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The Maxwell-Calladine index theorem plays a central role in our current understanding of the mechanical
rigidity of discrete materials. By considering the geometric constraints each material component imposes on a set
of underlying degrees of freedom, the theorem relates the emergence of rigidity to constraint counting arguments.
However, the Maxwell-Calladine paradigm is significantly limited—its exclusive reliance on the geometric
relationships between constraints and degrees of freedom completely neglects the actual energetic costs of de-
forming individual components. To address this limitation, we derive a generalization of the Maxwell-Calladine
index theorem based on susceptibilities that naturally incorporate local energetic properties such as stiffness and
prestress. Using this extended framework, we investigate how local energetics modify the classical constraint
counting picture to capture the relationship between deformations and external forces. We then combine this
formalism with group representation theory to design mechanical metamaterials where differences in symmetry
between local energy costs and structural geometry are exploited to control responses to external forces.
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I. INTRODUCTION

Mechanical rigidity in discrete materials is an emergent
property that arises from complex interactions between ma-
terial components. In such systems, the total elastic energy is
a sum of the local energy costs of deforming each discrete
component. While each local cost is a function of a compo-
nent’s shape, the component shapes themselves are typically
parameterized by a shared set of underlying degrees of free-
dom, allowing for collective interactions. For example, in a
central-force spring network, where stretching or compressing
individual springs incurs an energetic cost, changes in spring
length are described by the relative displacements of the
network’s nodes.

Within such a description, solving for the elastic response
can be naturally viewed through the lens of constrained
optimization—the energetic cost of deforming each compo-
nent from its minimum energy configuration imposes a soft
constraint on the degrees of freedom. Intuitively, rigidity
emerges if a system is constrained enough that the degrees of
freedom can no longer respond to external perturbations with-
out an increase in energy. However, formalizing this intuition
into a general theory of rigidity for discrete systems remains
an open problem.

As implementations of this idea, Maxwell’s rule for
rigidity [1] and its successor, the Maxwell-Calladine index
theorem [2,3], represent important milestones in our under-
standing of rigidity. In any system well-approximated by a
spring network, the Maxwell-Calladine theorem reduces the
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assessment of linear stability to an exercise in counting con-
straints and degrees of freedom. Originally developed in the
context of mechanical frame assemblies, this constraint count-
ing argument is central to theories of mechanical stability for
a variety of systems including structural glasses [4,5], jammed
packings of spheres [6–8], and biopolymer networks [9], and
has even been extended to systems with more complicated
interactions such as bond-bending dominated networks [10].
Furthermore, this index theorem has played a crucial role in
the development of mechanical metamaterials with topologi-
cally protected boundary modes, analogous to those observed
in electronic quantum systems [11,12].

Despite the considerable insights they yield, con-
straint counting arguments based on the Maxwell-Calladine
paradigm are fundamentally incomplete. Because they rely
exclusively on the linear geometric relationships between the
component shapes and degrees of freedom, they fail to capture
rigidity in instances where local energetic properties—such as
stiffness and prestress—or nonlinearities in the geometry play
an important role. In particular, they cannot account for the
stabilizing effects of prestress, which interacts with nonlinear
aspects of the geometry to affect the material response even
in the linear regime [13–15]. Because this phenomenon is
a basic feature of materials throughout structural engineer-
ing, physics, and biology [16], a general theory of rigidity
that incorporates prestress could prove invaluable. To this
end, various alternative rigidity criteria have been proposed
[14,16–18]. However, these criteria do not explicitly take into
consideration the precise details of the energetic properties,
but instead take an indirect approach, focusing on the second-
order features of the geometry that can interact with prestress
under the right circumstances.
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Here, we propose a description of mechanical rigidity in
general discrete systems based on the susceptibility to ex-
ternal perturbations. By considering the elastic responses of
both the discrete components and their underlying degrees
of freedom to their respective conjugate external forces, we
derive a generalization of the Maxwell-Calladine index the-
orem that naturally incorporates energetic properties. Under
this framework, we show that the collective modes of the orig-
inal Maxwell-Calladine picture—linear zero modes (LZMs)
and states of self-stress (SSSs)—are each related to specific
types of external perturbations, which we call linear zero-
extension forces (LZEFs) and zero-displacement tensions
(ZDTs). Combining this formalism with classic results from
group representation theory, we explore how different aspects
of a material’s symmetry can dictate the relationship between
these different types of modes. Using simple examples, we
then demonstrate how this relationship may be exploited to
design metamaterials with specific responses to external per-
turbations, focusing on materials where local energy costs
break or preserve symmetries in the geometry.

A. Organization of paper

In Sec. II, we start by introducing the theoretical back-
ground we will use to explore elasticity in discrete materials
and provide a brief derivation of the classic Maxwell-
Calladine index theorem. In Sec. III, we introduce a set of
elastic susceptibilities describing responses to different types
of external perturbations and explore the taxonomy of their
collective mode structures. In Sec. IV, we use these suscep-
tibilities to derive a generalization of Maxwell-Calladine that
includes energetic properties like stiffness and prestress. In
Sec. V, we explore the relationships between the modes of the
classic Maxwell-Calladine index theorem and our generalized
version and formalize this relationship as a mathematical the-
orem. In Sec. VI, we use group representation theory to prove
a second theorem describing how symmetry affects the rela-
tionships between these modes. We then apply these results
to provide simple examples where prestress is used to control
responses to external forces by manipulating symmetry. Fi-
nally, in Sec. VII, we conclude and discuss the implications
of our results for understanding and designing mechanical
metamaterials.

II. ELASTICITY THEORY FOR DISCRETE MATERIALS

In this section, we introduce the basic concepts and formal-
ism we will use in the remainder of the paper. We consider a
mechanical system consisting of Nc discrete components, each
with size �α ({ui}) (α = 1, . . . , Nc), parameterized in terms of
Ndof degrees of freedom ui (i = 1, . . . , Ndof ). For convenience,
we organize these quantities into the vectors �� and �u, respec-
tively. To evoke a concrete image, we will often discuss these
quantities in the context of central-force spring networks in
which the degrees of freedom are associated with the nodes,
while the components are the springs, or bonds, defined by
the edges of the network. For such a spring network with n
nodes in d dimensions, �u is a dn-dimensional vector of node
displacements, while �� is a Nc-dimensional vector of bond

lengths. Accordingly, we often refer to �u and �� as generalized
“node displacements” and “bond lengths,” respectively.

