875 for bubbles, and β = 1 for neutrally buoyant particles.
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FIG. 1. Comparative analysis of finite-size particle properties
based on density and relative size. This graph plots various particles,
including air, bubbles in our simulations, wood, water, sand, aerosols
in our simulations, and iron, showcasing the diversity in density
(ρp) and dimensionless parameter β. The density of the fluid (ρ f )
which enters the parameter β corresponds to the density of water,
approximated by the value ρ f = 1000 kg/m3.

Figure 1 illustrates that the chosen β values lie in a realistic
range. However, those values as well as the selected Stokes
numbers are quite far away from the Stokes numbers of real
seeds or organisms in an ocean flow. According to our aim
to provide a theoretical study, we made a choice which better
illustrates the impact of inertia.

C. The geometric setup for particle transport

To study the transport of particles in a general framework
of an arbitrary number of islands embedded in a flow, we
employ two different geometrical setups composed of six is-
lands each. One of them is a chain of islands (COI), where all

islands are arranged in a chain similar to the setup in [56,60].
The other one is a random geometry (RG), with randomly
chosen positions of the islands. While in the COI, the islands
are equally spaced, in the RG, they are not (see Fig. 2). The
main flow in both setups is directed along the x axis from left
to right.

We fix four different locations as sources of particles Si

with i = 0, 1, 2, 3, at which we release particles. One of these
locations is upstream at the line (x = −5, y ∈ [−3, 3]) and
(x = −5, y ∈ [−5, 5]) for COI and RG, respectively, from
where particles advected by the main background flow u0

enter the observation area at x = −5. The other three locations
are in a ring of width 0.4 around each of the first three islands,
respectively, representing other locations from where particles
start (see Fig. 2). In addition, we fix seven target locations Oj

with j = 1, . . . , 7, which we check for particle visits. Six of
these locations are in a ring of width 0.4 around each one of
the islands. The other location is downstream of the observa-
tion area at (x = 55, y ∈ [−3, 3]) and (x = 45, y ∈ [−5, 5])
for COI and RG, respectively. For our particle advection ex-
periments, we start with 150 particles in each Si, i = 0, . . . , 3,
whose initial positions (x, y) are randomly chosen within the
specified areas. The particles enter the system with the same
velocity as the fluid particles at their release position. Dur-
ing each flow period, particles are released at a randomly
selected time, denoted as τ , which is uniformly distributed.
On average, approximately 10 000 particles are released per
period. After being released, they are advected by the flow
until they reach either one of the other target regions Oj , with
j = 1, 2, 3, 4, 5, 6, or they escape at O7, which is the “end of
observation area” (EOA) located at the right boundary at x =
55 (COI) and x = 45 (RG), respectively. Importantly, we only
consider that the particle has reached the given target when
this particle has crossed the boundary of this region (the ring
of width 0.4 around each island). Once inside the ring, few
particles can get very close to the island and would stay there
for an extremely long time since the flow velocity goes to zero

FIG. 2. Two geometrical setups are considered: (a) chain of islands (COI) and (b) random geometry (RG). For both geometries, we
schematically represent the release area of particles at the start of the observation area S0 [shown as a dark strip (red) at x = −5], and three
additional sources around each one of the first islands: S1 (dark blue ring around O1), S2 (cyan ring around O2) and S3 (green ring around
O3). We also show the target region at the end on the observation area at x = 45 marked as EOA in yellow. In addition (not shown), all of the
islands have a target region around them; they are equivalent to the source regions described above for the first three islands.
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FIG. 3. Spatial distribution of tracers and inertial particles in the wake of six islands. From the top to the bottom: (a) ideal tracers;
(b),(c) neutrally buoyant particles for St = 10−3 and St = 0.03, respectively; (d),(e) aerosols for St = 10−3 and St = 0.03, respectively; and
(f),(g) bubbles for St = 10−3 and St = 0.03, respectively. Those snapshots were taken at a time 23.48Tc for vortex strength ω = 60. Colors
correspond to the colors in Fig. 2.

