
PHYSICAL REVIEW E 110, 025101 (2024)

Nonlinear, single-mode, two-dimensional Rayleigh-Taylor instability in ideal media
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A model for the single mode, two-dimensional Rayleigh-Taylor instability in ideal, incompressible, immisci-
ble, and inviscid fluids is developed as an extension of a previous linear model based on the Newton’s second law
[A. R. Piriz et al., Am. J. Phys. 74, 1095 (2006)]. It describes the transition from linear to nonlinear regimes and
takes into account the mass of fluids participating in the motion during the instability evolution, including the
laterally displaced mass. This latter feature naturally leads to the bubble and spike velocity saturation without
requiring the usual drag term necessary in the well-known buoyancy-drag model (BDM). In addition, it also
provides an explanation to the latter phase of bubble reacceleration without appealing to the vorticity generation
due to the Kelvin-Helmholtz instability. The model is in perfect agreement with the BDM buoyancy-drag model,
but, apart from extending its range of application, it solves many of its issues of concern and provides a more
consistent physical picture.

DOI: 10.1103/PhysRevE.110.025101

I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) is a ubiquitous phe-
nomenon that occurs whenever a fluid of density ρ1 pushes
and accelerates another fluid of density ρ2 > ρ1 or, equiva-
lently, when the latter lays on the top of the lighter fluid in a
gravitational field [1–3]. This instability plays a central role
in many natural processes ranging from astrophysics [4–7]
to quotidian features like the falling of water when the con-
tainer is inverted. It also determines the performance of many
laboratory experiments on high-energy density physics [8–12]
and serves as a tool for determining the mechanical properties
of solids under high stress and strain conditions [13–20]. In
addition, it is fundamental in the research on inertial confine-
ment fusion (ICF) because it is the main factor that condition
the minimum energy required for igniting a fuel capsule and
obtaining high gain [21–26].

An extensive research by different methods, including
theory, numerical simulations, and experiments, has been per-
formed and detailed reviews can be found in Refs. [1–3].
However, many important aspects of the RTI physics are not
yet well understood, especially in relation to the nonlinear
regime that finally leads to the turbulent mixing of both media.
This is true even for the simplest situation of a planar interface
separating two semi-infinite ideal fluids submitted to a sin-
gle mode perturbation in a uniform gravitational field. Such
a situation has been widely studied by means the so-called

*Contact author: roberto.piriz@uclm.es

buoyancy-drag model (BDM), which yields phenomenologi-
cal equations of motion for the spike and bubble evolutions
and has been constructed to fit the results of experiments and
numerical simulations [2,27–33]:

{(1 + Cae−Cekξs )ρ2 + (Ca + e−Cekξs )ρ1}ξ̈s

= (1 − e−Cekξs )(ρ2 − ρ1)g(t ) − Cdρ1kξ̇ 2
s , (1)

{(1 + Cae−Cekξb )ρ1 + (Ca + e−Cekξb )ρ2}ξ̈b

= (1 − e−Cekξb )(ρ2 − ρ1)g(t ) − Cdρ2kξ̇ 2
b , (2)

where, for the two-dimensional (2D) problem, it is Ca = 2
and Cd = Ce = 3 are constant parameters chosen to fit the
results of experiments and simulations, g(t ) is a uniform grav-
ity acceleration, ξs and ξb are, respectively, the instantaneous
amplitudes of the spike and the bubble, and k = 2π/λ is the
perturbation wave number (λ is the perturbation wavelength).

Although the apparent simplicity of these equations, they
actually masks several unsolved issues. As noticed by Di-
monte [29], the inertia is uncertain because the total displaced
masses of the fluid being penetrated by the spike and the
bubble, respectively, are not taken into account or, at most,
it is accounted by introducing an ad hoc constant parameter.

In addition, it has to include a drag force term in order
to account for the saturation of the bubble velocity, for the
case of Atwood number AT = 1 [AT = (ρ2 − ρ1)/(ρ2 + ρ1)],
and of the bubble and spike velocities when AT < 1 [29,34].
Such a drag force should have origin in the viscosity of the
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involved fluids. However, velocity saturation is found to oc-
cur in inviscid potential models and numerical simulations
[34,35], and viscosity should not be significant in most of
ICF applications where saturation is still observed [24,36].
On the other hand, the effect of viscosity should rather be
the inhibition or limitation of the reacceleration process taking
place at late evolution times, which are not described by the
BDM [37]. Besides, assuming that in the present case the
drag force can be assimilated to the drag undergone by a
solid body moving into a fluid [29], the drag coefficient Cd

would hardly be a constant, but dependent of the Reynolds
number in a manner that, in general, should be determined
experimentally.