Beyond central-force spring networks [3], a broad range
of systems in soft matter and biological physics may be
cast in the above form. For example, in vertex models of
biological tissues the generalized lengths �� may refer to the
areas and perimeters of cells in a two-dimensional epithelial
tissue, or the cell volumes, surface areas, and edge lengths in
a more general three-dimensional tissue [19]. Alternatively,
the discrete components do not need to correspond to phys-
ical objects, but instead may be abstract in nature. Such
examples include the lengths of bonds between neighbor-
ing particles in a jammed packing [8], the angles associated
with bond-bending costs between adjacent fiber segments in
a biopolymer network [9], or the angles between connected
facets in an origami structure [20]. Similarly, the displace-
ments �u may describe the change in any type degree of
freedom from a system’s ground state, such as the orienta-
tional angles of particles that lack spherical symmetry like in
jammed packings of elliptical particles [21,22].

A. Energy and external perturbations

We now write down the generalized Hamiltonian for these
discrete materials. Defining �u = 0 as the system’s ground
state in the absence of external perturbations, we measure
changes in length via a set of generalized “bond extensions,”
δ��(�u) ≡ ��(�u) − ��0, where ��0 ≡ ��(0) are the “equilibrium
lengths” of the bonds in the ground state.

At zero temperature, we consider the Hamiltonian

H(�u) = E [��(�u)] + λ

2
‖�u‖2 − �f · �u − �t · δ��(�u), (1)

where the elastic energy E (��(�u)) is expressed as a sum of the
energetic costs of deforming each bond α,

E [��(�u)] =
∑

α

Vα[�α (�u); �∗
α]. (2)

We introduce two externally applied generalized forces, �f and
�t, conjugate to the displacements �u and bond lengths δ��(�u),
respectively. By convention, we will often refer to �f as the
external force and �t as the external tension. In general, we will
be interested in linear response theory where these external
perturbations are small.

We also add a small harmonic regularization term pro-
portional to λ which penalizes large displacements. This
regularization serves as a convenient bookkeeping tool to keep
track of deformations with no energetic cost (i.e., mechanisms
or zero-energy modes). We will eventually be interested in the
limit λ → 0 where this term becomes negligible.

By convention, we define the rest length �∗
α for each bond

such that Vα (�∗
α; �∗

α ) = 0 (in general, �∗
α may differ from �0,α).

For example, in a harmonic spring network, the potentials take
the form Vα[�α (�u); �∗

α] = 1
2 kα[�α (�u) − �∗

α]2 where kα is the
stiffness of bond α.

To determine the elastic response, we minimize Eq. (1)
with respect to the displacements by setting its gradient
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FIG. 1. Local energetic properties, external perturbations, and elastic responses. The linear elastic properties are shown for a simple
central-force spring network. (a) The stiffnesses of the bonds kα (top), represented by line thickness, characterize their compressibility, while
the prestresses tps

α (bottom), characterize any geometric frustration that arises when bonds are stretched or compressed in the ground state
configuration. Green arrows indicate the prestress tension exerted by each bond on the rest of the network. (b) From the perspective of the
nodes, external forces �fi (top) result in displacements �ui (bottom). The notation �ui and �fi represent the d-dimensional vectors of displacements
and forces associated with each node i for a network in d dimensions. (c) From the perspective of the bonds, the external forces on the nodes
are equivalent to external bond tensions tα (top), while node displacements correspond to bond extensions δ�α (bottom) indicated by the color
scale. (d) The network contains a state of self-stress (top) [identical to the prestress in panel (a)] composed of external tensions that result in
no net forces on the nodes, along with a linear zero mode (bottom) composed of displacements do result in zero extension of the bonds.

to zero,

0 = ∂H(�u)

∂ui
, (3)

and then solve the resulting equations for the
displacements �u.

B. Local energetic properties in the linear regime

In the linear regime, the elastic energy [Eq. (2)] close to the
ground state is characterized by the Hessian matrix

Hi j = ∂2E

∂ui∂u j
=

∑
αβ

∂�α

∂ui

∂2E

∂�α∂�β

∂�β

∂u j
+

∑
α

∂E

∂�α

∂2�α

∂ui∂u j
.

(4)

In matrix form, we will use the notation

H = CT KC + T, (5)

where we introduce the compatibility matrix C (or alterna-
tively, the equilibrium matrix CT ) and prestress matrix T with
elements

Cαi = ∂�α

∂ui
, (6)

Ti j =
∑

α

tps
α

∂2�α

∂ui∂u j
. (7)

We also define the prestress vector �tps and stiffness matrix K,

tps
α = ∂E

∂�α

= V ′
α, (8)

Kαβ = ∂2E

∂�α∂�β

= V ′′
α δαβ = kαδαβ. (9)

These two quantities encode the system’s local energetic prop-
erties in the linear regime. While the stiffness kα describes
the energetic cost of deforming bond α, the prestress tps

α de-
scribes any frustration arising due to incompatibility between
a bond’s rest length and its equilibrium length in the system’s
global ground state (�∗

α �= �0,α). As an example, in a harmonic
spring network, prestress takes the form tps

α = kα (�0,α − �∗
α ).

We note that all the above quantities are evaluated at the
system’s ground state, �u = 0.

In Fig. 1(a), we demonstrate possible values of the stiff-
ness and prestress for a simple central-force harmonic spring
network. To achieve the prestress depicted in this ground state
configuration, we assign incompatible rest lengths to bonds
1–6 so that the four outer bonds (1–4) are compressed in the
ground state, �0,α < �∗

α , while the two diagonal bonds (5 and
6) are stretched, �0,α > �∗

α . This creates frustration that cannot
be relaxed away by moving the nodes.