at the boundary of the island. We check for those particles with
another ring of width 0.014 around each island. All particles
which enter this very small ring are removed. Although their
number is small, we still subtract it from the total number of
released particles and we discard them from further statistics.
In the y direction, the boundaries of the observation area are
open. With this setup, we are able to count how many particles
are advected from each of the source regions Si (i = 0, . . . , 3)
to each of the target regions Oj ( j = 1, . . . , 7). Measuring the
time interval from release to reaching one of the targets allows
us to determine the time needed to be advected from one
location to another. Since many particles visit different islands
on their way from the source to the end of the observation
area, we can follow their whole path in the flow.

III. RESULTS

A. Comparing trajectories of inertial particles with tracers

General aspects of advection dynamics

We start our analysis by characterizing the main differ-
ences in the advection dynamics of our four types of particles
(tracers, neutrally buoyant particles, bubbles, and aerosols).
As described in the methods, we have a continuous influx of
particles from four source areas and the escape of these parti-
cles at the right boundary of the observation area (see Fig. 2).
After a short transient, the picture becomes periodic due to the
periodic flow. From this time on, the ensemble of the injected
particles spreads through the whole observation area, forming
dynamic fractal patterns, which strongly vary for the four par-
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FIG. 4. The distribution of aerosols and bubbles along the y axis
after crossing half of the observation area at x = 25 (black lines)
and the whole observation area at x = 55 (magenta lines). Particles
were released within the setup with a chain of islands (COI) in the
observation area with dimensions [−5, 55]×[−3, 3]. The line styles
represent the particles: aerosols (dashed lines) and bubbles (solid
lines). The different rows identify the source locations: (a),(b) main
flow (S0) and (c),(d) first island (S1). We only show the results for the
large Stokes number St = 0.03.

ticle types. We illustrate these patterns by taking a snapshot of
the spatial distribution of particles at t = 23.48Tc (see Fig. 3)
and we compare the different particle types. We can see that
while the differences to tracers are more subtle for St = 10−3,
they are very pronounced for large St = 0.03. As expected, the
strongest similarity can be observed in the spatial distribution
of tracers and neutrally buoyant particles. We also observe the
well-known trapping of bubbles in the vortices and the ejec-
tion of aerosols from the vortices in the flow field [56]. These
effects are already present at St = 10−3 and especially visible
for St = 0.03 (see Fig. 3). These differences in the advection
of tracers and inertial particles should clearly translate into
contrasting transport properties for different particle types.

Before we quantify the transport between the different
locations, we study the distribution of aerosols and bubbles
along the observation area depending on the strength of the
vortices, the geometrical setup with respect to the position of
the islands, and the place where the particles are released.

To this end, we have fixed two lines along the y axis, i.e.,
one in the middle of the observation area (x = 25) and the
other at the end (x = 55). We were interested in registering
the y coordinates of all particles to create spatial distribu-
tions when the particle crosses the middle and the end of
the observation area. We show the results for COI geometry,
which is easier to interpret due to its symmetry, for two vortex
strengths (ω = 40 and ω = 60) and different release sources
(i.e., main flow and first island). To make the distributions
along those lines comparable, we normalize each of them by
the total number of particles crossing the corresponding line.
In Fig. 4, we represent the normalized distributions δp, which
show the proportion of particles crossing the lines x = 25 and
x = 55 during a simulation time. In what follows, we will only
show and discuss the distribution for the most extreme case of
aerosols and bubbles. Since inertial effects are larger for large
Stokes numbers, we consider only St = 0.03; for St = 10−3

the influence of inertia is less pronounced.