Furthermore, the reacceleration process, first observed in
numerical simulations by Ramaprabhu et al. [38] and then
confirmed by experiments by Wilkinson and Jacobs [39]
arising when the bubble amplitude is ξb ≈ λ, is commonly
explained on the basis of the correlation with the onset of
the Kelvin-Helmholtz instability (KHI) observed in the exper-
iment and numerical simulations when AT < 1. Namely, the
argument is that the vortices generated by the KHI around
the spike surface when it penetrates into the lighter fluid,
propagate towards the bubble tip thus causing its reacceler-
ation [37,40,41]. Such observed correlation, however, in any
manner implies the existence of a causal relationship. In this
regard, the argument resembles the one exposed by Aristoteles
to explain the flight of an arrow [42]: “Although well clear
of the archer’s bow, the arrow continues to move because the
air which is parted at its forward tip circles ‘round behind,
filling the void left by the advancing tail’; it thus impinges
upon the after part of the arrowshaft, pressing it forward so as
to continue its flight.”

As is well known, the argument inverts the causal relation
between the motion of the arrow penetrating into the air, and
the vortices generation due to the shear driven by such a
motion, and leads to the paradoxical result that the air push
the arrow instead to slow down it.

This argument is neither well supported by the evidence
from numerical simulations in the RTI problem, which show
that with sufficient resolution, bubble reacceleration would
also happens for AT = 1 (ρ1 = 0) provided that the Reynolds
numbers goes to infinite (inviscid limit), when no vor-
tices could be generated by KHI. Moreover, Wilkinson and
Jacobs [39] also noticed that, quite surprisingly, at low
Atwood numbers, no reacceleration was observed in the ex-
periments by Waddel et al. [43] although “the obvious and
pronounced occurrence of vortices,” which once again seems
to contradict a causal relation between the vorticity migration
from the spike to the bubble and the bubble reacceleration.

The above discussed features put in evidence the necessity
of a more consistent physical picture. For this, in this work we
propose a new model based also in the Newton’s second law
that uses and extends a previous model for the linear phase of
RTI [44] and aims at solving the above mentioned issues. The
model is presented in Sec. II, starting with a brief review of
the linear model in Sec. II A.

Dimensional analysis and geometrical arguments are dis-
cussed in Sec. II B, and the generalization of the linear model
to the nonlinear regime is presented in Sec. II C. Then, we
analyze the asymptotic behavior of the solutions in Sec. II D,

FIG. 1. Schematic of the early linear evolution of a perturbed
interface between two fluids.

and we also compare the present model with the BDM results
in Sec. II E.

In Sec. III, we extend the model for describing the reaccel-
eration process, and in Sec. IV we present some comparisons
of the model with 2D numerical simulations. Final discussion
and remarks are given in Sec. V.

II. THE PHYSICAL MODEL

A. Review of the linear model

We start with a brief review of the linear model of Ref. [44],
which basic features are summarized in Fig. 1. The model
considers a situation in which at t = 0 we have a fluid of
density ρ2 on the top of a lighter fluid of density ρ1 < ρ2 in a
uniform gravitational field with gravity acceleration g = g(t ),
which, in general, can be a function of the time t . Fluids are
inviscid, incompressible, and immiscible.

If the interface is initially perfectly planar and in equilib-
rium, then the pressure on both sides of it will be the same:
p1 = p2 ≡ p0. When a perturbation ξ (x) is introduced at the
interface, so that any fluid particle at y = 0 is translated to
y = ξ (x) > 0, the hydrostatic pressure on the new position of
the interface changes in such a manner that it increases more
on the side of the denser fluid than on the side of the lighter
one. Therefore, the pressures on the interface new position
become

p′
1 = p0 + ρ1gξ p′

2 = p0 + ρ2gξ . (3)

Then, a pressure difference �p′ = p′
2 − p′

1 = (ρ2 − ρ1)gξ
arises on the interface, which tends to further deform it, so
driving the motion of the interface according to the Newton’s
second law:

d (mξ̇ )

dt
= (ρ2 − ρ1)gξ, (4)

where m is the total mass per unit area of both fluids that is par-
ticipating in the motion due to the perturbation evolution. In
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the linear regime (kξ � 1), the only significant characteristic
length of the problem is k−1 and, therefore, the total effective
mass (per unit area) involved in the motion is the one placed
within a distance of the order of k−1 from the interface:

m = m1 + m2 = ρ1

k
+ ρ2

k
. (5)

