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Single droplet or bubble and its stability: Kinetic theory and dynamical system approaches
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Steady solutions of a single droplet or bubble in the van der Waals fluid are investigated on the basis of the
kinetic model equation that has been recently proposed by Miyauchi et al. [Gas Dynamics with Applications in
Industry and Life Sciences (Springer, Cham, 2023), pp. 19–39]. Under the thermal equilibrium condition and
isotropic assumption with respect to the origin of the coordinates, the kinetic equation is reduced to an ordinary
differential equation for the density, which can be regarded as a low-dimensional dynamical system. The possible
density distribution is studied as a flow in the low-dimensional phase space. It is clarified that a single droplet
or bubble can be understood as a flow that goes into a fixed point and that the flow is qualitatively different in
the unstable and metastable parameter regions. The features of the obtained density distributions in individual
regions are also clarified. Finally, the stability of those solutions is studied by direct numerical experiments of
the kinetic equation.
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I. INTRODUCTION

Two-phase systems with or without the phase change have
been variously studied so far by the thermal-fluid-dynamic
way from the physics, chemical physics, mathematical
physics, and engineering point of view. When the dynamic
aspects are of interest, the Cahn–Hilliard equation [1] or its
variants have been widely used in the thermodynamic dis-
cussions, while the Navier–Stokes equation for two-phase
fluids has been used in the fluid dynamic discussions (e.g.,
Refs. [2,3]). However, the dynamic process does not neces-
sarily occur under the phase equilibrium. This is the point that
has motivated studies using microscopic approaches that are
free from the phase equilibrium constraint in recent decades.
Molecular dynamics (MD) [4–6] and kinetic theory [7–12] are
typical approaches taken in such studies.

Probably the most fundamental setting for understanding
the elementary process of the phase change from a single to
a two-phase state would be the problem of a single droplet
or bubble in the infinite expanse of the fluid. Such a setting
is the simplest, at least conceptually, but is not necessarily
well understood. For instance, though some MD simulations
can be found in the literature, they are usually conducted
under a periodic condition. Therefore, in drawing conclu-
sions about single droplet (or bubble) formation from those
simulations, we need to examine carefully whether there are
still interactions with other droplets or bubbles, whether the
simulation is for an energy conservative or isothermal system,
and so on. Our previous 1D simulations using a kinetic model
equation [8,11] are not exception as well, and they do not
provide direct information about the single droplet (or bubble)
formation.
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With this background, Busuioc et al. [12] recently con-
ducted numerical simulations of a single bubble on the basis
of the Enskog–Vlasov equation [13]. However, their main
goal is to develop a stochastic particle simulation method for
the Enskog–Vlasov equation. In the present paper, we more
focus on the analysis of a steady single droplet or bubble
and its stability, thereby deepening our understanding of the
elementary process in phase change. The dynamics-like in-
terpretation of the phase change in the context of van der
Waals fluids can be traced back to, for example, the work
by van Kampen [14,15] based on the equilibrium statistical
thermodynamics. He clearly explained the two-phase equi-
librium in terms of the thermodynamical potential by the
resemblance with a classical point mass dynamics, especially
for one-dimensional case. Indeed, we have made use of his
interpretation in our previous work [16] for the discussion
of one-dimensional case. In the present work, we shall step
forward to multidimensional cases that require more detailed
study of the dynamical system, thereby showing peculiar fea-
tures that is absent from one-dimensional case.

The main ingredients of the present study are the low-
dimensional dynamical system analysis [17,18] on the steady
solution and simple numerical simulations for the instabil-
ity assessment of the steady solution via the kinetic model
developed in Ref. [19]. Our approach is thus distinctive
to the order-parameter models with fluctuations [20] in the
literature. In the simulations in Sec. V, physical (thermal)
fluctuations are not added to the single droplet (or bubble)
solution obtained in the study of dynamical system to be
discussed in Sec. IV D. Instead, the numerical errors coming
from discretization and numerical approximations play the
role of fluctuations there. Hence, the collapse of the single
droplet or bubble to be observed in Sec. IV D simply suggests
that such a droplet or bubble is linearly unstable.

The paper is organized as follows. First, the kinetic model
that our analysis is based on is presented in Sec. II. The
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model was proposed in Ref. [19] as an extension of our previ-
ous models [11,16]. The H-theorem and the reproducibility
of appropriate transport properties were established for the
model. Next in Sec. III, steady solutions of a single droplet
or bubble that is isotropic to the origin of the coordinates are
investigated within the uniform resting Maxwellians and the
problem is reduced to the one for the radial density field. The
reduced problem is treated and studied as a low-dimensional
dynamical system in Sec. IV by using the concepts of the
phase space vector field, fixed point, and flow [21] that are
familiar in the field of nonlinear dynamical system [17,18]. In
particular, it will be clarified in Sec. IV C that the flow changes
qualitatively whether the pair of parameters of the far-field
uniform state falls into the unstable region or the metastable
region [11,22]. The structure of the single droplet or bubble
will be also discussed in Sec. IV D. In Sec. V, the instability
of the obtained steady solution is assessed by direct numerical
simulations of the kinetic model. The paper is concluded in
Sec. VI.

II. KINETIC MODEL EQUATION

We study a single droplet or bubble in an infinite expanse
of the van der Waals fluid using the kinetic model proposed in
Ref. [19] under the name of the second ellipsoidal-statistical
(ES)-based model:

∂ f

∂t
+ ξi

∂ f

∂Xi
+ Fi

∂ f

∂ξi
= Q�

c[ f ] + Q�

d [ f ], (1a)
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(2πRT∞)

3
2

exp

(
− ξ 2

i

2RT∞

)
, (|X | → ∞), (1b)

where t is time, X (or Xi) is spatial position, ξ (or ξi) is molec-
ular velocity, f (t, X , ξ) is the velocity distribution function
(VDF), R is the specific gas constant, and ρ∞ and T∞ are
positive constants for the far-field density and temperature,
respectively. Q�

c is the ES-type collision model [23,24] given
by

Q�
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Here, ν is an adjusting parameter for the Prandtl number in the
range −1/2 � ν < 1. T −1 is the inverse of the tensor T . ρ, v

(or vi), and T are, respectively, the density, flow velocity, and
temperature. Q�

d is a correction term to Q�
c for exclusive effects

of molecules and F (or Fi) is a force acting on a molecule per
unit mass. They are assumed to take the form:

Q�

d [ f ] = − ∂

∂ξi

[(
α

�
i + β�ci

)
f
]
, (7)

Fi = − ∂

∂Xi
(�S + �L ). (8)

There are still some quantities that should be specified. In the
above, Fi is composed of two potential forces: the long-range
�L and short-range �S . �L is purely attractive and can be
expressed within the diffusion approximation [11,16] as

�L = −κ
∂2ρ

∂X 2
i

, (9)

where κ is a positive constant. �S is a combined potential of
repulsion and attraction and, by applying a local approxima-
tion due to the short-range nature, its form can be specified,
together with A�, in accordance with the equation of state for
the van der Waals fluid [11,16]:

p = ρRT

1 − bρ
− aρ2, (0 < bρ < 1), (10)

as follows:

�S = − RT ln(1 − bρ) + bρRT
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− 2aρ, (11)

A� =5

2

ρRT
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R

λ0(T )
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Here p is the pressure, a and b are positive constant, and λ0 is
the thermal conductivity in the dilute gas limit. Moreover, by
setting the viscosity and thermal conductivity to those of the
Enskog equation [25,26], all the remaining quantities can be
specified as
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Here, additional comments would be in order. μP, μB, and λP

represent the exclusion effect of molecules on the viscosity,
bulk viscosity, and thermal conductivity, respectively. μ0 and
Pr0 represent the viscosity and the Prandtl number in the

025102-2



SINGLE DROPLET OR BUBBLE AND ITS STABILITY: … PHYSICAL REVIEW E 110, 025102 (2024)

dilute gas limit. For the above kinetic model equation with
the quantities so specified, the H-theorem has been shown
to hold for periodic systems in Ref. [19]. This completes the
presentation of the kinetic model used in the remainder of the
paper.