The results quantify the observations already presented
in Figs. 3(d) and 3(e). Due to the centrifugal forces which
aerosols experience in the vortices, they move further away
from the symmetry axis at y = 0. This behavior is observed
for particles released with the main flow [dashed line in
Figs. 4(a) and 4(b)] as well as the ones released at the first
island [dashed line in Figs. 4(c) and 4(d)]. With increasing dis-
tance from the release location, the maximum concentration
of particles moves away from the symmetry axis as expected
[compare the black (x = 25) and magenta (x = 55) curves].
Increasing the vortex strength from ω = 40 (Fig. 4, left pan-
els) to ω = 60 (Fig. 4, right panels) intensifies the centrifugal
forces and leads again to a further movement away from the
symmetry axis.

By contrast, bubbles are trapped in the vortices, as already
illustrated in Figs. 3(f) and 3(g). Therefore, the maximum of
their concentration (solid line, Fig. 4) is around the symme-
try axis because the location of the two vortex centers are
at y = −0.5 and y = 0.5. Next to the maximum, we find a
region of almost zero particles since those released with the
main flow are also trapped. Due to the trapping phenomena,
the maximum from x = 25 to x = 55 does not change. In
addition, we find a nonzero distribution function δp in regions
far away from the symmetry axis [Figs. 4(a) and 4(b)] as it
corresponds to the particles transported with the main flow
unaffected by the vortices. These parts of δp are, of course,
absent for particles released at the first island.

Overall, we observe a clear segregation of aerosols and
bubbles. While aerosols move away from the symmetry axis
due to centrifugal forces, bubbles approach it. The larger
the vortex strength, the stronger is the segregation. Other
geometries break this symmetry and lead to a more mixed
distribution of aerosols and bubbles.

B. Measuring connectivity between islands

In this section, we study the connectivity between islands
by measuring the probability of transport of particles between
source and target regions. To this end, we use the setups
described in Sec. II C and introduce a probability measure to
evaluate the transport between a source S j and a target Oi by
computing the probability Pi j as the ratio of the total number
of particles transported from S j to Oi and the total number of
particles, Nj , released at S j :

Pi j ≈ Prob{S j → Oi}
Nj

. (11)

This probability measure crucially depends on the physical
properties of the particles, such as their Stokes number, as
well as on the properties of the hydrodynamic flow, such as
the background velocity u0 and the strength of the vortices.
Note that the probability to reach a location depends on the
geometry of the setup, i.e., the positions of the islands in the
flow. Although the choice of the target ring area influences the
quantitative aspects, it does not affect the qualitative differ-
ences between the particle types. Once the transport between
S j and Oi has been quantified for all j and i, we can represent
the connectivity as a weighted directed graph in which the
nodes are given by the islands as source and target regions.
We add the main flow (left boundary of the observation in
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FIG. 5. The transport probabilities for tracers and inertial parti-
cles. Geometry: COI. Observation area [−5, 55]×[−3, 3]. (a) Trac-
ers, (b) neutrally buoyant particles, (c) aerosols, and (d) bubbles.
Vortex strength ω = 40.

Fig. 2) as an additional source and the end of the observation
area (right boundary of the observation area) as an additional
target region. The edges of the graph are given by the transport
probabilities; thereby, we only establish a link if the transport
probability is larger than 0.01. This procedure constructs a
Lagrangian flow network serving as a representation of the
connectivity between different locations in a hydrodynamic
flow. The matrix of probabilities Pi j contains the strength
of the connections as weights that are multiplied with the
adjacency matrix in graph theory, which usually contains only
ones and zeros depending on whether or not a connection
exists.

We now investigate how the strength of the links depends
on the properties of the particles and the geometry. The differ-
ences in the spatial particle distribution in the flow depending
on the Stokes number already revealed an important impact
of the vortices (see Fig. 3 in Sec. III A) since we observed,
as expected, that aerosols are expelled from vortices, while
bubbles are attracted by them.