Introducing this expression into Eq. (4), we get:

ξ̈ = AT kgξ, (6)

which, as is well known, correctly describes the evolution of
the peaks and valleys in the linear regime provided that the
condition kξ � 1 is satisfied. Notice that such a condition is
only necessary for evaluating the amount of displaced mass
of the fluids during the motion of the interface. But the buoy-
ancy force FB (per unit area) is determined by the hydrostatic
pressure difference and it is always the force driving the insta-
bility at any time and independently of the magnitude of the
perturbation amplitude:

FB = (ρ2 − ρ1)gξ . (7)

Differently, the mass involved in the motion will change when
the condition kξ � 1 breaks, and the new characteristic length
ξ is introduced into problem and becomes also relevant.

B. Dimensional analysis

When the two lengths of the problem, k−1 and ξ , become
relevant, the characteristic distance l from the interface that
determines the mass participating in the motion, will be a
function of both of them: l = l (k, ξ ). Dimensional analysis
indicates that this functional relationship can be expressed in
dimensionless form as follows:

φ = φ(�) � = kξ, (8)

which leads to two possible characteristic lengths:

kls = φ(kξ )
lb
ξ

= φ(kξ ), (9)

where ξ can be either the amplitude of the spike or of the
bubble.

In the linear phase, when kξ � 1, the complete similarity
hypothesis demands that φ → const, and only l1 ∼ k−1 re-
mains significant. When kξ is not negligible, the hypothesis of
incomplete similarity [45] yields the following expressions:

kls = C1(kξ )α
lb
ξ

= C2(kξ )α. (10)

As it is well known, the power α cannot be determined by
dimensional analysis and it requires to resort to other means.
As we will see by using geometrical arguments, it must be
α = 1, so that:

ls = C1ξ lb = C2kξ 2, (11)

where C1,2 are constants to be determined by other methods.
The existence of two possible characteristic lengths deter-
mining the mass put in motion by the instability once the
system has overcome the linear regime, can be associated to
the asymmetric growth of peaks and valleys that gives place
to the rise of spikes and bubbles, respectively. Therefore, in

FIG. 2. Schematic of the early nonlinear evolution of a perturbed
interface between two fluids.

Eq. (11) and hereafter we distinguish the respective ampli-
tudes of the spike and the bubble with the subindexes “s”
and “b.” In particular, it is worth to notice that in the limit
kξ � 1, complete similarity indicates that the characteristic
length becomes l ∼ ξ , for both, spikes and bubbles. That is,
a transition between this value and the one given by Eq. (11)
must occur at some moment. The consequences of this will be
discussed later.

In order to shed more light on the meaning of these
characteristic lengths let us consider an idealized bubble in
2D geometry consisting in a long semicylinder of radius ξb

(Fig. 2). In this manner we estimate the volume Vb2 of the
denser fluid (per unit length) that is displaced by the motion
of the bubble, as Vb2 ∼ πξ 2

b . Since the area of the interface
per unit length is Ab2 ∼ λ, we have that the characteristic
length that sets up the mass put in motion by the bubble in
the nonlinear regime must be lNL

2b ∼ kξ 2
b .

In the case of the spike, instead, the volume Vs2 of the
denser fluid being displaced would be Vs2 ∼ ξλ, and since the
area is As2 ∼ λ, we have that the mass of the denser fluid is
mainly displaced vertically, in such a manner that it affects
the mass within a distance of the order of lNL

2s ∼ ξs.
It is interesting to notice that during the nonlinear phase in

which the bubble amplitude is still ξb < λ, mass conservation
requires that Vb2 ∼ Vs2 and, therefore, it is kξ 2

b ∼ ξs. That is,
if the spike is moving in free fall (ξs ∼ t2), then it turns out
ξb ∼ t , and the bubble velocity must saturate. Besides, we
also notice that the lateral motion of the bubble can only
takes place while ξb < λ, and later it can only move vertically
affecting the mass within a distance of the order of ξb from
the interface. Therefore, the previously mentioned transition
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in the motion has to occur when ξb ∼ λ and, after, spike and
bubble have to move in similar manner with ls,b ∼ ξs,b.

With these elements we can now extend the linear model
to the nonlinear regime.