C. Node space and bond space perspectives

In general, it is helpful to think about the linear response
in two different spaces, node space (degrees of freedom)
and bond space (components or constraints). In node space,
applying a set of forces �f to the nodes results in a set of
displacements �u. An example of this is shown in Fig. 1(b),
where external applied forces (top) result in displacements
of the nodes (bottom). Alternatively, we can think about how
these quantities in node space correspond to their counterparts
in bond space, tensions, and extensions. Fig. 1(c) depicts a
set of bond tensions �t (top) that result in the same set of
displacements as the forces in Fig. 1(b), along with the bond
extensions δ�� (bottom) resulting from those displacements.
Intuitively, it is clear that every set of external tensions is
equivalent to some set of external forces, while each set of
displacements results in a set of bond extensions.
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In the linear regime, the correspondence between quantities
in node space and bond space is provided by the compatibility
matrix C via the relations

δ�� = C�u, �f = CT�t. (10)

The first relation between the extensions and displacements is
simply a result of the chain rule. The second relation between
external tensions and forces requires a slightly more subtle
argument. Expanding the tension term in Eq. (1) to linear
order in �u, we get

�t · δ��(�u) ≈
∑

i

�t · ∂��
∂ui

∣∣∣∣∣
�u=0

ui = (CT�t) · �u. (11)

Comparing this expression with the force term in Eq. (1), �f ·
�u, we see that applying an external tension �t to the bonds is
equivalent to applying a force �f = CT�t to the nodes.

D. Simplest case: Zero prestress with uniform stiffness

Throughout this paper, it will be instructive to examine
the elastic response in the particularly simple case of zero
prestress �tps = 0 with uniform unit bond stiffness K = I. It
is within this setting that the Maxwell-Calladine framework is
typically derived [3]. In this special case, the Hessian [Eq. (5)]
attains the simple form

H = CT C. (12)

Essentially, when the energetic properties are trivial, the Hes-
sian contains the same information as the compatibility matrix
C. In other words, deformations are completely characterized
by the system’s geometry encoded in C. However, in more
general situations—such as in the presence of prestress or het-
erogeneous bond stiffnesses—the Hessian and its associated
elastic response will also depend on the precise details of the
energetic properties encoded in K and �tps.

E. Maxwell-Calladine index theorem

We now present a brief derivation of the classic Maxwell-
Calladine index theorem with an eye to generalizing it to
include prestress and heterogeneous bond stiffness. In the
Maxwell-Calladine framework, a central role is played by
the compatibility matrix C. The compatibility matrix relates
quantities that reside in the Nc-dimensional bond space to
those that live in the Ndof -dimensional node space. According
to Eq. (10), C is formally a linear map from displacements
in node space �u to extensions in bond space ��, while CT is
a linear map from tensions �t in bond space to forces in node
space �f .

Applying rank-nullity theorem, we can express the dimen-
sion of the domain of each operator as the sum of its rank plus
the dimension of its kernel (right null space). According to
Eq. (10), the kernel of C is composed of linear zero modes
(LZMs), or displacements that do not extend or compress the
bonds to linear order. Thus, we have

Ndof = rank(C) + #LZMs. (13)

Analogously, the kernel of CT is composed of states of self-
stress (SSSs), or tensions that balance to create zero net forces

on the nodes, and we have

Nc = rank(CT ) + #SSSs. (14)

Because C and CT are transposes of one another, their ranks
are equal. Using this observation, we subtract the second
equation from the first, yielding the Maxwell-Calladine index
theorem,

Ndof − Nc = #LZMs − #SSSs, (15)

which relates the difference in the number of degrees of free-
dom and constraints to the difference in the number of LZMs
and SSSs. Based on Eq. (15), one concludes a system is rigid
to first order when the number of LZMs is zero (excluding
global translations and rotations, if applicable).

As an illustration, we analyze the rigidity of the network in
Fig. 1, which has six nodes in two dimensions for a total of
Ndof = 12 degrees of freedom and Nc = 9 bonds that impose
constraints on the system. This network also has one SSS,
shown in the top of Fig. 1(d), which happens to be identical
to the prestress in Fig. 1(b) (the prestress �tps is always a
SSS since in the ground state 0 = ∂E/∂ �u = CT�tps). Solving
Eq. (15), we find that this network should have four LZMs.
Since two of these modes correspond to global translations
along the x and y axes and one to a global rotation, there must
be one additional LZM, shown in the bottom of Fig. 1(d).
Thus, we conclude that the system is not rigid to first order.

III. ELASTIC SUSCEPTIBILITIES

The derivation of Maxwell-Calladine is based exclusively
on the geometry encoded in the compatibility matrix C, ig-
noring prestress and stiffness. To incorporate these energetic
properties and derive a generalized index theorem, it is nec-
essary to assess a system’s rigidity directly via its response
to external perturbations, rather than indirectly through the
geometry. The response of a discrete material can be char-
acterized by four distinct susceptibility matrices that measure
how displacements and extensions respond to externally ap-
plied forces and tensions. These susceptibilities play a central
role in what follows and are the key physical objects necessary
to generalize the Maxwell-Calladine framework to include
energetics.

A. Definitions and expressions for susceptibilities

The natural objects of all linear response theories are
susceptibilities that characterize how the system responds to
external perturbations. As hinted by our choice of Hamilto-
nian in Eq. (1), we will focus on the response of the system
to the application of external forces �f and tensions �t. The
response can be characterized either in terms of the displace-
ments �u or extensions δ��. This results in four distinct yet
related matrix susceptibilities:[

∂ �u
∂�f

]
i j

= ∂ui

∂ f j
,

[
∂ �u
∂�t

]
iβ

= ∂ui

∂tβ
,

[
∂��
∂�f

]
α j

= ∂�α

∂ f j
,

[
∂��
∂�t

]
αβ

= ∂�α

∂tβ
. (16)
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It will be helpful to subdivide these four susceptibilities into
the two square “diagonal” susceptibilities, ∂ �u/∂�f and ∂��/∂�t,
which map between spaces of the same dimensions, and
the two rectangular “off-diagonal” susceptibilities, ∂ �u/∂�t and
∂��/∂�f , that map between spaces of different dimensions.