III. STEADY SINGLE DROPLET OR BUBBLE
ISOTROPIC TO THE ORIGIN

In the present section, a steady single droplet (or bubble) in
an infinite expanse of the van der Waals fluid will be consid-
ered. Since such a single droplet (or bubble) is in the thermal
equilibrium state, the solution is sought within the resting
Maxwellian with uniform temperature T∞ (see Appendix A):

f (X , ξ) = ρ(X )

(2πRT∞)3/2
exp

(
− ξ2

2RT∞

)
. (23)

By substitution of Eq. (23), Eq. (1a) is reduced to

∂

∂Xi
(RT∞ ln ρ + �S + �L ) = 0. (24)

Integrating Eq. (24) once with respect to X and substituting
Eqs. (9) and (11) reduces the original problem, Eq. (1), to a
much simpler form:

κ
∂2ρ

∂X 2
i

= RT∞

(
ln

bρ

1 − bρ
+ 1

1 − bρ
− λ∗

)
− 2aρ,

(25a)

ρ → ρ∞, (|X | → ∞). (25b)

Here λ∗ is a dimensionless constant that is related to ρ∞
and T∞. Indeed, since ρ → ρ∞ as X → ∞ by Eq. (25b),
∂2ρ/∂X 2

i → 0 in the same limit, leading to the relation

RT∞

(
ln

bρ∞
1 − bρ∞

+ 1

1 − bρ∞
− λ∗

)
= 2aρ∞. (26)

In the meantime, the critical density ρc and temperature Tc

are related to the van der Waals constants a and b as

3ρc = 1

b
, Tc = 8a

27Rb
. (27)

Hence, the dimensionless quantities

η = bρ

(
= ρ

3ρc

)
, T̃ = T

Tc
, xi = Xi

L
, (28)

are naturally introduced with 3ρc, Tc, and

L =
√

κ

bRTc
, (29)

being the reference density, temperature, and length, respec-
tively. Then, Eq. (25) is recast as

∂2η

∂x2
i

= �(η; η∞, T̃∞), (30a)

η → η∞, (|x| → ∞), (30b)

where η∞ = bρ∞, T̃∞ = T∞/Tc, and

�(η; η∞, T̃∞) ≡ T̃∞[�(η, T̃∞) − �(η∞, T̃∞)], (30c)

�(X,Y ) ≡ ln

(
X

1 − X

)
+ 1

1 − X
− 27

4

X

Y
, (30d)

λ∗ = �(η∞, T̃∞). (30e)

Note that � has two parameters, η∞ and T̃∞, but its variation
with respect to η is characterized only by T̃∞. � has two ex-
trema below the critical temperature (T̃∞ < 1), but above the
critical temperature (T̃∞ � 1) it increases monotonically with
respect to η; see Fig. 1. In fact, � is a dimensionless version
of the specific Gibbs free energy [11], and thus appears later
in the thermodynamic discussion of phase equilibrium. In the
sequel, η∞ and T̃∞ will be suppressed in the argument of �,
unless confusion is anticipated.

Since our aim is to study a steady single droplet or bubble,
it is enough to consider the isotropic field with respect to
the origin of the coordinates. Hence, η is assumed to be a
function of the radius r ≡ |x| (x ∈ RD with D being the spatial
dimension [27]) only and Eq. (30) is further reduced to

1

rD−1

d

dr

(
rD−1 dη

dr

)
= �(η), (0 � r < ∞), (31a)

η(r) → η∞, (r → ∞). (31b)

We seek nonuniform solutions of Eq. (31) that satisfy η(0) =
ηO( �=η∞), dη/dr(0) = 0 at the origin and η → η∞ as r →
∞. Since these conditions at the origin and at a far field are too
many for the second order differential equation, such solutions
do not always exist. Hence, putting aside the condition (31b),
we shall first consider Eq. (31a) under only the condition at
the origin

η(0) = ηO,
dη

dr
(0) = 0, (32)

transform it to a system of simultaneous first-order ordi-
nary differential equations, and then study the resulting
system as flows in low-dimensional phase space [17,18].
Among such flows, the steady solution of a single droplet
or bubble is chosen as a flow that satisfies the far-field
condition (31b).

IV. FLOWS IN PHASE SPACE

A. Preliminary analysis

In the present subsection, as a preliminary analysis, we
consider the behavior of the dimensionless density η quali-
tatively on the basis of

dη

dr
=

∫ r

0
�(η(s))

(
s

r

)D−1

ds, (33)

that is obtained by integrating Eq. (31a) multiplied with rD−1

and using the condition (32).
As is clear from Eq. (33), the property of �(η) determines

whether η increases or decreases with respect to r. As is
mentioned in Sec. III and shown in Fig. 1, �(η) is monotonic
when T̃∞ � 1 and has two extrema when T̃∞ < 1. Thus, �(η)
has only one zero [Fig. 1(a)] when T̃∞ � 1. When T̃∞ < 1,
�(η) has at most three zeros and the number of zeros depends
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FIG. 1. Classification of �(η) and phase-portrait-like diagram. �(η) has only one zero point in Case A, two zero points in Case B, and
three zero points in Case C, respectively. (a) Case A with T̃∞ � 1. (b) Case A with T̃∞ < 1 and the extrema are positive. (c) Case A with
T̃∞ < 1 and the extrema are negative. (d) Case B and the local maximum is zero. (e) Case B and the local minimum is zero. (f) Case C. In
each panel, the arrow indicates the change direction of η starting from ηO at the point ×, while + and − indicate the sign of the corresponding
value of

∫ r
0 �(η(s))(s/r)D−1ds.

on the value of η∞ [Figs. 1(b)–1(f)]. But in any case η = η∞
is always a zero of �(η).

First the following proposition holds.
Proposition. If �(η) has one or two zeros, then there is no

spatially nonuniform solution of Eq. (31).
Proof. First suppose that �(η) has only one zero [Case A:

Figs. 1(a)–1(c)]. Obviously, this zero is η = η∞. Hence, for
ηO ≶ η∞, �(ηO) ≶ 0 holds [Figs. 1(a)–1(c)], and furthermore
dη/dr ≶ 0 holds by Eq. (33). This means that the change of
η from ηO (≶η∞) to η∞ is not possible.

Next suppose that �(η) has two zeros. Then, one of the
zeros is an extremum point [Case B: Figs. 1(d)–1(e)]. By
repeating the same discussion as in the previous case, it is
readily seen that both zeros cannot be reached by starting from
ηO larger or smaller than both zeros. However, the extremum
point might be reached if starting from ηO between two zeros
(there is no way to reach the other zero). Therefore, the ex-
tremum point is a candidate of η∞. However, since �(η) is
either positive definite or negative definite in the process of
reaching the extremum point, dη/dr �= 0 by Eq. (33) at the
extremum point. This means that η cannot approach a certain
constant as r → ∞ and the extremum point cannot be η∞. �

Thanks to the above Proposition, we can focus on the
case that �(η) has three zeros [Case C: Fig. 1(f)]. Let ηa,
ηb, and ηc be the three zeros (ηa < ηb < ηc). Then �(η)
has one inflection point η = 1/3, which always lies between
the two extrema. Since the inflection point lies between
the two extrema and the two extrema lie between ηa and
ηc, ηa < 1/3 < ηc holds. In addition, it is readily seen that
�′(ηa) > 0, �′(ηb) < 0, and �′(ηc) > 0 hold as well, where
�′ = d�/dη. Again along the same lines as the one zero
case in the proof, it is seen that any zeros of �(η) cannot be
reached starting from ηO larger than ηc or smaller than ηa.
To reach zero, ηa < ηO < ηc is required at least. However,
in the present stage, the process of approaching zero is not
so obvious [28]. The three zeros can be candidates of η∞.
When η∞ is the middle zero ηb, �′(η∞) = �′(ηb) < 0 holds,
implying from Eqs. (30c) and (30d) that

T̃∞ <
27

4
η∞(1 − η∞)2(�1)

⇔ a >
RT∞

2ρ∞(1 − bρ∞)2
. (34)
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FIG. 2. Parameter diagram in η∞T̃∞ plane. Dashed-dotted: Spinodal curve (35). Solid line: Binodal curve (36). Outside of binodal curve
is the stable region, inside of spinodal curve is the unstable region, and between the spinodal and the binodal curve is the metastable region.
Open circles (red), triangles (blue), and diamonds (green), respectively, indicate examples of ηa, ηb, and ηc (three zeros of �) at T̃∞ = 0.6,
0.7, 0.8, and 0.9. (a) The case where η∞ = ηa lies in the metastable region (droplet). (b) The case where η∞ = ηc lies in the metastable region
(bubble).