Let us first discuss the probability of the transport for the
four particle types. Though we expect the largest impact for
larger Stokes numbers, we choose to first discuss the smaller
Stokes number St = 10−3 since we can show that even for
small Stokes numbers where inertial effects are small, there
is a considerable impact. Figure 5 shows the entries in the
probability matrix, color coded by their strength. As expected,
there are large similarities for tracers and neutrally buoyant
particles, which are also reflected in the transport probabili-
ties. Their values are close, but not equal, as shown in Fig. 5
where we present the matrix of transport probabilities in a log-
arithmic scale to emphasize smaller differences. More striking
are the differences for aerosols and bubbles, as inertial effects
play a bigger role. However, it is rather surprising that even

FIG. 6. Connectivity for different geometrical setups for
the position of the islands. (a),(b) COI and observation
area [−5, 55]×[−3, 3]. (c),(d) RG and observation area
[−5, 45]×[−5, 5]. In (a) and (c), we display the connectivity
for aerosols. In (b) and (d), we display the connectivity for bubbles.
The vortex strengths and the Stokes number are ω = 40 and
St = 0.03, respectively.

for the case of such small Stokes numbers, where the impact
of inertia is still quite small, the transport is different.

For the larger Stokes number, those differences in transport
probabilities are much more pronounced and strongly depend
on the geometry of the islands’ positions. For illustration, we
plot the graphs of connectivity for the two geometries (see
Fig. 6). To visualize the Lagrangian flow network, we use the
following convention for the strength of the connections: If
the transport probability Pi j < 0.01, we do not draw any link;
for 0.01 � Pi j < 0.1, the connectivity is weak and drawn by a
thin line; for 0.1 � Pi j < 0.5, the connectivity is moderate, re-
flected by a medium size line; and, finally, for 0.5 � Pi j � 1,
the strong connectivity is visualized by a thick line. Using
this classification, the results for vortex strength of ω = 40 are
shown in Fig. 6 for aerosols [Figs. 6(a) and 6(c)] and bubbles
[Figs. 6(b) and 6(d)], respectively. We find that the impact of
the geometry is quite different for aerosols and for bubbles.
For aerosols [Figs. 6(a) and 6(b)], we observe relatively sparse
connectivity compared to RG in the case of COI. This is due
to the fact that aerosols are expelled from the vortices and
this already happens mostly in the first von Kármán vortex
street, which the particles enter after their release. As a con-
sequence, they are expelled from the whole region where the
islands together with the vortex streets are located along the
x axis and move further outside this region without hitting
any other island’s influence until they reach the end of the
observation area. This effect is even more pronounced for the
stronger vortex strength (not shown). By contrast, in the RG
geometry, there is no confined area in which the von Kármán
vortex street is located and a particle can experience different
islands and the vortices in their wake on their way through the
observation area. Therefore, the connectivity is much larger
with different probabilities connecting the different islands.

For bubbles [Figs. 6(b) and 6(d)], the situation is exactly
opposite. Here a large connectivity is observed for the COI,
but only a sparse one for RG. Since bubbles are entrained and
transported by the vortices until the vortex disappears, they are
moving inside the vortices from island to island in the chain
leading to a large connectivity. By contrast, in RG, they will
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also be entrained by a vortex, but when the vortex disappears
due to dissipation, then they will be transported mainly by the
background flow to the end of the observation area and only be
influenced by other vortices if the geometry of islands permits
the impact of another vortex. Since the impact of vortices
decays exponentially with distance, such an influence is rather
unlikely if the distance between islands is large enough.

Those results underline the paramount importance of the
geometry of the islands’ locations when inertial particles are
considered and compared to tracers. While tracers and neu-
trally buoyant particles exhibit a large connectivity for all
considered vortex strengths and geometries, this is not the case
for inertial particles with larger Stokes numbers. In certain
geometries, some locations can be reached only by one type
of inertial particle (e.g., aerosols), but not by the other (e.g.,
bubbles). This fact leads to a separation of different types of
particles in terms of transport. We observed high connectivity
between islands only for the chain geometry COI for bubbles
and for the random geometry RG for aerosols, while the
connections for bubbles in RG and aerosols in COI are rather
sparse. It is important to emphasize that in the case of low
connectivity, we observe a number of islands which are not
reachable at all. This is fundamentally different from the tracer
and neutrally buoyant particle approach where all islands can
be reached.