To derive explicit expressions for these susceptibilities, we
assume that we are looking at perturbations of stable mini-
mum energy configurations so that the Hessian H is positive
semidefinite. We differentiate the Ndof equations of Eq. (3)
with respect to f j and solve the resulting matrix equations to
obtain an explicit expression for ∂ �u/∂�f . The other suscepti-
bilities are then derived from ∂ �u/∂�f using the chain rule. As
shown in Appendix A, in the limit λ → 0, the four suscepti-
bilities are

∂ �u
∂�f = H+ + 1

λ
PZEM

H ,
∂ �u
∂�t = ∂ �u

∂�f CT ,

∂��
∂�f = C

∂ �u
∂�f ,

∂��
∂�t = C

∂ �u
∂�f CT , (17)

where H+ is the Moore-Penrose inverse, or pseudoinverse, of
the Hessian and PZEM

H = I − HH+ is an orthogonal projector
onto its kernel, containing the zero-energy modes (ZEMs)
of the Hessian. As a reminder, the pseudoinverse provides a
generalization of matrix inverses to singular or rectangular
matrices by only inverting the nonsingular part of a matrix
(see Appendix A 2 for a detailed definition).

B. Susceptibilities as maps between vector spaces

In our formalism, a privileged role is played by the di-
agonal susceptibility ∂ �u/∂�f . Physically, ∂ �u/∂�f is linear map
from external forces to the resulting displacements of the
nodes. To gain intuition about this susceptibility, it is helpful
to examine the explicit expression for ∂ �u/∂�f in Eq. (17).
The expression is composed of two parts: the pseudoinverse
of the Hessian H+ and the projection operator PZEM

H . The
pseudoinverse H+ simply describes harmonic motion of the
degrees of freedom around their minimum energy positions
in rigid directions (i.e., directions in which the Hessian has
nonzero eigenvalues). In contrast, the projection operator
PZEM

H describes motions resulting from exciting modes that
cost zero energy (i.e., eigenmodes of the Hessian with eigen-
values of zero). Furthermore, notice that the projector term is
proportional to λ−1. Thus, in the physical limit without regu-
larization, λ → 0, forces that excite these zero-energy modes
result in unconstrained displacements with magnitudes that
diverge as λ−1.

More generally, the four susceptibilities in Eq. (17) com-
bine with C and CT to form a set of linear operators that can
be composed to map either type of external perturbation (�f or
�t) to either type of deformation (�u or δ��). We illustrate their
relationships graphically in Fig. 2. According to Eq. (10), C
relates deformations in node space (displacements) to those in
bond space (extensions), and CT relates external perturbations
in bond space (tensions) to those in node space (forces). In
contrast, the susceptibilities always relate external perturba-
tions to deformations. In this picture, C, CT , and ∂ �u/∂�f can
be viewed as a set of “fundamental” operators (shown with

FIG. 2. Susceptibilities and their relationships as maps between
vector spaces. The four susceptibilities, the compatibility matrix, and
its transpose provide maps between forces, tensions, displacements,
and extensions. While, C and CT map between node space (degrees
of freedom) (top row) and bond space (components/constraints)
(bottom row), the susceptibilities map external perturbations (left
column) to deformation responses (right column). Arrows indicate
the direction of each map with dashed arrows representing operators
that are compositions of other operators.

solid arrows) whose compositions give rise to the remaining
three susceptibilities (shown with dashed arrows).

C. Collective mode taxonomy

Just as the original Maxwell-Calladine theorem relates col-
lective modes in the kernels of C and CT , our generalized
index theorem will relate modes in the kernels of ∂ �u/∂�t and
∂��/∂�f . For this reason, it is worth briefly summarizing our
nomenclature for these collective modes, as well as their
physical meanings. As discussed earlier in the context of
the Maxwell-Calladine theorem, the spaces spanned by the
kernels of C and CT are usually referred to as linear zero
modes (LZMs) and states of self-stress (SSS), respectively.
The Maxwell-Calladine theorem relates the dimensions of
these two spaces to the number of degrees of freedom and
constraints.

In our generalized mode taxonomy, an analogous role will
be played by the modes that span the kernels of ∂ �u/∂�t and
∂��/∂�f . We note that both of these types of modes correspond
to external perturbations. Physically, modes that lie in the
kernel of ∂��/∂�f correspond to nontrivial sets of external forces
�f that may displace the nodes, but do not actually extend the
bonds. We will refer to these modes as linear zero-extension
forces (LZEFs). Similarly, modes that lie in the kernel of
∂ �u/∂�t correspond to sets of external tensions that do not result
in any displacement of the nodes when applied to the bonds.
We will refer to these modes as zero-displacement tensions
(ZDTs). See Table I for a summary of this collective mode
taxonomy.

IV. GENERALIZED INDEX THEOREM

We are now in a position to derive a generalization of the
Maxwell-Calladine index theorem. Importantly, our general-
ized index theorem holds even in the presence of nonzero
prestress or heterogeneous bond stiffnesses. We focus on
the two off-diagonal susceptibilities relating node and bond
space, ∂ �u/∂�t and ∂��/∂�f . Following a procedure analogous to
the derivation in Sec. II E, we apply rank-nullity theorem to
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TABLE I. Collective mode taxonomy.

Operator : Domain → Codomain Kernel Modes Abbreviation

C : Displacements �u → Extensions δ�� Linear Zero Modes LZM
CT : Tensions �t → Forces �f States of Self-Stress SSS

∂ �u
∂�t : Tensions �t → Displacements �u Zero-Displacement Tensions ZDT
∂��
∂�f : Forces �f → Extensions δ�� Linear Zero-Extension Forces LZEF

H : Displacements �u → Forces �f Zero-Energy Modes ZEM

express the dimension of the domain of each operator as a
sum of its rank plus the dimension of its kernel. Using the
definitions of LZEFs and ZDTs from the previous section as
the collective modes in the kernels of the two susceptibilities,
we obtain

Ndof = rank

(
∂��
∂�f

)
+ #LZEFs, (18)

Nc = rank

(
∂ �u
∂�t

)
+ #ZDTs. (19)

Since the two susceptibilities are transposes of one another
[see Eq. (17)], their ranks are equal. Using this fact, we
subtract the second equation from the first to arrive at our
generalized index theorem,

Ndof − Nc = #LZEFs − #ZDTs. (20)

Comparing to the classic version in Eq. (15), we see that
the left-hand side is identical, containing the difference in
the number of degrees of freedoms and constraints, while the
right-hand side now contains the difference in the number of
LZEFs and ZDTs. At first glance, these modes seem to be
very different from those usually considered in the Maxwell-
Calladine theorem, namely LZMs and SSSs. Whereas LZMs
and SSSs are purely properties of the system’s geometry en-
coded by C and CT , LZEFS and ZDTs are types of external
perturbations that depend on both the system’s geometry and
local energetics (prestress and stiffness). We will see that
these two sets of modes are intimately related and can even
be shown to be equivalent in special cases depending on the
precise details of the energy.