This is identical to the parameter region where a uniform
resting equilibrium state is unstable and the so-called spinodal
decomposition is expected to occur (unstable region) [11]; see
Fig. 2. Therefore, if the solution with η∞ = ηb is found, it rep-
resents a single droplet or bubble in the unstable region. When
η∞ is the minimum or maximum zero (ηa or ηc), �′(η∞) > 0
holds and the inequality in condition (34) is reversed. Hence,
if the solution with η∞ = ηa or η∞ = ηc is found, it represents
a single droplet or bubble outside of the unstable region. The
pair (η∞, T̃∞) for such a solution is expected to fall in the
metastable region. The metastable region is the one bounded
by the spinodal curve

T̃∞ = 27

4
η∞(1 − η∞)2(�1), (35)

and the binodal curve that is obtained by eliminating ηO from
the following two equalities [29]:

�(ηO) = �(η∞), p(ηO, T̃∞) = p(η∞, T̃∞); (36)

see Fig. 2. The binodal line has two branches when regarded
as a function of T̃∞. For later convenience, let ηL be the branch
giving the larger value of η∞ and let ηG be the branch giving
the smaller value, respectively.

B. Set up for flow analyses

Let us first introduce the following variables η1, η2, η3 that
are functions of r:

η1(r) ≡ η(r), η2(r) ≡ dη

dr
, η3(r) ≡ r, (37)

and rewrite Eq. (31a) as a set of ordinary differential equa-
tions [17]:

dη1

dr
= η2, (38a)

dη2

dr
= −D − 1

η3
η2 + �(η1), (38b)

dη3

dr
= 1. (38c)

The right-hand side of Eq. (38) gives a three-dimensional
constant phase vector field that is characterized by far-field
parameters η∞ and T̃∞. The projection of the trajectory in
the phase space on the η1η2 plane has three fixed points
(ηa, 0), (ηb, 0), and (ηc, 0). Since � does not change whether
η∞ = ηa, ηb, or ηc, the fixed points are common for η∞ = ηa,
ηb, or ηc.

The flow with respect to r is determined by Eq. (38) with
the condition

(η1, η2, η3) = (ηO, 0, 0), (r = 0), (39)

and the flow representing a single droplet or bubble is the one
that further satisfies the condition

(η1, η2, η3) → (η∞, 0,∞), (r → ∞). (40)

In Sec. IV C, we will study the flows numerically, classify
them, and identify the conditions under which a steady single
droplet (or bubble) solution can be found.

C. Results: Trajectory of flow and classification

Equation (38) with Eq. (39) is solved by the fourth-order
Runge-Kutta method [30] after a uniform discretization with
respect to r. The step size �r of r is uniform and set as
�r = 1.0 × 10−5. The step size was enough fine to draw
firm conclusions for the discussions below about the flow
properties.

1. Case D = 1

Let us start with the spatially one-dimensional case (D =
1), since it provides a clear-cut-off of main features of the
present dynamical system. Since the first term on the right-
hand side of Eq. (38b) vanishes, the vector field does not
depend on η3. Hence, the problem is reduced to the two-
dimensional dynamical system on the η1η2 plane. The three
points (ηα, 0) (α = a, b, c) on the η1 axis are indeed fixed
points of the reduced set of Eqs. (38a) and (38b) on the η1η2
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FIG. 3. Vector field, trajectory, and corresponding radial density distribution in the case D = 1 for η∞ = 0.1 and T̃∞ = 0.8. (a) Vector
field and some trajectory samples. (b) Close-up of critical and near-critical trajectories. (c) Radial density distributions of the trajectories. In
panels (a) and (b), closed circles indicate the fixed points in the η1η2 plane, the dashed-dotted (blue), the dashed (blue), and the solid (red) line
indicate the (i)-type, (ii)-type, and (iii)-type trajectory, respectively.

plane. Since η∞ is a zero of �, it must coincide with ηa, ηb,
or ηc.

Figure 3(a) shows the vector field in the case (η∞, T̃∞) =
(0.1, 0.8). The pair of the parameters lies in the metastable
region and three zeros of �, i.e., ηa, ηb, and ηc, are 0.1,
0.287521, and 0.667059 in this example; see Fig. 2(a). In
Fig. 3(a), the trajectories of flow starting from various points
(η1, η2) = (ηO, 0) are also plotted. There are three categories
of trajectory according to the value of ηO:

(i) Trajectory for which (η1, η2) → (0,−∞) or (1,∞) as
r → ∞ [dashed-dotted line in Fig. 3(a)],

(ii) Periodic trajectory around the middle fixed point
(ηb, 0) on the η1 axis [dashed line in Fig. 3(a)],

(iii) Trajectory that reaches (ηa, 0) = (η∞, 0) [solid line
in Fig. 3(a)].
The periodic trajectory occurs because of the antisymmetric
vector field with respect to η1 axis. The trajectory that can
reach the far-field state is only the (iii)-type and represents
a single droplet solution [see the solid line in Fig. 3(c)].
The (iii)-type is the boundary between (i)-type and (ii)-type
trajectory families [see Fig. 3(b)], and there is a one to one
correspondence between ηO and η∞ for the (iii)-type. This
aspect as the boundary can be observed clearly in Fig. 3(c),
where the density distributions for ηO = 0.41865000 and
0.41864900 are of (i)-type and those for ηO = 0.41864800
and 0.41864700 are of (ii)-type. The single droplet den-
sity distribution is of (iii)-type and the corresponding value
of ηO lies between 0.418640800 and 0.41864900 (ηO =
0.41864812 up to eight decimal points).

The vector field and flow trajectories shown in Fig. 3
do not change if we set η∞ = 0.287521(=ηb) or η∞ =
0.667059(=ηc) in place of η∞ = 0.1(=ηa), since � remains
unchanged (see Sec. IV B). Hence, none of (i)–(iii)-type tra-
jectories reach the far-field state if η∞ = ηb or η∞ = ηc. As
is seen from Fig. 2(a), the pair (ηb, T̃∞) lies in the unstable
region, while (ηc, T̃∞) lies in the stable region. Therefore,
steady single droplet solutions are not found when the pair of
the far-field parameters (η∞, T̃∞) lies in the unstable or stable
region.

As discussed in Sec. IV A, the pair of parameters (ηb, T̃∞)
always lies in the unstable region. In contrast, (ηa, T̃∞) and
(ηc, T̃∞) lie either in the metastable or stable region. It is
numerically verified that if the former lies in the metastable
region, the latter in the stable region and vice versa (see
Fig. 2). Therefore, if (ηc, T̃∞) lies in the metastable region
as in Fig. 2(b), then the (iii)-type trajectory flows into the
fixed point (ηc, 0) and represents a steady single bubble (not
droplet) solution. Thus, irrespective of whether a droplet or
a bubble, the (iii)-type trajectory is interpreted as the one
flowing into a fixed point. When this fixed point is (ηa, 0), the
trajectory represents a single droplet. When the fixed point is
(ηc, 0), the trajectory represents a single bubble. Again, when
the pair of the far-field parameters lies in the unstable or stable
region, single bubble solutions are not found.