C. Linear and nonlinear evolution

Let us first to consider the particular case of AT = 1. Then
the masses (per unit area) displaced by the spike and bubble,
respectively, in the nonlinear regime (and for ξb < λ) are as
follows:

mNL
s = ρ2lNL

s2 = C1ρ2ξs. (12)

mNL
b = ρ2lNL

b2 = C2ρ2kξ 2
b . (13)

Since in the linear regime these characteristic lengths are
lL
s2 = lL

b2 = k−1, we can describe both regimes together by
interpolating the two characteristic lengths. For more accuracy
in the transition region, but still keeping a relatively simple
expression, we adopt a quadratic interpolation for the spike:

ls2 = 1

k

√
1 + (C1kξs)2, (14)

while for the bubble a linear interpolation is seen to be
sufficient:

lb2 = 1

k
[1 + C2(kξb)2]. (15)

When the light medium is also present (AT < 1), we can
similarly consider that, in the bubble, the mass of light fluid
will mainly move vertically displacing the mass within the
characteristic length:

lb1 = 1

k

√
1 + (C1kξb)2, (16)

while, in the spike, the light fluid moves also laterally squeez-
ing it, so that the characteristic length accounting for the
displaced mass is as follows:

ls1 = 1

k
[1 + C2(kξs)2]. (17)

Then the total mass (per unit area) that participates in the
motion of the spike turns out:

ms = ρ1

k
[1 + C2(kξs)2] + ρ2

k

√
1 + (C1kξs)2, (18)

and the equation of motion in Eq. (4) is as follows:

d

dt

{[
ρ1

k
[1 + C2(kξs)2] + ρ2

k

√
1 + (C1kξs)2

]
ξ̇s

}

= (ρ2 − ρ1)g(t )ξs. (19)

In the same manner, the total mass (per unit area) partici-
pating in the motion of the bubble, reads:

mb = ρ2

k
[1 + C2(kξb)2] + ρ1

k

√
1 + (C1kξb)2, (20)

and the equation of motion for the bubble turns out:

d

dt

{[
ρ2

k
[1 + C2(kξb)2] + ρ1

k

√
1 + (C1kξb)2

]
ξ̇b

}

= (ρ2 − ρ1)g(t )ξb. (21)

As it can be seen, Eqs. (19) and (21) for ξs and ξb, respectively,
become the same if ρ1 and ρ2 are interchanged and g is
changed by −g. A property shared with Eqs. (1) and (2) for the
BDM. However, the present equations do not include any drag
force, consistently with the assumption of ideal fluids. Instead,
it involves variable masses when the system enters in the
nonlinear regime. Of course, a viscous drag term could also
be incorporated to consider situations with finite Reynolds
Re, provided that the function Cd = Cd (Re) is known. But,
certainly, it is not necessary when only inviscid fluids are
considered.

As we have already mentioned, the lateral motion of
the bubble cannot persists indefinitely and it must cease or
strongly slow down at a time t = tr when the bubble amplitude
is ξb ∼ λ. After this moment, the bubble motion will only
displace mass in the vertical direction, and the characteristic
length lNL

b2 will scale with the bubble amplitude ξb. At the same
time lNL

s1 will scale with ξs and a transition (reacceleration) in
the instability dynamics has to take place. For this, Eqs. (19)
and (21) must be modified for t > tr when ξb(tr ) ≈ λ. We will
come back on this point after analyzing the results of Eqs. (19)
and (21).

For the analysis, we ignore for now the above mentioned
transition for t > tr . Moreover, we consider the particular case
of constant gravity acceleration g. Then, we will write these
equations in dimensionless form by defining the following
dimensionless magnitudes:

zs,b = kξs,b; T = t
√

kg. (22)

Then, the evolution equations for the spike and bubble ampli-
tudes, respectively read:

d

dT

{[
(1 − AT )

(
1 + C2z2

s

)
+(1 + AT )

√
1 + (C1zs)2

]
żs

} = 2AT zs, (23)

d

dT

{[
(1 + AT )

(
1 + C2z2

b

)
+(1 − AT )

√
1 + (C1zb)2

]
żb

} = 2AT zb. (24)

First integrals can be easily obtained:[
(1 − AT )

(
1 + C2z2

s

) + (1 + AT )
√

1 + (C1zs)2
]2

ż2
s

= 4AT

{
(1 − AT )

[
z2

s − z2
0

2
+ C2

z4
s − z4

0

4

]

+ (1 + AT )

3C2
1

[
[1 + (C1zs)2]3/2 − [1 + (C1z0)2]3/2

]}
,

(25)[
(1 + AT )

(
1 + C2z2

b

) + (1 − AT )
√

1 + (C1zb)2
]2

ż2
b

= 4AT

{
(1 + AT )

[
z2

b − z2
0

2
+ C2

z4
b − z4

0

4

]

+ (1 − AT )

3C2
1

[
[1 + (C1zb)2]3/2 − [1 + (C1z0)2]3/2

]}
,

(26)
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where z0 = zs(t = 0) = zb(t = 0) is the dimensionless ini-
tial amplitude, and we have put as initial conditions that
żs(t = 0) = żb(t = 0) = 0.