C. Estimation of the error in forecasting particle transport

In the previous section, we have shown that certain types of
particles (aerosols and bubbles) cannot reach some islands in
the flow, which tracers would do. However, many applications
studying the spatial distributions of larvae, seeds, and litter
such as plastic particles in the ocean use tracer models. The
same applies to particle-laden flows in industrial settings,
where the Stokes numbers could be larger. Usually, the ar-
gument is that the Stokes numbers of these objects are small
to justify this approach. But there is no study as to what
extent this argument is really valid. In this section, we quan-
tify the deviations caused by approximating inertial particles
by tracers. These deviations will be given by the factors λi j

computed from the ratio of transport probabilities Pi j (see

Sec. III B) for inertial particles and tracers: λi j = Pinertial
i j

Ptracer
i j

. In

such a case, λi j will describe how much the probability of
transport of particles between source and target regions of
inertial particles deviates from those computed for tracers.
Since Pinertial

i j (see Sec. III B) is sensitive to the strength of the
vortices (i.e., ω), the geometry (i.e., COI and RG), and the
source of the particles (i.e., S j), all these factors are reflected
in λi j . Once λi j has been computed, we say that Pinertial

i j will
be overestimated by the tracer approach (i.e., Ptracer

i j ) if λi j < 1
and underestimated if λi j > 1. In the following, we compute

the ratio of λi j for aerosols λa
i j = Pa

i j

Pt
i j

and bubbles λb
i j = Pb

i j

Pt
i j

with respect to tracers for both St = 10−3 and St = 0.03,
applying the vortex strength ω = 60. Let us first discuss the
situation for the chain geometry COI (Fig. 7) since there we
have a systematic deviation due to symmetry of the setup. For
aerosols [Figs. 7(a) and 7(b)], we find an overestimation of the
transport modeled by tracers, while transport is systematically

FIG. 7. The deviation of the transport probabilities between
source and target regions for aerosols and bubbles in relation to trac-
ers. Geometry: COI. Observation area [−5, 55]×[−3, 3]. The dashed
and solid black lines represent λt

i j = 1 and λt
i j = 0, respectively. The

different colors help to identify the source location: S0 (main flow)
in red, S1 (island 1) in blue, S2 (island 2) in cyan, and S3 (island 3)
in green. We represent aerosols in (a) and (b), while (c) and (d) show
results for bubbles.

underestimated for bubbles [Figs. 7(c) and 7(d)]. Even if the
Stokes number is small, such as St = 10−3, the deviation is
considerable, namely, the transport of aerosols is only half
of that modeled by tracers, and for bubbles, it is twice as
large as the tracer equivalent. For the large Stokes number
St = 0.03, the error is, as expected, much larger: aerosols in
many cases do not even reach the targets and their transport
becomes zero, while for bubbles the transport is up to 15 times
larger than estimated by tracers. For the random geometry RG
with its random island disposition, we do not find such large
systematic deviations. Over- and underestimation of transport
in this geometry strongly depends on the considered source
and target locations. Particularly for bubbles, we observe that
the transport probabilities approach zero even for the small
Stokes number. For certain target locations, the transport prob-
abilities would be larger by factors of 2 for aerosols or 5 for
bubbles, even for the small Stokes number St = 10−3. For the
large Stokes number St = 0.03, the effects are much more
pronounced, leading to factors of 5 for aerosols and of >12
for bubbles.

From those findings, we can conclude that one has to
be very careful with predictions of studies of transport of
particles based on tracers; the real objects should be treated
as inertial particles to obtain reasonable estimates of particle
transport.