Finally, it should be noted that as (ηa, T̃∞) approaches
(ηG, T̃∞) on one branch of the binodal curve, the correspond-
ing (ηc, T̃∞) approaches (ηL, T̃∞) on the other branch of the
binodal curve. In this limit, the (iii)-type trajectory becomes a
curve connecting (ηa, 0) and (ηc, 0) on the η1η2 plane.

2. Cases D = 2 and D = 3

Since the first term on the right-hand side remains in
Eq. (38b), the vector field is no longer uniform with respect to
η3. Nevertheless, since the η3 component of the vector field is
simple and uniform, we discuss the flows by their projection
on the η1η2 plane for the sake of simplicity. The projection
of the trajectory or flow will be called the in-plane trajectory
or in-plane flow in the sequel. As in the case of D = 1, three
points (ηα, 0) (α = a, b, c) on the η1 axis still remain the fixed
points for the in-plane dynamics on the η1η2 plane. However,
in contrast to the case D = 1, the in-plane vector field is no
longer antisymmetric with respect to the η1 axis. This is the
influence of the first term on the right-hand side of Eq. (38b).
Consequently, periodic trajectories in the case of D = 1 are
deformed to spiral in-plane trajectories on the η1η2 plane. The
influence of the first term is larger for larger D. It decreases as
η3 (or r) increases (see Fig. 4).
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FIG. 4. In-plane vector fields in the case D = 2 for η∞ = 0.1 and T̃∞ = 0.8. (a) η3 = 0.5. (b) η3 = 2.0. (c) η3 = 100.0. Closed circles
indicate the fixed points (ηα, 0) (α = a, b, c) in the η1η2 plane.

Figures 5(a) and 5(b) show the in-plane flow trajecto-
ries in the case (η∞, T̃∞) = (0.1, 0.8). The case for D =
1 is also shown in Fig. 5(c) for reference. The pair
of parameters for this figure lies in the metastable re-
gion [see Fig. 2(a)]; three zeros of �, i.e., ηa, ηb, and
ηc, are 0.1, 0.287521, and 0.667059, respectively. As is
demonstrated in Figs. 5(a) and 5(b), the in-plane trajec-
tories are classified into three, depending on the value of
ηO:

(i) In-plane trajectory for which (η1, η2) → (0,−∞) or
(1,∞) as r → ∞,

(ii) Spiral in-plane trajectory that flows into (ηb, 0) [31],
(iii) In-plane trajectory that flows into (ηa, 0).

Since η∞ = ηa in Fig. 5, the (iii)-type in-plane trajectory rep-
resents a steady single droplet. When η∞ coincides with other
zeros, i.e., η∞ = 0.287521(=ηb) or η∞ = 0.667059(= ηc),
the same vector field and trajectories are obtained, since �(η)
remains unchanged (see Sec. IV B). Hence, as in the case
D = 1, the flow to the far-field condition cannot be found
for the pair (η∞, T̃∞) = (ηc, T̃∞) that is in the stable region.
However, the flows to the far-field condition are possible for
the pair (η∞, T̃∞) = (ηb, T̃∞) that is in the unstable region.

This is a new type of admissible solution that is not found in
the case D = 1.

As is mentioned in Sec. IV C 1, the pair (ηb, T̃∞) is al-
ways in the unstable region, while (ηa, T̃∞) and (ηc, T̃∞) are
either in the metastable and the stable region. Hence, when
(ηc, T̃∞) is in the metastable region [see Fig. 2(b)], the (iii)-
type in-plane trajectory flows into the fixed point (ηc, 0) and
represents a single bubble. Figure 6 shows such an exam-
ple. Therefore, the (iii)-type in-plane trajectory flows into a
fixed point (ηa, 0) [or (ηc, 0)] and represents a single droplet
(or bubble), provided that (ηa, T̃∞) [or (ηc, T̃∞)] lies in the
metastable region.

To summarize, the (iii)-type in-plane trajectory that is con-
sistent with the far-field condition is found for D = 2 and 3,
as in the case D = 1, provided that the pair of parameters
of far-field condition lies in the metastable region. This type
of trajectory represents a single droplet or bubble, depending
on whether η∞ = ηa or η∞ = ηc. In addition, the (ii)-type
in-plane trajectory is newly found to be consistent with the
far-field condition in the unstable region. The properties of
these solutions for D = 2 and 3 will be further discussed in
Sec. IV D.

FIG. 5. In-plane trajectories starting from various values of ηO on the η1 axis for η∞ = 0.1 and T̃∞ = 0.8. (a) D = 3. (b) D = 2. (c) D = 1.
Thick line (red) is the in-plane trajectory of a single droplet and ends at a point representing the far-field condition [closed triangle (red)]. Open
triangle: the fixed point in the η1η2 plane. Closed triangle (red): the point (η∞, 0) that represents the far-field condition.
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FIG. 6. In-plane trajectories starting from various values of ηO on the η1 axis for η∞ = 0.6 and T̃∞ = 0.8. See the caption of Fig. 5.
(a) D = 3. (b) D = 2. (c) D = 1.

D. Discussions

1. Property of solution in the unstable region

As noted in Sec. IV A, when (η∞, T̃∞) lies in the unstable
region, ηb = η∞. In this case, a single droplet (or bubble)
solution was not found for D = 1. However, for D = 2 and
3, the (ii)-type in-plane trajectories are found to represent a
solution that satisfies the far-field condition, i.e., η → η∞ as
r → ∞. Figure 7 shows an example of such a solution in
the case ηO = 0.2, η∞ = 0.4, and T̃∞ = 0.8. The dimension-
less density η is rippled around its far-field value η∞ with
damping the amplitude as r increases. The damping process
is very slow and looks dependent on the spatial dimension
D. To evaluate the damping behavior in the far field, Taylor
expansion is used around η∞ to transform Eq. (31a) to the
equation for the perturbation part η̄ = η − η∞. Taking into
account �(η∞) = 0, Eq. (31a) is reduced to

d2η̄

dr2
+ D − 1

r

d η̄

dr
− �′(η∞)η̄ = O(η̄2). (41)

Note that �′(η∞) < 0 (see Sec. IV A). By setting z =
[−�′(η∞)]1/2r and dropping O(η̄2) term, an approximate

equation of Eq. (41) is obtained and read

d2η̄

dz2
+ D − 1

z

d η̄

dz
+ η̄ = 0. (42)

The solution of Eq. (42) can be expressed by the Bessel
functions, J0(z) and Y0(z), of the first and the second kind
of order 0 for D = 2 and by the spherical Bessel functions,
j0(z) and y0(z), of the first and the second kind of order 0 for
D = 3. For large z, it is well known that J0 and Y0 decay with
the rate z−1/2, while j0 and y0 decay with the rate z−1 (see, e.g.,
Sec. 9.2 of Ref. [32]). Hence, the observed ripple of density
can be estimated to decay with the same rate and η approaches
η∞ as z → ∞. Indeed, the solution of Eq. (31a) is well fitted
by the approximate solution η̄ + η∞ obtained from Eq. (42),
see Fig. 7. As is clear in this figure, the influence of O(η̄2)
term is small even near the origin, and the approximation
(42) well reproduces the solution of Eq. (31a) in the entire
domain.

Because of the slow decay of the ripple of density, the
solution above may affect the far field and might lose the
physical meaning as a single droplet or bubble. Fortunately,
however, it is not so. To evaluate the average deviation from

FIG. 7. Radial density distribution for the (ii)-type in-plane trajectory in the unstable region in the case ηO = 0.2, η∞ = 0.4, and T̃∞ = 0.8.
(a) D = 2. (b) D = 3. Solid line: solution of Eq. (38) that satisfies both conditions (39) and (40). Dashed-dotted line (red): η̄ + η∞ by the
approximation (42) for the corresponding conditions. In panel (b), the deviation of lines is barely visible.
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FIG. 8. Radial density distributions and corresponding (iii)-type in-plane trajectories of single droplets for T̃∞ = 0.8 in the case D = 2.
(a) Radial density distribution. (b) In-plane trajectory. In panel (b), the arrows indicate the directions of flow on the individual trajectories and
open squares indicate the values on the liquid-side branch ηL and the gas-side branch ηG of the binodal curve at T̃∞ = 0.8.