D. Asymptotic behavior of spike and bubble

In the nonlinear regime it is zs,b � 1 and (ignoring reaccel-
eration transition) Eqs. (23) and (24) turns out:

d

dT

{[
(1 − AT )C2z2

s + (1 + AT )C1zs
]
żs

} = 2AT zs, (27)

d

dT

{[
(1 + AT )C2z2

b + (1 − AT )C1zb
]
żb

} = 2AT zb. (28)

These equations can be integrated analytically to yield for the
spike:

T

2
=

√
1 − AT

4AT
C2z2

s + 1 + AT

3AT
C1zs − (1 + AT )C1

3
√

AT (1 − AT )C2

× ln

⎡
⎢⎣

√
1−AT

4 C2zs + 1+AT
3 C1 −

√
1−AT

4 C2zs√
1+AT

3 C1

⎤
⎥⎦, (29)

and, for the bubble:

T

2
=

√
1 + AT

4AT
C2z2

b + 1 − AT

3AT
C1zb − (1 − AT )C1

3
√

AT (1 + AT )C2

× ln

⎡
⎢⎣

√
1+AT

4 C2zb + 1−AT
3 C1 −

√
1+AT

4 C2zb√
1−AT

3 C1

⎤
⎥⎦. (30)

In order to take the limit for zs � 1 in Eq. (29) we must
pay attention to the value of the Atwood number AT . For (1 −
AT )zs � 1, which excludes values of AT too close to 1, we
get:

zs =
√

AT

C2(1 − AT )
T, (31)

which agrees with the results of the potential theory by Gon-
charov [34] if we take C2 = 3/2. In the opposite case of AT

sufficiently close to one, it will be (1 − AT )zs � 1 even for
large values of zs. Then, we get:

zs = AT

3C1(1 + AT )
T 2, (32)

which returns the results for a free fall motion if we take C1 =
1/3. Then, hereafter, we will take these values for C1 and C2.

In a similar manner, by taking the limit zb � 1 in Eq. (30),
it yields the following result for arbitrary AT :

zb =
√

AT

C2(1 + AT )
T, (33)

which, again with C2 = 3/2, agrees with the results of
Refs. [34,35].

E. Comparison with the BDM

It is relevant to compare the results of the present model
(PM) with those provided by the BDM such as given by
Eqs. (1) and (2), since, although the issues discussed in

the Introduction, the BDM it is known to yield a correct
outcome because it has been constructed to fit the results
of experiments and numerical simulations and, therefore, it
can be considered as a good compilation of such results. For
this we have solved the ordinary differential equations for
the BDM [Eqs. (1) and (2)], and for the PM [Eqs. (25) and
(26)], respectively, by means of the commercial software
MATHEMATICA Computer Code [46].

In Fig. 3 we show the outputs of the present model together
with those of the BDM for the spike and bubble amplitudes,
for three values of the Atwood number: AT = 1, 0.5, and 0.1
and for three values of the dimensionless initial amplitude:
z0 = 0.01, 0.1, and 1. The present model produces essentially
the same results as the BDM.

To better quantify the differences we have plotted in Fig. 4
the ratio of the amplitudes given by the PM and the BDM
for AT = 1 and AT = 0.1. The case for AT = 1, in Fig. 4(a),
is the one presenting the largest difference for the largest
initial amplitude z0 = 1. Nevertheless, it is always less that
18% and it occurs for the intermediate times due the different
procedures for matching the linear and the nonlinear regimes
adopted in each model. The difference reduces to less than 8%
for AT = 0.1 in Fig. 4(b), and once again, it happens for the
intermediate times but, in this case, for the smallest amplitude.

In Fig. 5 we have represented the spike and bubble velocity
evolutions corresponding to the amplitudes shown in Fig. 3.

The present model shows that the saturation of the bubble
velocity for any AT occurs as a consequence of the preva-
lence of the denser fluid mass displaced laterally during the
bubble evolution, which increases with time. And for AT < 1,
the spike velocity also saturates because the lateral displace-
ment of the light fluid gets the control of the dynamics. Of
course, the lighter fluid is absent for AT = 1 and, therefore,
the spike velocity does not saturate.