V. COLLECTIVE MODE RELATIONSHIPS

In this section, we explore the relationship between the col-
lective modes of the Maxwell-Calladine index theorem (SSSs
and LZMs) and their counterparts in the generalized version
(ZDTs and LZEFs). We first demonstrate this relationship
explicitly in the simple case discussed in Sec. II D where the
details of the energetic properties can essentially be ignored
(zero prestress and uniform bond stiffness). We then move
on to the general case of arbitrary local energetic properties
where we formalize these results into a theorem.

A. Simplest case: Zero prestress with uniform stiffness

In the case of zero prestress, �tps = 0, with uniform unit
stiffness, K = I, the susceptibility ∂ �u/∂�f takes on an espe-
cially simple form. Combining Eqs. (12) and (17), and using

properties of the pseudoinverse, we obtain

∂ �u
∂�f = [CT C]+ + 1

λ
[I − C+C], (21)

where to reiterate, the first term is the pseudoinverse of the
Hessian and the second term is a projector onto the zero-
energy modes. According to Eq. (17), we then appropriately
multiply by C or CT to obtain simplified forms for the two
off-diagonal susceptibilities,

∂ �u
∂�t = C+,

∂��
∂�f = [C+]T . (22)

When taking the pseudoinverse of a general rectangular ma-
trix such as C, the row and column spaces of the matrix
are swapped, along with the left and right null spaces (see
Appendix A 2). Thus, the kernel of ∂ �u/∂�t is the same as CT

and similarly, the kernel of ∂��/∂�f is the same as C. In other
words, for the simple case of zero prestress with uniform stiff-
ness, the two index theorems provide identical information:
the SSSs and LZMs are the same as the ZDTs and LZEFs,
respectively!

To make this connection more transparent, we take advan-
tage of the fact that the susceptibility ∂ �u/∂�f is guaranteed to
be full rank and is therefore invertible. While ∂ �u/∂�f uniquely
maps external forces to their resulting displacements, its in-
verse [∂ �u/∂�f]−1 uniquely maps displacements to the external
forces that created them.

Now consider a LZEF �f . Since LZEFs do not extend the
bonds, the displacement created by �f must preserve the bond
lengths as well. Thus, every �f results in a displacement �u along
a LZM given by

�u = ∂ �u
∂�f

�f . (23)

Because ∂ �u/∂�f is invertible, we may also solve the above
equation for a fixed �u to find the unique �f that couples to it.
In short, the LZMs and LZEFs are isomorphic, related by the
map provided by ∂ �u/∂�f .

For the case of zero prestress and uniform stiffness,
Eq. (23) is especially simple. Using Eqs. (21) and (22), com-
bined with the fact that �f lies in the kernel of ∂��/∂�f , we find

�u = 1

λ
�f . (24)

Thus, in this simple case, each LZEF couples to a LZM that is
the same up to a constant prefactor. Furthermore, the prefactor
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of λ−1 indicates that in this case, all LZMs also happen to be
zero-energy modes.

The relationship between ZDTs and SSSs is even more
straightforward since they are both types of external tensions.
Now note that by definition, a SSS does not generate net forces
on the nodes. Because ∂ �u/∂�f is full rank and uniquely maps
from forces to displacements, the zero net force created by
a SSS must also result in zero displacement of the nodes.
Similarly, because a ZDT does not generate displacements,
applying [∂ �u/∂�f]−1 maps the zero displacement created by a
ZDT to zero net forces on the nodes. Thus, we conclude that
every SSS is a ZDT and every ZDT is a SSS. Evidently, the
two types of modes are always the same.

B. Collective mode correspondence theorem

We formulate the observations from the previous sec-
tion into the following theorem (proof provided in
Appendix B):

Theorem 1. Consider a discrete elastic system described
by the Hamiltonian in Eq. (1). The following statements are
true:

(1) The ZDTs and SSSs are equivalent.
(2) The LZEFs are isomorphic to the LZMs, with each

LZEF �f coupling to a unique LZM �u according to the bijective
map

�u = ∂ �u
∂�f

�f . (25)

We emphasize that in general, the LZEFs and LZMs span
different subspaces of the Ndof -dimensional node space. The
precise correspondence between these two types of collective
modes depends on the interplay of the system’s geometric
structure and its local energetic properties encoded in the
susceptibility ∂ �u/∂�f (which is just the Hessian in disguise).

In the previous section, we saw that for zero prestress
and uniform stiffness, the LZEFs and LZMs were identical—
each LZEF coupled to a displacement along a parallel LZM
[Eq. (24)]. While this case is especially simple, this mode
equivalence actually generalizes to a much broader class of
systems, described by the following corollary to Theorem 1:

Corollary 1. Consider a LZM �u and a LZEF �f related by
Eq. (25). The two modes are parallel, �u ‖ �f , if and only if they
are eigenmodes of Hessian.

We explore some implications of this statement for the
design of metamaterials in the next section.

VI. SYMMETRY BREAKING WITH LOCAL
ENERGETIC PROPERTIES

In this section, we explore the role of symmetry in con-
trolling the relationship between LZMs and LZEFs described
in the previous section. Using group representation theory,
we show how a system’s geometric and energetic symmetries
combine to control the isomorphism in Theorem 1 between
the two types of modes, and ultimately determine whether
they are eigenmodes of the Hessian as described in Corollary
1. Using simple examples, we then demonstrate how this
idea may be exploited to design metamaterials with specific
responses.

A. Collective mode symmetry theorem

Recall that LZMs are defined as modes in the kernel of the
compatibility matrix C, while LZEFs are defined as modes
in the kernel of the susceptibility ∂��/∂�f . For these two types
of modes to match, their operators must share at least part of
their mode structures (i.e., be at least partially simultaneously
diagonalizable).