η∞ caused by the solution, consider the quantity

(D/ZD)
∫ Z

0
zD−1η̄(z)dz, (43)

replace η̄ by J0 and Y0 for D = 2 (or j0 and y0 for D = 3),
and take the limit as Z → ∞. Then, the result is found to be
zero. Namely, the solution does not affect the average density
in the whole domain and thus η∞ is not affected. In this sense,
the (ii)-type in-plane trajectory for η∞ = ηb makes sense as a
solution for a single droplet or bubble in the case D = 2 or 3.
Additional side evidence is presented in the Appendix B.

2. Property of solution in the metastable region

When η∞ = ηa or ηc, the trajectories that satisfy the
far-field condition were found, irrespective of the spatial
dimension. Figures 8 and 9 show various radial density distri-
butions and corresponding in-plane trajectories when varying
η∞ within the metastable region for T̃∞ = 0.8 in the case
D = 2. The density changes monotonically with respect to
r. In Fig. 8 the radius of droplet increases with decreasing

η∞, while in Fig. 9 the radius of bubble increases with in-
creasing η∞. In both cases, as the radius increases, the density
ratio between two phases increases and tends to saturate in
such a way that the pair of ηO and η∞ approaches the pair
of values ηL(T̃∞) and ηG(T̃∞) on the binodal curve. Since
�(ηO) = �(η∞) = 0 on the binodal curve (36), the corre-
sponding radial density distribution from ηO to η∞ is the
one represented by the in-plane trajectory that connects two
fixed points (ηa, 0) and (ηc, 0). This provides an interpretation
of the density distribution for the pair of parameters on the
binodal curve in light of the flow in phase space.

In the meantime, if �(ηO) �= 0, then d2η/dr2 �= 0 at the
origin by Eq. (31a). It implies that the interior of droplet or
bubble with such a ηO is not sufficiently uniform and that the
Young–Laplace (YL) relation [22,33] may be broken.

The YL relation is the condition of mechanical balance
on the Gibbs surface that is a discontinuous boundary model
between uniform two phases with different density [22]. De-
noting the radius of the Gibbs surface (Gibbs radius, for short)
by RI, the inside uniform pressure by pO, the outside uniform
pressure by p∞, and the surface tension of the interface by γ ,

FIG. 9. Radial density distributions and corresponding (iii)-type in-plane trajectories of single bubbles for T̃∞ = 0.8 in the case D = 2.
See the caption of Fig. 8.
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FIG. 10. Dependence of pressure difference �p between inside and outside of droplet (or bubble) and the corresponding surface tension
γ on the Gibbs radius RI for T̃∞ = 0.9 in the case D = 2. (a) Droplet. (b) Bubble. Solid line: pressure difference. Dashed-dotted line: surface
tension divided by RI. Deviation between the lines indicate the breakdown of the Young–Laplace relation (44). The upper-right plot in each
panel is η∞ vs RI. The open and closed circles indicate the cases for which the simulations to be shown in Figs. 12–15 have been conducted.

the mechanical balance condition is written as

�p ≡ p(η∞, T̃∞) − p(ηO, T̃∞) = (D − 1)γ

RI
. (44)

On the one hand, since the Gibbs surface is defined under a
constraint of the total mass in the system, the Gibbs radius RI

is determined by the relation

∫
(ρ − ρ∞)dX = π

2D
(2RI )

D(ρO − ρ∞). (45)

On the other hand, since the surface tension is defined by
the free energy associated with the interface per unit area,
appropriate consideration of the free energy is necessary. For-
tunately, it can be done along the same line as in Ref. [11]

and the free energy H of the system relative to the far-field
uniform state is given by

H = 1

RT∞

∫ (
ρF (ρ) − ρ∞F (ρ∞) + κ

2

(
∂ρ

∂Xi

)2)
dX ,

(46)

F (ρ) =
(

ln
bρ

1 − bρ
+ 3

2

)
RT∞ − aρ + const.

= RTc�(η) − p

ρ
+ const., (47)

in the case that the VDF is a resting Maxwellian with tempera-
ture T∞. Under the ansatz of the Gibbs surface, H is expressed
with the aid of the interface free energy I as

H = π

2D

(2RI )D

RT∞
[ρOF (ρO) − ρ∞F (ρ∞)] + I

RT∞
. (48)

FIG. 11. Radial density distribution of droplets and bubbles for stability assessment (T̃∞ = 0.9 and D = 2). (a) Droplets. (b) Bubbles. Solid
lines are the cases shown by open circles in Fig. 10, while dashed-dotted lines are those shown by closed circles in Fig. 10.
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FIG. 12. Simulation of stability for the droplet with the radial density distribution indicated by the solid line in Fig. 11(a), i.e., the case
(η∞, T̃∞) = (0.15, 0.9) and D = 2. Contours of η(=bρ ) = 0.2 + 0.03m (m = 0, 1, . . . ) are plotted. (a) t/tc = 0. (b) t/tc = 3000. (c) t/tc =
5000.

Since the surface tension γ is I divided by the surface area
(2RI )D−1π , it is expressed by Eqs. (46) and (48) as

γ = HRT∞
(2RI )D−1π

+ RI

D
[ρ∞F (ρ∞) − ρOF (ρO)]. (49)

Figure 10 plots �p and γ /RI, obtained separately, against the
Gibbs radius RI in the case D = 2. As a reference, RI versus
η∞ is also shown in the upper right corner of each panel. It is
seen that, as η∞ becomes closer to ηL or ηG (the values on the
binodal curve), the Gibbs radius RI becomes larger [34] and
the violation of the YL relation becomes smaller. However,
if η∞ is away from ηL or ηG so that RI/L � 6, then the YL
relation is violated, which supports the expectation stated at
the end of the second paragraph of Sec. IV D 2. The criterion
in the case D = 3 is almost the same, i.e., RI/L � 6, which is
omitted here.

V. STABILITY OF SINGLE DROPLET OR BUBBLE

To assess the stability of (ii)-type and (iii)-type steady
solutions, direct numerical simulations of Eq. (1) have been
conducted with the resting Maxwellian (23) being the initial
condition and with κ = aσ 2 [35] in the case D = 2. The
density of the initial Maxwellian is the one obtained through

the study in Secs. III and IV. The numerical computations
are conducted by first eliminating the ξ3 dependence from
Eq. (1) by using Chu’s method [36] in a finite spatial and
molecular velocity domain truncated as |X1|, |X2| � Ld and
|ξ1|, |ξ2| � 6

√
2RTc. The partial elimination of the velocity

variable is the benefit of using model equation over the
Enskog–Vlasov equation, which is the standard technique in
the literature of rarefied gas dynamics; see, e.g., Ref. [37]. The
VDF is assumed to be zero outside of the truncated domain of
molecular velocity, while it is assumed to be kept at the initial
Maxwellian outside of the truncated spatial domain. Only the
first quadrant of space 0 � X1, X2 � Ld is treated by assuming
the mirror symmetry with respect to X1 = 0 and X2 = 0. The
numerical scheme is based on the semi-Lagrangian and Strang
splitting method [38–40] and a uniform time step 0.02tc is
used, where tc = σ/

√
2RTc is the reference time. The stability

is assessed by observing whether the initial Maxwellian is
maintained for a long time. The collapse of unstable droplet
or bubble is induced only by the numerical errors caused by
the discretization, interpolations, etc., in such simple assess-
ment. Thus, only the linearly unstable droplet or bubble can
be detected. Stability against large fluctuations, for instance,
is not within the scope of the present simulations. Since
the process of collapse depends on those errors, numerical

FIG. 13. Simulation of stability for the droplet with the radial density distribution indicated by the dashed-dotted line in Fig. 11(a), i.e.,
the case (η∞, T̃∞) = (0.17, 0.9) and D = 2. Contours of η(=bρ ) = 0.2 + 0.03m (m = 0, 1, . . . ) are plotted. (a) t/tc = 0. (b) t/tc = 3000.
(c) t/tc = 5000. In panel (c), 0.17 < η < 0.173 entirely and no contour is plotted accordingly.
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FIG. 14. Simulation of stability for the bubble with the radial density distribution indicated by the solid line in Fig. 11(b), i.e., the case
(η∞, T̃∞) = (0.542, 0.9) and D = 2. Contours of η(=bρ ) = 0.5 − 0.03m (m = 0, 1, . . . ) are plotted. (a) t/tc = 0. (b) t/tc = 500. (c) t/tc =
1000.

convergence with respect to the discrete resolution or the size
of the truncated spatial domain was not aimed at in the present
simulations.