However, as we have previously mentioned, the lateral
displacement of the denser fluid due to the bubble motion,
cannot persist after the bubble have achieved an amplitude ξb

of the order of λ. In fact, the widening of the bubble implies
the narrowing of the spike and so, mass conservation imposes
that spike amplitude tends to infinity when the bubble wide
tends to λ [47]. Such a condition must also limit the potential
models like the one in Ref. [34]. This limitation is also very
evident in the theory by Ott [48] for the nonlinear RTI in a thin
layer. Therefore, for ξb > λ, mass displacement by the bubble
and by the spike can only happens in the vertical direction
affecting the mass within a characteristic distance ls,b ∼ ξs,b,
for the spike and the bubble, respectively. A schematic picture
of the evolution of the characteristic length for the bubble is
shown in Fig. 6.

Then, under the present physical picture, Eqs. (19) and
(21) cannot be used after the time tr when ξb(tr ) ≈ λ. In this
manner a natural explanation for the reacceleration process
arises that is independent of the vorticity generation by the
accompanying KHI, which indeed, must be absent for AT = 1
when reacceleration should still occur, such as it has been
inferred from recent numerical simulations [37], provided that
the fluid is inviscid (infinite Reynolds number). Instead, reac-
celeration is shown here to be a consequence of the reduction
of mass involved in the motion during the instability evolution
for t > tr
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FIG. 3. Spike and bubble amplitude evolutions. Comparison of
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III. SPIKE AND BUBBLE REACCELERATION

When t = tr the bubble amplitude is ξb ≈ λ, the new added
mass of denser fluid mb2 participating in the bubble motion
scales like 2πC2ξbρ2, and the mass of lighter fluid ms1 corre-
sponding to the spike motion scales like C1ξsρ1. The added
masses of light and dense fluids that are put in motion by
the bubble and the spike, respectively, remain without change
because they cannot be further reduced. Then, since it occurs
in the nonlinear phase, we neglect the initial linear phase, and
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the total masses turns out:

ms = (2πC2ρ1 + C1ρ2)ξs; mb = (2πC2ρ2 + C1ρ1)ξb. (34)

Then the resulting equations of motion in dimensionless form,
and for T > Tr [zb(Tr ) = zbr = 2π and zs(Tr ) = zsr], are as
follows:

d

dT
(Cs3zsżs) = AT zs, (35)

d

dT
(Cb3zbżb) = AT zb, (36)

where

Cs3 = 1 + AT

2
C1 + 2π

1 − AT

2
C2, (37)

Cb3 = 1 − AT

2
C1 + 2π

1 + AT

2
C2. (38)

These equations admit a first integral:

zsżs =
√

2AT

3Cs3

(
z3

s − z3
sr

) + z2
sr ż2

sr, (39)

zbżb =
√

2AT

3Cb3

(
z3

b − z3
br

) + z2
br ż2

br, (40)

where żsr = żs(Tr ) and żbr = żb(Tr ). Asymptotically, zs,b �
zsr,br , and we get:

zs ≈ AT

6Cs3
T 2; zb ≈ AT

6Cb3
T 2. (41)

In particular, for AT = 1, it is Cs3 = C1 = 1/3 and Cb3 =
2πC2 = 3π and both, spike and bubble velocities, grow lin-
early with time (for T > Tr). The dynamics of the spike is
not changed in this case and it grows asymptotically at the
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FIG. 7. Spike and bubble amplitudes with and without reacceler-
ation. (a) AT = 1, (b) AT = 0.5.

same rate as with no bubble reacceleration. But the bubble,
which had achieved a constant velocity at T = Tr (saturation),
is reaccelerated at later times.

For AT < 1, when the spike velocity also saturates, it is
also reaccelerated at T = Tr but with an acceleration, in gen-
eral, different than that of the bubble. For AT � 1, it becomes
Cs3 ≈ Cb3 and spikes and bubbles are reaccelerated at the
same rate.

In Fig. 7 we have represented the spike and bubble am-
plitude evolutions for two values of AT with and without
reacceleration. For AT = 1 in Fig. 7(a), spike evolution is not
modified but the bubble velocity increases at T = Tr . And for
AT = 0.5, in Fig. 7(b) both are reaccelerated. Figure 8 shows
the corresponding velocities.
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FIG. 8. Spike and bubble velocities with and without reaccelera-
tion. (a) AT = 1, (b) AT = 0.5.