Throughout the field of physics, a classic situation in which
two or more operators share a mode structure is when they
exhibit the same symmetries or are invariant under trans-
formations of the symmetry group [23,24]. Because C only
contains information about the geometric structure, the sym-
metry of the LZMs should be completely determined by the
system’s geometric symmetry. However, the susceptibility
∂��/∂�f depends on both the system geometry via its depen-
dence of C and the local energetics via its dependence on the
stiffness and prestress contained in the Hessian H. As a result,
we should expect the symmetry of the LZEFs to depend on
contributions from both, i.e., the symmetry of the system’s
overall elastic response. Using group representation theory
[23,24], we can formulate these observations into precise
statements. First, we define what it means for a system to
exhibit geometric or energetic symmetry.

We say that a system’s geometry exhibits the symmetry of
a group G if there exist two unitary matrix representations,
D(u)

G : G → GL(RNdof ) and D(�)
G : G → GL(RNc ), that act on

node space and bond space, respectively [GL(V ) is the general
linear group of the vector space V], such that the bond lengths
and node displacements obey the equivariance relation

D(�)
G (g)δ��(�u) = δ��[D(u)

G (g)�u]
, ∀g ∈ G. (26)

Similarly, we say that a system’s energy exhibits the
symmetry of a group H if there exists a unitary matrix repre-
sentation, D(�)

H : H → GL(RNc ), that acts on bond space such
that the energy obeys the invariance relation

E (��(�u)) = E
[��0 + D(�)

H (h)δ��(�u)
]
, ∀h ∈ H. (27)

For convenience, we construct this representation so that its
matrices are identical to those for the geometric symmetry
group G for shared group elements, D(�)

H (g) = D(�)
G (g) for all

g ∈ G ∩ H .
Using these definitions, we now formulate the symmetry

properties of LZMs and LZEFs into the following theorem
(proof provided in Appendix B):

Theorem 2. Consider a discrete elastic system described
by the Hamiltonian in Eq. (1). Suppose the geometry exhibits
the symmetry of a group G [Eq. (26)], the energy exhibits
the symmetry of a group H [Eq. (27)], and the elastic re-
sponse obeys the symmetry of the group G ∩ H , all with the
corresponding matrix representations defined above. Then the
following is true:

(a) The LZMs obey the symmetry of the geometric sym-
metry group G, forming an invariant subspace under the action
of D(u)

G (g) such that for every LZM �u and g ∈ G, D(u)
G (g)�u is

also a LZM.
(b) The LZEFs obey the symmetry of elastic response

symmetry group G ∩ H , forming an invariant subspace
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under the action of D(u)
G∩H (g) such that for every LZEF �f and

g ∈ G ∩ H , D(u)
G∩H (g)�f is also a LZEF.

In the linear regime, Eqs. (26) and (27) can be used to
derive invariance relations for the various matrix operators
we have encountered throughout this paper (see Appendix for
derivations and a complete list of these invariance relations).
For instance, by taking a derivative of Eq. (26) with respect
to �u and evaluated at �u = 0, we find an invariance relation for
the compatibility matrix,

C = D(�)
G (g−1)CD(u)

G (g). (28)

Because LZMs are defined as modes in the kernel of C, it is
clear that they should obey the symmetry of the geometry.

Meanwhile, Eq. (27) implies symmetry of the local en-
ergetic properties. Taking derivatives with respect to �� and
evaluating at �u = 0, we find

�tps = D(�)
H (h)�tps, (29)

K = D(�)
H (h−1)KD(�)

H (h). (30)

Utilizing both Eqs. (26) and (27), we can also take deriva-
tives of the energy with respect to �u at �u = 0 to find that the
Hessian transforms as

H = D(u)
G∩H (g−1)HD(u)

G∩H (g), (31)

with analogous relations for the susceptibilities, including

∂��
∂�f = D(�)

G∩H (g−1)
∂��
∂�f D(u)

G∩H (g). (32)

Because LZEFs are defined as modes in the kernel of ∂��/∂�f ,
they obey the symmetry of the overall elastic response.

In short, LZMs are governed by geometric symmetry,
while LZEFs are governed by the overall symmetry of the
elastic response, which takes into account both the symme-
tries of the geometry and energetic properties. Clearly, if the
geometric symmetry group G is a subset of the energetic
symmetry group H , then the elastic response symmetry group
is the same as that of the geometry, G ∩ H = G, so that the
LZMs and LZEFs obey the same symmetries. However, as we
discuss in the next section, this condition is necessary but not
sufficient for the LZMs and LZEFs to match.

B. Controlling collective modes via irreducible
representations (IRREPs)

While Theorem 2 specifies which aspects of a system’s
symmetry control the symmetries of the LZMs and LZEFs, it
does not provide enough information to determine whether the
modes match or not. The condition that a set of related LZMs
and LZEFs transform under the same symmetry group is nec-
essary, but not sufficient for the modes to become eigenmodes
of the Hessian under Corollary 1. Therefore, our goal is to
establish how a system’s symmetries constrain the eigenmode
structure of the Hessian H and the correspondence of these
eigenmodes to LZMs and LZEFs.

To do this, we draw upon some classic results from group
representation theory, and in particular, the idea of irreducible
representations, or IRREPs [23,24] (see Appendix C for a
detailed analysis using IRREPs to derive the equations in this

section). Every finite group has a unique set of IRREPs from
which all other matrix representations can be constructed.
Each IRREP (which we denote with the label �) of a group
G is a matrix representation of the form D� : G → GL(V� )
where V� is a vector space of dimension d� that contains
no nontrivial invariant subspaces. By examining how a gen-
eral matrix representation breaks down into IRREPs, we are
provided a natural means to discern the structure symmetry
imposes on the vector space upon which it acts. Any operator
that obeys the group symmetries and transforms according to
this representation will then contain modes that conform to
this structure.