A. Single droplet or bubble in the metastable region

As a stability test of the solution in the metastable region,
simulations are conducted for the single droplets with the
radial density distributions shown in Fig. 11(a) in the case
D = 2. The far-field parameters are (η∞, T̃∞) = (0.15, 0.9)
and (0.17, 0.9), respectively. The corresponding Gibbs ra-
dius is larger for the former; see open and closed circles in
Fig. 10(a). Figures 12 and 13 show the results obtained by
setting Ld/σ = 50 with 200 × 200 uniform divisions in the
quadrant 0 � X1, X2 � Ld and 128 × 128 uniform divisions
in molecular velocity. The droplet is maintained in the long
time evolution for the case (η∞, T̃∞) = (0.15, 0.9) where the
corresponding Gibbs radius is larger, while it collapses for the
case (η∞, T̃∞) = (0.17, 0.9) where the corresponding Gibbs
radius is smaller.

The difference of stability with respect to the Gibbs radius
is also observed in the case of bubbles. Figures 14 and
15 show the results for the bubbles with the radial density
distributions shown in Fig. 11(b) in the case D = 2. The

computational parameters are the same as those used in the
droplet cases in Figs. 12 and 13. Again, the bubble is main-
tained for a long time in the case (η∞, T̃∞) = (0.542, 0.9)
where the corresponding Gibbs radius is larger, while it
collapses in the case (η∞, T̃∞) = (0.52, 0.9) where the
corresponding Gibbs radius is smaller; see the open and
closed circles in Fig. 10(b).

Irrespective of whether droplet or bubble, the pair of
far-field parameters for the steady single droplet or bub-
ble lies near the binodal curve in the metastable region.
It is thus suggested that single stable droplets or bubbles
are formed only near the binodal curve in the metastable
region.

Finally, it should be noted that both droplet and bubble
collapse in the case of closed circles in Fig. 10, while they
are maintained for a long time in the case of open circle in
Fig. 10. Since the YL relation breaks down for closed circles
in Fig. 10 and is still valid for open circles, it is strongly
suggested that the YL relation holds for stable single droplet
or bubble. Indeed, MD simulation results in the literature
such as Refs. [5,6] have reported the generation of nano-sized
bubbles, further confirming the validity of the YL relation
for those bubbles. At the same time, Ref. [5] has reported
difficulties in keeping much smaller bubbles for a long time.

FIG. 15. Simulation of stability for the bubble with the radial density distribution indicated by the dashed-dotted line in Fig. 11(b), i.e.,
the case (η∞, T̃∞) = (0.52, 0.9) and D = 2. Contours of η(= bρ ) = 0.5 − 0.03m (m = 0, 1, . . . ) are plotted. (a) t/tc = 0. (b) t/tc = 500.
(c) t/tc = 1000. In panel (c), 0.500 < η < 0.52 entirely and no contour is plotted accordingly.
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FIG. 16. Simulation for the collapse of the solution in the unstable region with the radial density distribution indicated by the solid line in
Fig. 7(a): (ηO, η∞, T̃∞) = (0.2, 0.4, 0.8) in the case D = 2. Contour plots of η(=bρ ) are shown. (a) t/tc = 0. (b) t/tc = 100. (c) t/tc = 150.
(d) t/tc = 200.

Note that there are no terms representing fluctuations in our
one-particle distribution model (1a). Nevertheless, the above
observations are consistent with the MD simulation results.
The trigger of the collapse in the present simulations is the
numerical errors occurring in the discretization and approx-
imation procedure. Therefore, the detected collapse is not
related to the type of fluctuations, but rather to the structure of
the droplet or bubble itself. Our dynamical system approach
combined with the numerical simulations enables us to make
clear this point, since unstable droplet or bubble cannot be
obtained by the MD approach with fluctuations.

B. Single droplet or bubble in the unstable region

As a stability test of the solution in the unstable region,
simulations are conducted for the solution with the radial
density distributions shown in Fig. 7(a) in the case D = 2.
The set of origin and far-field parameters is (ηO, η∞, T̃∞) =
(0.2, 0.4, 0.8). Figure 16 shows the results obtained by set-
ting Ld/σ = 120 with 480 × 480 uniform divisions in the
quadrant 0 � X1, X2 � Ld and 192 × 192 uniform divisions
in molecular velocity. This setting offers the highest resolution
in discretization and the largest spatial domain (thus the least
influence of truncation of space) in the present computational
work. Simulations have been performed with other settings as
well but they are omitted to report here.

As a whole, the speed of collapse is faster than those
observed in the metastable region, see Figs. 13 and 15, sug-
gesting the difficulties to find a stable droplet or bubble of the
Bessel (or spherical Bessel) function-type structure shown in
Fig. 7. This may be connected with the fact that unstable small
droplets or bubbles in the metastable region are found closer
to the spinodal than to the binodal curve. However, the process
of collapse is more complicated in the unstable region and in-
duces new centers of many droplets and bubbles. This feature
looks supporting the scenario of spinodal decomposition in
the literature (see also Appendix B).

VI. CONCLUSION

In the present paper, we have discussed the steady single
droplet or bubble and its stability on the basis of the kinetic
model equation proposed in Ref. [19]. After the presenta-
tion of kinetic model in Sec. II, the problem is reduced to a

problem of the radial density distribution, assuming the rest-
ing Maxwellian with a uniform temperature and isotropic field
with respect to the origin of the coordinates in Sec. III. The
reduced problem is treated as a low-dimensional dynamical
system in Sec. IV and is studied by using the concept of the
phase space vector field, fixed point, and flow. The trajectories
in phase space are found to change qualitatively whether the
set of parameters of the far-field uniform state falls into the
unstable region or the metastable region. In particular, the
structure of the single droplet or bubble in the unstable region
is found to be well described by the family of the Bessel and
the spherical Bessel functions for spatially two- and three-
dimensional cases. In the metastable region, the droplet or
bubble is always of a radially monotone structure in density.
Its inside is not necessarily at a fully developed uniform state,
and accordingly the YL relation may be broken in such a case.

The stability of thus obtained steady single droplet or
bubble is also tested numerically by a simple assessment.
The results suggest that the single droplet or bubble becomes
unstable away from the binodal curve in the metastable re-
gion. This is consistent with the MD simulation results in the
literature. Since there are no terms representing fluctuations
in our one-particle distribution model, the observed instability
is due to the structure of the droplet or bubble itself. We have
discussed this feature in view of the YL relation and the size
of droplet or bubble. The process of collapse of the droplet or
bubble, in particular the difference of qualitative features in
the metastable and the unstable region, is also demonstrated.
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APPENDIX A: MAXWELLIAN AS A TIME
ASYMPTOTIC SOLUTION

In this Appendix, we will show that, under suitable as-
sumptions at a far distance, there is a functional monotonically
decreasing in time and that the solution of Eq. (1) approaches
a local resting Maxwellian with uniform temperature T∞. This
feature is one of the chief merits of our kinetic model over the
original Enskog–Vlasov equation.