IV. CONCLUSIONS

We have employed the Maxey-Riley-Gatinol equations to
describe the motion of spherical inertial particles in a flow to
establish the links in a Lagrangian flow network connecting a
certain number of islands. In order to study such networks
depending on the properties of the flow and the particles,
we have introduced a kinematic two-dimensional flow field
which allows for placing an arbitrary number of islands at
prescribed positions in an open background flow with a given
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direction. Using this approach, we have demonstrated that the
Lagrangian flow networks for inertial particles may deviate
quite substantially from the ones of tracer particles. As it
is well known that inertial particles do not follow the flow
exactly but have their own paths depending on their size and
density, deviation from Lagrangian networks obtained with
tracers had to be expected. Mesoscale hydrodynamic vortices
in the flow cause segregation of aerosols and bubbles. Bubbles
are entrained and transported within the vortex and released
from it when the vortex disappears due to dissipation. By con-
trast, aerosols are expelled from vortices. As a consequence,
some target regions can only be reached by bubbles and not
by aerosols, and vice versa, depending on the geometry of the
setup. Tracers and neutrally buoyant particles spread through
the flow field and reach all parts of the observation area in
slightly higher or slightly lower concentrations. Inertial par-
ticles, on the other hand, experience a much stronger effect
of the vortices and concentrate only in certain regions of the
flow field. The consequence is that they, in general, have a
smaller probability to reach a target region; however, if they
reached it, they would do it in much higher numbers. This
is the reason why in a random geometry the connectivity is
larger for aerosols and sparse for bubbles because the latter
get trapped in the vortices. The opposite is true for the chain
of island where we find higher connectivity for bubbles. These
distinct connectivity pattern cannot be observed for tracers
and neutrally buoyant particles, which in our setups always
realized all possible connections. We can conclude that the
computation of transport paths of inertial particles employing
an approximation by tracers can lead to considerable over- or
underestimation of transport probabilities.

According to our aim to provide a theoretical study of
the impact of inertia on Lagrangian flow network, we have
chosen Stokes numbers St and density ratios β which are
rather different from seeds, larvae, or plastic particles in order
to make the difference obvious. However, we could show that
even for small Stokes numbers, the deviations are not negligi-
ble. Therefore, one should carefully check whether a tracer
approximation is suitable if one wants to predict transport
probabilities. In our study, we have restricted ourselves to
two-dimensional flows, which neglects the possible sinking
of particles having densities larger than the fluid. For such
aerosols, the sinking process should also be taken into ac-
count. This also applies for the density ratio β, which we used
for our study. But our focus was also on the impact of the
geometry of the setup and this could only be achieved by using
2D flow, which is governed by a stream function. Therefore,
we could not take sinking velocities into account.

Finally, we would like to address another simplification we
made: The generation of the vortices was uniform across all is-
lands such that they were synchronized in their behavior. In an
additional study (see the Appendix), we have taken random-
ized times at which vortices detach from each island, which
makes the setup more realistic. We find that as we would
expect, more mixing is introduced in the flow field and particle
distributions for small Stokes numbers look more similar to
the ones of tracers and neutrally buoyant particles (see the
Appendix, Fig. 8). However, qualitatively, we obtain the same
results but with higher transition probabilities (Fig. 9) due to

the increasing mixing and slightly different connectivity maps
(Fig. 10).
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APPENDIX: DETAILED ANALYSIS OF RANDOMIZED
VORTEX RELEASE

To reproduce the results here in the Appendix, we had
to adjust the equations which describe the presence of the
counter-rotating vortices in the wake of each island as follows:

gpi(x, y, t ) = e−R0i{−[x−xpi (t )]2+α2
i [y−ypi (t )]2},

p = 1, 2 and i = 1, . . . , n, (A1)

with 1/
√

R0i and αi as the radius and the characteristic ratio
between the elongation of the vortices in the x and y direction,
respectively. Here each pair of vortices moves a distance L
during time Tc and then disappears due to dissipation. But the
centers of the vortices are modulated by

H1i(t + δt i ) = sin2[(t + δt i )π ], (A2a)

H2i(t + δt i ) = cos2[(t + δt i )π ], (A2b)

which move along the horizontal direction x according to

x1i(t + δt i ) = hi + ri + Li mod [(t + δt i ), Tc], (A3a)

y1i(t + δt i ) = ki + y0i, (A3b)

x2i(t + δt i ) = x1i[(t + δt i ) − Tc/2], (A3c)

y2i(t + δt i ) = ki − y0i, i = 1, . . . , n. (A3d)