In our case, we are interested in how our node space repre-
sentation for the elastic response D(u)

G∩H constrains the modes
of the Hessian H which transforms according to Eq. (31). In
particular, one may show that the modes of H will organize
into multiplets of modes that transform according to different
IRREPs upon action by D(u)

G∩H . To make this explicit, we may
construct a complete orthonormal basis for node-space |�s, i〉,
where � is the IRREP under which the modes transform and
i = 1, . . . , d� is the mode number in a particular multiplet.
Under the action of D(u)

G∩H , each multiplet of modes forms an
invariant subspace, transforming as

D(u)
G∩H (g)|�s, i〉 =

d�∑
j=1

|�s, j〉D�
ji(g). (33)

We use the index s = 1, . . . , n� to indicate that there may
be n� mutually orthogonal sets of modes, forming separate
invariant subspaces. In such a basis, our node-space represen-
tation D(u)

G∩H will decompose into a block-diagonal form,

D(u)G ∩ H (g) =
∑

�

n�∑
s=1

d�∑
i, j=1

|�s, i〉D�
i j (g)〈�s, j|, (34)

where each IRREP D� appears as n� repeated block matrices
along the diagonal, each of size d� × d� .

The basis |�s, i〉 that we define above is only partially
unique. While the space spanned by all modes with the same
IRREP � and mode number i is uniquely determined by the
group symmetries, the way in which the modes break up into
different IRREP copies s is not constrained by the symmetry
group. To fully constrain the form of this basis, we must
appeal to the details of whatever operator we are interested in.
For any operator that obeys the symmetries of the group G, we
may choose to orthogonalize the modes so that the operator is
fully diagonal. In this case, we choose our basis such that the
Hessian takes the form

H =
∑

�

nγ∑
s=1

ω2
�s

d�∑
j=1

|�s, j〉〈�s, j|. (35)

Here, we see that each copy of each IRREP �s is associated
with a set of d� degenerate energy levels with energy ω2

�s

(represented as vibrational frequencies).
With these results in hand, we now understand how a

system’s symmetries can determine whether the LZMs and
LZEFs are the same. First, we perform (singular value) de-
compositions of C and ∂��/∂�f analogous to Eq. (35) and sort
the modes into degenerate multiplets according to the IRREP

025002-8



INTEGRATING LOCAL ENERGETICS INTO … PHYSICAL REVIEW E 110, 025002 (2024)

of the appropriate group, G or G ∩ H , respectively. Since
LZMs and LZEFs are kernel modes, they are guaranteed to
be degenerate with singular values of zero. If both a system’s
geometry and overall elastic response obey the symmetries
of a group, then we know that the two sets of modes both
belong to invariant subspaces of node space. One way for
these subspaces to be the same is if they both correspond to
modes that transform according to the same IRREP [Eq. (33)].
However, the subspaces spanned by modes corresponding to
different copies of the same IRREP may differ between op-
erators. Therefore, we also require that the LZMs and LZEFs
span the entire invariant subspace associated with all copies of
a given IRREP. This way, we are guaranteed that the LZMS
and LZEFs span the same space. We formalize this statement
into the following Corollary to Theorem 2:

Corollary 2. Consider a discrete elastic system that satis-
fies Theorem 2 with a set of LZMs and LZEFs related by
Eq. (25), spanning the vector subspaces VLZM and VLZEF, re-
spectively. Define the subspace V� spanned by all vectors that
transform according to some IRREP � under the action of the
elastic response node space representation D(u)

G∩H [satisfying
Eq. (33)],

V� =
⎧⎨
⎩

n�∑
s=1

d�∑
i=1

a�s,i|�s, i〉
∣∣∣∣∣∣a�s,i ∈ R

⎫⎬
⎭, (36)

where |�s, i〉 is an arbitrary complete orthonormal basis that
block-diagonalizes D(u)

G∩H [Eq. (34)].
If either the LZM subspace VLZM or LZEF subspace VLZEF

is equal to a subspace V� for some IRREP �, then the LZM
sand LZEF subspaces are equal, VLZM = VLZEF.

To see how this corollary relates to Corollary 1, we may
choose the basis |�s, i〉 to simply be the eigenbasis of the
Hessian as in Eq. (35). If either the LZMs or LZEFs span
the entire invariant subspace spanned by the set of eigen-
modes that transform according to IRREP �, then due to their
degeneracy, we may write them as eigenmodes of the Hes-
sian, thus guaranteeing LZM-LZEF equivalence according to
Corollary 1.

C. Example: Breaking and restoring symmetry

In Figs. 3 and 4 we use a simple diamond-shaped spring
network with fixed boundary conditions to demonstrate how
Theorem 2 and Corollary 2 may be used to control the rela-
tionship between LZMs and the LZEFs that couple to them.
The nodes and bonds of this network exhibit fourfold rota-
tional symmetry with four axes of reflection symmetry about
the center (vertical and horizontal axes, plus two diagonal
axes). In the language of group theory, the symmetry of this
network is captured by the dihedral group D4. The network
geometry is invariant under transformations of this group, so
according to Theorem 2, we expect the LZMs to also exhibit
the same D4 symmetry. This network has a single LZM,
shown in Fig. 3(a-i), in which the central diamond rigidly
rotates anticlockwise. In accordance with Theorem 2, this
mode forms an invariant subspace under D4; it is preserved
under rotations by 90◦ and only changes up to a sign under
the allowed reflections about the center.

To understand why this set of displacements is a LZM, we
remark that for central-force springs, the extension of a bond
α connecting nodes i and j can be expressed to to linear order
as δ�α = b̂i j · (�u j − �ui ) where �ui and �u j are d-dimensional
vectors of displacements for each node and b̂i j is a unit vector
pointing from j to i. This means that the compatibility matrix
C only captures relative displacements of the nodes parallel to
the bonds. In contrast, motion perpendicular to the bonds does
not result in any bond extensions to linear order, as is the case
in Fig. 3(a). This property is well known in the literature [3].

Theorem 2 states that the symmetry of the LZEF that
couples to this LZM should be determined by the overall
elastic response which depends on both the geometry and
energy. To test this, we first choose all spring constants to be
identical, K = I, and set the prestress to zero, �tps = 0. In this
case, the local energetics trivially exhibit 12-fold permutation
symmetry described by the permutation group S12 and are
invariant according to both Eqs. (30) and (29). It is simple
to convince oneself that the geometric symmetry group D4 is
a subset of the more general energetic symmetry group S12

so that the symmetry of the total elastic response captured
by their intersection is also D4. Next, we apply the inverse
of the susceptibility ∂ �u/∂�f to map the LZM in Fig. 3(a-i) to
its corresponding LZEF, depicted in Fig. 3(a-ii). As expected,
we find that the LZEF also exhibits D4 symmetry and forms
an invariant subspace, matching the LZM.