We want to remark that in the present physical picture,
reacceleration appears as a consequence of the transition un-
dergone by the bubble dynamics when ξb ≈ λ and it has to
stop or strongly slow down its lateral motion. This is a process
independent of the vorticity generated by the KHI which nec-
essarily happens only for AT < 1, and is consistent with the
observation by Wilkinson and Jacob [39] about the absence
of reacceleration in the Waddell et al. [43] experiments for
low Atwood numbers, although the evident presence of vor-
tices created by the shear produced by the spike penetration
into the lighter fluid. Such results are in agreement with the
longer time required for the bubble to achieve an amplitude
ξb ≈ λ, which could also have undergone an extra delay by
the presence of viscosity [37,49].
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IV. TWO-DIMENSIONAL NUMERICAL
SIMULATIONS FOR AT = 1

In order to compare with the results of the present model,
we have performed a series of 2D numerical simulations with
the explicit version of the finite-element code ABAQUS [50].

For this, following Ref. [51] we have considered a plate of
thickness h = 4λ so that it would behave as an infinite plate
at least until the bubble amplitude achieves a value ξb ∼ 2λ.
Then, the plate was meshed with 40 × 160 2D continuum
four node bilinear elements with reduced integration and hour-
glassing control.

We consider an aluminium plate of density ρ = 2700
kg/m3 in a uniform and constant gravitational field g = 107

m/s2. The plate material does not have constitutive properties
so that it is treated as an ideal medium (the deviatoric part
of the stress tensor is equal to zero). For the equation of
state, the Mie-Grüneisen equation has been adopted with a
Grüneisen coefficient 
 = ρ0
0/ρ (
0 is a material param-
eter). For expressing the Hugoniot of the medium, we have
taken the usual linear relationship between the shock velocity
vs and the particle velocity vp:

vs = c′
0 + svp, (42)

p − ph = ρ0
0(ε − εh), (43)

where “h” denotes the Hugoniot reference state and ε is the
specific internal energy. The constants c′

0 and s are character-
istic parameters of the material. For the present case in which
the medium is aluminum we have 
0 = 2.16), s = 1.337. In
order to assure incompressible perturbations (δρ/ρ � 1) we
require that c′

0 ∼ cs � √
g/k and, for this, we have taken

c′
0 ∼ 10c0 (c0 = 5380 m/s is the sound speed).

There is a uniform pressure p0 = ρgh at the bottom of the
plate and the instability is seeded with an initial sinusoidal
perturbation ξ0 sin kx applied at such a surface, and its ampli-
tude decreases linearly toward top of the plate.

In Fig. 9 we show the results for the spike and bubble am-
plitude evolutions for two different initial amplitudes and their
corresponding wavelengths in order to have kξ0 = 0.01 and
kξ0 = 0.5 in Figs. 8(a) and 8(b), respectively. To prevent the
premature calculation termination as a result of severe mesh
distortion, an arbitrary Lagrangian-Eulerian adaptive meshing
technique has been applied to the bubble zone, remaining
the spike zone under a Lagrangian description to deform
into the vacuum. Nevertheless, calculation stops when ξb ∼ λ

and the mesh in the spikes becomes too distorted, making
the region ξb > λ inaccesible to our numerical calculations.
As a consequence, bubble reacceleration cannot be observed.
However, for ξb � λ model and simulations are in excellent
agreement.

In Fig. 10 we have represented the spike and bubble veloc-
ities as a function of time for the same cases as in Fig. 9. They
turns out to be somewhat noisy but, in average the simulations
results agree with the theoretical model.

Unfortunately, ABAQUS code seems to be not suitable for
following the spike and bubble evolutions at longer times. In
addition, it is neither appropriate for situations with AT < 1 in
which the KHI is present, thus submitting the mesh to strong
deformations that force to stop the calculation at rather early
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FIG. 9. Spike and bubble amplitudes evolution for AT = 1 given
by the present model (full lines) and 2D numerical simulations (dots)
for (a) kξ0 = 0.01 and (b) kξ0 = 0.5.

times in the nonlinear regime. Therefore, a direct numeri-
cal simulation study to observe the bubble reacceleration for
AT = 1, such as it has been inferred in Ref. [37], and it is also
suggested by the present theory, remains still missing.

V. DISCUSSION AND CONCLUDING REMARKS

We have constructed an analytical model based on the
Newton’s second law, for the single mode, 2D RTI in inviscid,
incompressible and immiscible ideal fluids, that extends a pre-
vious linear theory for the linear regime. To this end, we have
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FIG. 10. Spike and bubble velocities evolution for AT = 1 given
by the present model (full lines) and 2D numerical simulations (dots)
for (a) kξ0 = 0.01 and (b) kξ0 = 0.5.

considered on the basis of dimensional analysis and physical
arguments that, in the nonlinear regime, the masses of both
fluids involved in the motion during the amplitude growth,
changes as the perturbation evolves.