Here the amplitude modulation and horizontal progression of
vortices are governed by harmonic functions, with a tempo-
ral adjustment factor δt i reflecting the staggered release of
vortices. The new component δt i introduces variability in the
vortices’ initiation. In the case of synchronization, all δt i val-
ues are set to zero for all vortices, which leads all of them to be
released at the same time instant (the setup of the simulation
described in the main text).
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FIG. 8. Spatial distribution of tracers and inertial particles in the wake of six islands, considering a randomized release of vortex. From the
top to the bottom: (a) ideal tracers; (b),(c) neutrally buoyant particles for St = 10−3 and St = 0.03, respectively; (d),(e) aerosols for St = 10−3

and St = 0.03, respectively; (f),(g) bubbles for St = 10−3 and St = 0.03, respectively. Those snapshots were taken at a time 23.48Tc for vortex
strength ω = 60 and δ1 = 0, δ2 = 1.793 932 33, δ3 = 1.358 841 53, δ4 = 1.406 540 21, δ5 = 0.112 048 69, and δ6 = 1.900 989 45.

1. Comparing trajectories of particles with inertia to tracers

Figure 8 shows the distribution of particles in the flow
with randomized detachment of the vortices. We observe that
the additional mixing introduced by the randomization of the
vortex detachment has an impact on the distribution patterns
for small Stokes numbers. They become more similar to those
of tracers and neutrally buoyant particles. For large Stokes
numbers, this mixing effect is not pronounced.

This additional mixing also affects the transition probabil-
ities for particles with small Stokes numbers. They become
larger for all types of particles (Fig. 9). Finally, we checked
the resulting connectivity maps (Fig. 10). For aerosols, we
observe a few more connections due to the increase in mix-
ing, indicating a strong effect on expelling the particles. By

contrast, the connectivity map for bubbles with large Stokes
number remains unchanged in the number of connections;
only the transition probabilities are increased. This can again
be explained by the trapping of bubbles in the vortices.

2. Measuring connectivity between islands

Figure 9 presents a transport probability matrix that indi-
cates the likelihood of particles transitioning from one island
to another island. This matrix design enables a compara-
tive analysis of particle behavior under randomized vortex
conditions, identifying differences in transport dynamics due
to particle properties such as inertia and buoyancy. The
figure shows a quantified visual representation of how the ran-
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FIG. 9. The transport probabilities for tracers and inertial parti-
cles, considering a randomized release of vortex. Geometry: COI.
Observation area [−5, 55]×[−3, 3]. (a) Tracers, (b) the neutrally
buoyant particles, (c) aerosols, and (d) bubbles. Vortex strength
ω = 40 and δ1 = 0, δ2 = 1.793 932 33, δ3 = 1.358 841 53, δ4 =
1.406 540 21, δ5 = 0.112 048 69, and δ6 = 1.900 989 45.

domized release of vortices affects the dispersal and eventual
settling of various particle types, offering insights critical for

FIG. 10. Connectivity for different geometrical setups for the
position of the islands, considering a randomized release of vortex.
(a),(b) COI and observation area [−5, 55]×[−3, 3]. (c),(d) RG and
observation area [−5, 45]×[−5, 5]. In (a) and (c), we display the
connectivity for aerosols. In (b) and (d), we display the connec-
tivity for bubbles. The vortex strengths and the Stokes number are
ω = 40 and St = 0.03, respectively, with δ1 = 0, δ2 = 1.793 932 33,
δ3 = 1.358 841 53, δ4 = 1.406 540 21, δ5 = 0.112 048 69, and δ6 =
1.900 989 45.

understanding particle transport phenomena in both natural
fluid environments and industrial applications.

In Fig. 10, we illustrate the probability of particle transi-
tions from one island to another under a randomized vortex
release timing, highlighting the increased complexity and ran-
domness introduced by the vortex release timing.
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