Consider the problem (1). Let us denote the uniform resting
Maxwellian and �S at a far distance by f∞ and �S∞, respec-
tively. We first integrate Eq. (1a) multiplied by ln( f / f∞) −
�S∞/(RT∞) with respect to ξ and then further integrate the
resulting with respect to X over a control volume D, where
D is the spherical domain centered at the origin with a suffi-
ciently large radius Rd . After some manipulations [11,19], we
obtain

d

dt

∫
D

(H[ f ] − H[ f∞])dX

=
∫

∂D

∫
ξini f

(
ln

f

f∞
− 1

)
dξdS

+
∫

∂D
Hi[ f ]nidS +

∫
D

{ ∫ (
ln

f

f∞

)
Q�

c[ f ]dξ

− λP

RT 2

(
∂T

∂Xk

)2

− μP

2RT

(
∂vi

∂Xj

)2

− μB

RT

(
∂vk

∂Xk

)2
}

dX , (A1a)

where ni is the inward normal unit to the surface ∂D and

H[ f ] =
∫

f

(
ln

f

f∞
−1

)
dξ + T∞ − T

RT∞

∫
∂�S

∂T
dρ

+ 1

RT∞

(
ρ(�S − �S∞) −

∫
ρ

∂�S

∂ρ
dρ

)

+ κ

2RT∞

(
∂ρ

∂Xk

)2

, (A1b)

Hi[ f ] = vi

RT∞

[
(T∞ − T )

∫
∂�S

∂T
dρ − ρ(�S − �S∞ + �L )

]

− v j

RT∞

(
μP

∂vi

∂Xj
+ μB

∂vk

∂Xk
δi j

)

− T − T∞
RT T∞

λP
∂T

∂Xi
+ κ

RT∞

∂ρvk

∂Xk

∂ρ

∂Xi
. (A1c)

Note that the constant H[ f∞] is subtracted from H[ f ] in
Eq. (A1a) to avoid the integral diverging in the limit Rd →
∞. Thanks to the property of Q�

c [24], all the four terms
in the last integral on the right-hand side of Eq. (A1a) are

nonpositive, and thus the following inequality holds:

d

dt

∫
D

(H[ f ] − H[ f∞])dX �
∫

∂D
Hi[ f ]nidS

+
∫

∂D

∫
ξini f

(
ln

f

f∞
− 1

)
dξdS, (A2)

where the equality holds if and only if f is a Maxwellian
with uniform T and vi. By the far-field condition (1b), these
uniform T and vi ought to be T∞ and zero, respectively.

To evaluate each term on the right-hand side of Eq. (A2),
we will make two reasonable assumptions: (i) the net mass
flux and the net heat flux on the control surface are finite, so
that the mass flow and heat flow normal to the surface decays
at most with the rate of |X |−2 at a far distance. Moreover, we
further assume that mass and heat flow are also at the same or-
der, since the far field is a given resting uniform Maxwellian;
(ii) because of (i), the deviation of f from f∞ is expected to
vanish very slowly (∼|X |−m with m being some positive num-
ber), which implies that the length scale of change around the
control surface ∂D is Rd and thus the effective Knudsen num-
ber there defined by the ratio of the reference mean-free-path
�∞ = (2RT∞)1/2/A�

∞, where A�
∞ = A�(ρ∞, T∞), to the scale

length Rd is small, i.e., ε ≡ �∞/Rd � 1 [41]. Therefore, the
VDF around the control surface can be well evaluated by the
Chapman–Enskog (CE) expansion.

Under these reasonable assumptions, we can show that

lim
Rd →∞

∫
∂D

Hi[ f ]nidS = 0, (A3)

lim
Rd →∞

∫
∂D

∫
ξini f

(
ln

f

f∞
− 1

)
dξdS = 0. (A4)

To prove Eq. (A3), first consider Eq. (A1c). Keeping in
mind that the heat flow at a far distance is well described by
the gradient of temperature, the first term on the right-hand
side of Eq. (A2) can be well evaluated by the assumption
(i). Indeed, since vi ∼ |X |−2 and qi(∝ ∂T/∂Xi ) ∼ |X |−2, each
term on the right-hand side of Eq. (A1c) is estimated as a
small quantity multiplied by |X |−2, where the small quantity
is the one that tends to vanish as |X | → ∞, such as T∞ − T ,
�S − �S∞, �L(∝ ∂2ρ/∂X 2

i ), ∂vi/∂Xj , and ∂ρ/∂Xi. There-
fore, once integrated over the control surface, the integral of
each term multiplied by ni is estimated as the same size as
the small quantity. Hence, each term vanishes in the limit
Rd → ∞, the estimate (A3) is obtained.

Next, to prove Eq. (A4), consider the last term on the right-
hand side of Eq. (A2). Compared with the case of Eq. (A3),
we need more details about the asymptotic behavior at a far
field and thus make use of the CE expansion based on the
assumption (ii). We present the outline of the analyses below.

To make clear the ordering in the CE expansion, we use the
dimensionless notation

t̂ = (2RT∞)1/2

Rd
t, xi = Xi

Rd
, ζi = ξi

(2RT∞)1/2
,

f̂ = (2RT∞)3/2

ρ∞
f , F̂i = − ∂

∂xi
(�̂S + �̂L ),

�̂S = �S

2RT∞
, �̂L = �L

2RT∞
, Q̂�

c = (2RT∞)3/2

ρ∞A�
∞

Q�
c,
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Q̂d + εQ̂�

d = 2Rd RT∞
ρ∞

Q�

d , Â� = A�

A�
∞

,

α̂i = Rd

2RT∞
αi, β̂ = Rd

(2RT∞)1/2
β, ρ̂ = ρ

ρ∞
,

T̂ = T

T∞
, v̂i = vi

(2RT∞)1/2
, ĉi = ci

(2RT∞)1/2
,

μ̌P = A�
∞μP

ρ∞RT∞
, μ̌B= A�

∞μB

ρ∞RT∞
, λ̌P = A�

∞
ρ∞RT∞

λP

2R
,

and rewrite Eq. (1a) into

∂ f̂

∂ t̂
+ ζi

∂ f̂

∂xi
+ F̂i

∂ f̂

∂ζi
= 1

ε
Q̂�

c + Q̂d + εQ̂�

d . (A5a)

Here the original Q�

d has been decomposed into dimensionless
Q̂d and Q̂�

d in such a way that

Q̂d = − ∂

∂ζi
[(α̂i + β̂ ĉi ) f̂ ], (A5b)

Q̂�

d = − 1

3ρ̂T̂

∂

∂ζi

({
3

2
T̂

∂ Ši j

∂x j

+ ĉi

[
∂

∂xk

(
λ̌P

∂T̂

∂xk

)
+ ∂ v̂ j

∂xk
Š jk

]}
f̂

)
, (A5c)

Ši j = μ̌P
∂ v̂i

∂x j
+ μ̌B

∂ v̂k

∂xk
δi j . (A5d)

By following the standard procedure of the CE expansion, we
seek the solution of Eq. (A5a) in the form

f̂ = f̂ (0) + ε f̂ (1) + ε2 f̂ (2) + · · · . (A6)

The details of the calculation for the present kinetic model can
be found in the Appendix of Ref. [19]. Here we summarize the
results up to O(ε):

f̂ (0) = ρ̂

(π T̂ )3/2
exp

(
− ĉ2

k

T̂

)
, (A7a)

f̂ (1) = (
Âiĉi + B̂ĉ2

k + Ĉi j ĉiĉ j + D̂iĉiĉ
2
k

) f̂ (0)

Â�
, (A7b)

where Âi, B̂, Ĉi j , and D̂i are the following dimensionless ver-
sion of the quantities to be defined later in Eqs. (A9b)–(A9e):

Âi = Rd Ai, B̂ = Rd

2
(2RT∞)1/2B,

Ĉi j = Rd

2
(2RT∞)1/2Ci j, D̂i = Rd RT∞Di.