This consideration includes the mass displaced laterally
while the bubble widens and the spike narrows in the ear-
liest stage of the nonlinear regime. Such a feature leads to
the saturation of the bubble velocity for any value of the
Atwood number AT , and also to the spike velocity saturation
for AT < 1 while the dynamics is controlled by such laterally
displaced mass. Thus, velocity saturation occurs without the

necessity to introduce any drag force which, on the other hand,
is inconsistent with the inviscid fluids assumption. However,
this early stage cannot persists for a long time, since the lateral
dimension of the spike plus the bubble, included the mass it
desplaces, is limited to the size of a wavelength.

Therefore, for ξb > λ there is a second phase of growth
dominated by the vertical displacement of the mass partici-
pating in the motion in which the new added mass is less in
comparison with the previous phase, thus leading to the in-
crease of the perturbation velocity. This reacceleration phase
takes place independently of the vorticity generated by the
onset of the KHI which, in any case, would be unable to
accelerate the perturbation growth because it is the penetration
of the spike into the lighter fluid what produces the shear caus-
ing the vortices. Not in other way around as it seems to suggest
the KHI arguments about vortices powering the perturbation
growth that is often given to explain reacceleration.

The physical picture we are presenting for the reacceler-
ation process is consistent with its absence when the bubble
amplitude ξb has not yet achieved a magnitude of the order of
λ and yet, there is a clear presence of vortices generated by
KHI [39,43]. An it is also consistent with the observation that
bubble reacceleration must also occur for AT = 1 in inviscid
media [37]. Nevertheless, KHI could perhaps be responsible
for other effects observed in numerical simulations, like the
velocity oscillations during the reacceleration phase, provided
that such oscillations are not related to the necessary limi-
tations in the computational domain, which may need to be
considerably larger than the region affected by the instability.
Such a region remains constant in the linear phase and of the
order of k−1, but in the nonlinear regime, it will grow with the
perturbation amplitude.

Furthermore, it is improbable that the potential theories can
describe the transition taking place when ξb ≈ λ because they
deal with the perturbations and conservation equations in the
region near the tip of the bubble. Therefore, the limitation in
the bubble lateral motion may not be captured. Such a limit,
however, is clearly seen in the theories of Refs. [47,48].

The effects of the viscosity are not included in the present
theory. It could probably be considered in a similar manner
as it is done with the drag force in the BDM, provided that it
is accepted that viscous drag in the present 2D problem can
be in some way assimilated to the problem of a solid body
penetrating into a fluid, or to the problem of a single rising
bubble [52]. Even though, the general dependence of the drag
coefficient Cd on the Reynolds number Re should be taken
into account in order to reflect the behavior at the different
velocities in the linear and the nonlinear regimes. Indications
in this sense are found in Ref. [44] where for the linear regime,
corresponding to the lowest velocities, the drag force Fd (per
unit area) was found to be Fd = 2μkξ̇ , and the drag coefficient
is Cd = 2Fd/ρξ̇ 2 = 8π/Re, where Re = ρξ̇λ/μ and μ is the
dynamic viscosity.

Instead, for high Reynolds numbers, Cd , experiments with
solid bodies and with single rising bubbles show that Cd

becomes practically independent of Re. This result is also
supported by dimensional analysis, since complete similarity
yields Cd = φ(Re) and, for Re � 1, φ(Re) must tend to a
nonzero constant. Therefore, even at Re = 30000 as consid-
ered in Ref. [37] it is still present a drag force that affects the
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dynamics of the bubble. Such a behavior is known to persist
for a wide range of Re (100 < Re < 105) with little variation
of the Cd value. As a consequence, Re > 105–106 may be nec-
essary to observe the fluid behaving as inviscid, thus requiring
very high resolutions in the numerical simulations in order to
achieve the inviscid fluid regime.

On the other hand, different to the BDM case, an extension
to 3D may require something else than a change in the values
of the fitting constants. In fact, the present theory suggests a
different scaling for the characteristic length that determines
the mass involved in its motion in the regime ξb < λ.

Besides, it is noticed that the theory can be applied to arbi-
trary time evolutions of the gravity acceleration. In particular,
it can be easily used for the case of an impulsive acceleration
in order to model the Richtmyer-Meshkov instability.

Finally, it may be worth to mention that the present phys-
ical picture is also consistent with the absence of saturation
in the bubble velocity in solid media observed in Ref. [51],
in which the elastic-plastic lateral forces prevent the bubble
formation, thus considerably extending the phase of exponen-
tial growth until the perturbation wavelength amplitude stops
being the only relevant characteristic length.
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