Now let us evaluate the last term on the right-hand side of
Eq. (A2). Since f = [ρ∞(2RT∞)−3/2] f̂ ,∫

ξini f [ln( f / f∞) − 1]dξ

= ρ∞(2RT∞)1/2
∫

ζini f̂ [ln( f̂ / f̂∞) − 1]dζ

= ρvini

(
ln

ρT −3/2

ρ∞T −3/2
∞

+ v2
k

2RT∞
+ 5

2

T − T∞
T∞

)

+ ρv jni

RT∞

[
− RT

(1 − ν)A�

∂vi

∂x j
+ O(ε2)

]

+ T − T∞
T∞

[
− 5

2

ρR

A�

∂T

∂Xi
ni + O(ε2)

]

+ ρ∞(2RT∞)1/2 ε2

2

∫
ζini

( f̂ (1) )2

f̂ (0)
dζ + O(ε3), (A8)

where f̂∞ = ((2RT∞)3/2/ρ∞) f∞.
If we integrate Eq. (A8) over the control surface ∂D, then

each term is multiplied by O(R2
d ) (the order of the surface

area). But using the assumption (i) again and recalling that
ε = �∞/Rd , the contributions of the first three lines on the
most right-hand side of Eq. (A8) are estimated as small quan-
tities that tend to vanish as Rd → ∞. Since ε3R2

d = �2
∞ε, the

contribution of the last term O(ε3) on the most right-hand side
of Eq. (A8) also tends to vanish in the same limit. Therefore,
we are left with the term

ρ∞(2RT∞)1/2 ε2

2

∫
ζini

( f̂ (1) )2

f̂ (0)
dζ.

But the substitution of Eq. (A7), after some manipulations,
gives

ρ∞(2RT∞)1/2 ε2

2

∫
ζini

( f̂ (1) )2

f̂ (0)
dζ

= −1

4

ρRT

(1 − ν)(A�)2

∂vi

∂Xj
(2Ain j + Ci jvknk )

− 5

4

ρR2T

(A�)2

∂T

∂Xi
(Bni + Divknk ) + 35

8

ρ(RT )3

(A�)2
DiBni

+ 1

4

ρ(RT )2

(A�)2
(CiiA jn j + 2Ci jAin j )

+ 7

4

ρ(RT )3

(A�)2
(CiiDjn j + 2Ci jDin j ), (A9a)

where

Ai = 5

2

1

T

∂T

∂Xi
, (A9b)

B = 2

3RT

∂vi

∂Xi
, (A9c)

Ci j = − 1

RT

(
ν

1 − ν

∂vi

∂Xj
+ ∂vi

∂Xj
+ ∂v j

∂Xi

)
, (A9d)

Di = − 1

RT 2

∂T

∂Xi
. (A9e)

Because of the assumption (i), the first two lines on the
right-hand side of Eq. (A9a) is O(R−2

d ) multiplied by small
quantities that tend to vanish as Rd → ∞. By the same
assumption, the remaining terms are also at most O(R−2

d )
multiplied by small quantities that tend to vanish as Rd → ∞,
since they are multiplications among Ai, B, Ci j , and Di. There-
fore, integrating Eq. (A9a) over the control surface ∂D and
taking the limit Rd → ∞ results in Eq. (A4). This concludes
that Eq. (A2) is reduced to

d

dt

∫
R3

(H[ f ] − H[ f∞])dX � 0, (A10)

and the equality holds if and only if f is a resting Maxwellian
with uniform temperature T∞.
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FIG. 17. Time evolution of the phase change caused by a density disturbance from the resting uniform equilibrium state with density ρ∗
and temperature T∗ under a spatially periodic condition in the case of (bρ∗, T∗/Tc ) = (4/15, 0.9) = (0.266 . . . , 0.9) (unstable case). Contour
plots of η(= bρ ) are shown. (a) t/tc = 0. (b) t/tc = 500. (c) t/tc = 1000. (d) t/tc = 2000. (e) t/tc = 5000.

APPENDIX B: GENERATION OF DROPLET OR BUBBLE
INDUCED BY A PERIODIC DISTURBANCE

In Sec. IV D 1, the single droplet or bubble in the un-
stable region of parameters (η∞, T̃∞) shows slow damping
of the ripple of density. The feature of the slow damping
might look unnatural as a physical picture. Indeed, one of
the conclusions drawn in the present paper is that such a
single droplet or bubble is unlikely stable and eventually
collapses in a long run. However, if we pursue the time
evolution from the uniform equilibrium state on the basis
of the kinetic model equation after adding a disturbance at
the initial time, then a similar density ripple pattern appears
transiently in the unstable region. We here address such an
example.

Figure 17 shows the results of a simulation that starts
from an equilibrium state in the unstable region initiated by a
periodic disturbance with period 2Ld . The initial equilibrium
state with the disturbance in the unit domain |X1|, |X2| � Ld

is given by

f = ρ

(2πRT∗)3/2
exp

(
− ξ2

2RT∗

)
, (B1)

ρ/ρ∗ = 1 + [δσ (X1)δσ (X2) − 1/(2Ld )2]Cσ 2, (B2)

δσ (x) =
{

1
40σ

[
1 + cos

(
πx
20σ

)]
, (|x| � 20σ ),

0, (|x| > 20σ ),
(B3)

where bρ∗ = 4/15(=0.266 . . . ), T∗/Tc = 0.9, and C = 1. The
present pair of parameters (bρ∗, T∗/Tc) lies deep inside the
unstable region, if (bρ∗, T∗/Tc) is regarded as (η∞, T̃∞) in
Fig. 2. The computation is conducted by the same numerical
code as that used in Sec. V, except that the periodic condition
is applied at |X1|, |X2| = Ld and that a correction step of the
total mass, momentum and energy is inserted at every time
step to retain their conservations better. In practice, the correc-
tion step had little effect on the results, but slightly improved
the convergence with respect to resolution. The computational
data are as follows. The quadrant of the periodic domain,
0 � X1, X2 � Ld , is divided into 200 × 200 uniform squares
with Ld/σ = 50, the truncated molecular velocity space is
divided into 128 × 128 uniform squares, and the step size of
time is 0.025tc. Because of the periodic condition, the system
merely obeys the energy conservation and the temperature is,
in general, different between the initial and the final equilib-
rium state at rest in the present simulation.

The radial ripple pattern of density emerges in Fig. 17(b),
followed by its growth in amplitude as shown in Fig. 17(c).
As the time further goes on, the pattern changes into multiple
droplets with their center at the resonant points of interac-
tions by periodicity as in Figs. 17(d) and 17(e). During this
process, the temperature in the system rises from T/Tc = 0.9
to T/Tc � 0.95 and the droplets creation decreases the sur-
rounding density to η � 0.21 − 0.22, causing the shift of the
system from the unstable to the metastable parameter region.

FIG. 18. Time evolution of the phase change caused by a density disturbance from the resting uniform equilibrium state with density
ρ∗ and temperature T∗ under a spatially periodic condition in the case of (bρ∗, T∗/Tc ) = (0.2, 0.9) (metastable case). Contours of η(=bρ ) =
0.2 + 0.03m (m = 0, 1, . . . ) are plotted. (a) t/tc = 0. (b) t/tc = 500. (c) t/tc = 1500. (d) t/tc = 20 000.
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The pattern in Fig. 17(e) is not yet in the final stage and the
temperature is not enough uniform. After Fig. 17(e), the center
droplet first collapses, and then the surrounding four droplets
move to the center, unite into one droplet, and further absorb
the corner droplets. The process after Fig. 17(e) was sensitive
to the resolution of simulation, but in any case was finished
with a single droplet in a unit periodic domain.

Figure 18 shows the results of the simulation for bρ∗ = 0.2,
T∗/Tc = 0.9, and C = 100 for comparison. The computational
domain, the discretization of space and molecular velocity,

and the time step size are the same as those used in Fig. 17.
A relatively large disturbance is necessary to initiate the
phase change, since the new pair of parameters (bρ∗, T∗/Tc) =
(0.2, 0.9) lies in the metastable region. Throughout the time
evolution, the ripple of density is not observed at least at a
visible level in this figure. A droplet with a radial monotone
density distribution grows gradually from the initial state to
the state in Fig. 18(d). During the process, the temperature
in the system rises from T/Tc = 0.9 to T/Tc � 0.936. In
Fig. 18(d), the system has almost reached its final steady state.
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