To understand why the LZM and LZEF match, we ex-
amine the IRREP structure of the Hessian for this network
under D4 (see Appendix D 1 for node space representation
and IRREP matrices). In Figs. 4(a-ii) and 4(a-iii), we depict
the energy levels ω2

�s
(eigenvalues of the Hessian written as

squared vibrational frequencies) and eigenmodes |�s, i〉 for
this network, respectively. Each energy level and eigenmode
is labeled according to the IRREP �s of D4 under which
they transform [Eq. (33)]. The subscript s indicates the copy
of IRREP � in the node space representation. We see that
the eigenmodes break up into four one-dimensional invariant
subspaces that transform according to IRREPs � = 1, 1′, 1′′,
or 1′′′, and three two-dimensional invariant subspaces that
each transform according to a different copy of IRREP 2,
each with a pair of degenerate eigenvalues (we also observe
an accidental degeneracy between IRREPs 1′′ and 1′′′ that can
be broken by applying nonzero prestress). In red, we highlight
the energy level and mode that couple to the LZM, which
happen to correspond to the 1′ IRREP. In this case, applying
an LZM costs zero energy to lowest order due to the lack of
prestress.

Now according to Corollary 2, if the LZM or LZEF span
the entire subspace formed by all copies of an IRREP, they
will be guaranteed to match. Since there is only one copy of
the 1′ IRREP and it is one-dimensional, this condition is satis-
fied. Therefore, both modes are guaranteed to be eigenmodes
of the Hessian and to match, as we can observe.

Next, we break energetic symmetry by adding nonzero
prestress with constant magnitude, tps

α = 0.8, along the hori-
zontal bonds (this preserves the ground state configuration) as
shown in Fig. 3(b). Due to this prestress, the symmetry group
of the energy is reduced to the product of two smaller per-
mutation groups, S4 ⊗ S8 ⊂ S12, with permutations no longer
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(a-i)

Linear Zero Mode �u

∂�u

∂�f

[
∂�u

∂�f

]−1

(a-ii)

Linear Zero-Extension Force �f

Geometry δ��(�u) Energy E(��) Response ∂�u

∂�f

D4 S12 D4∩ =

LZMs �u LZEFs �f

(Diamond)

Symmetry Groups

(b-i) (b-ii)

Geometry δ��(�u) Energy E(��) Response ∂�u

∂�f

D4 S4 ⊗ S8 D2∩ =

LZMs �u LZEFs �f

(c-i) (c-ii)

Geometry δ��(�u) Energy E(��) Response ∂�u

∂�f

D4 S8 ⊗ S4 D4∩ =

LZMs �u LZEFs �f

FIG. 3. Breaking and restoring dihedral symmetry with prestress. A diamond-shaped central-force spring network with fixed boundary
conditions whose geometry exhibits fourfold dihedral symmetry D4. In each row, a linear zero mode (LZM) and the linear zero-extension force
(LZEF) that couples to it via the susceptibility ∂ �u/∂�f are shown for a different choice of prestress. For each case, the rightmost column lists the
symmetry groups describing the geometry, energy (prestress), elastic response, LZM, and LZEF. In all cases, the spring constants are chosen
to be uniform (K = I). (a) When the prestress is zero (�tps = 0) the energy exhibits full permutation symmetry S12 which encompasses the
symmetry of the geometry, resulting in overall D4 symmetry. The (a-i) LZM and its corresponding (a-ii) LZEF are identical, both exhibiting
full fourfold dihedral symmetry. (b) Introducing nonzero prestress along the central line of horizontal bonds breaks the energetic symmetry
to S4 ⊗ S8, reducing overall symmetry of the response to twofold dihedral symmetry D2. While the (b-i) LZM is the same, the (b-ii) LZEF
that couples to it no longer matches. (c) Introducing additional prestress along the central line of vertical bonds restores some of the energetic
symmetry to S4 ⊗ S8 so that the overall response exhibits fourfold dihedral symmetry D4. The (c-i) LZM and the (c-ii) LZM that couples to it
match once again.

allowed between bonds with and without prestress. The result
is that the overall symmetry of the response is reduced to
the twofold dihedral group D2, the intersection of D4 and
S4 ⊗ S8. Because the LZM relies only on geometry and is
blind to the energetics, it remains unchanged [Fig. 3(b-i)]. In
contrast, LZEFs are sensitive to energetic costs, and we find
that the LZEF that couples to this LZM no longer points in the
same direction, but instead localizes to the line of prestressed
bonds. Consistent with the symmetry of the elastic re-
sponse, the LZEF now exhibits twofold dihedral symmetry D2

[Fig. 3(b-ii)].
Examining the eigenmode structure of the network in

Figs. 4(b-ii) and 4(b-iii), we see that the LZM now couples to
two different modes that transform according to two different
copies of the 1′ IRREP of D2 (highlighted in red). However,
the single LZM in the system cannot span the entire two-
dimensional subspace belonging to both copies of 1′. As a
result, Corollary 2 no longer provides a guarantee that the
LZM will match its LZEF.

Finally, in Fig. 3(c), we restore some symmetry by in-
troducing additional prestress along the vertical bonds with
the same magnitude as the horizontal ones, resulting in the
energetic symmetry group S8 ⊗ S4. Now, the geometric D4

symmetry is once again a subset of the larger energetic
symmetry group, resulting in an overall D4 symmetry for
the elastic response. Consequently, we find that the LZEF
[Fig. 3(c-ii)] and LZM [Fig. 3(c-i)] both exhibit D4 symmetry
in accordance with Theorem 2. In Figs. 4(c-ii) and 4(c-iii), we
also see that once again, the LZM couples to a single eigen-
mode of the Hessian which spans the subspace that transforms
with the 1′ IRREP of D4, thus guaranteeing that it matches its
LZEF in according to Corollary 2.

In the rightmost column of Fig. 3, we summarize these
symmetry results by specifying the symmetry groups of the
system’s geometry, energy, and elastic response, along with
those of the depicted LZMs and LZEFs. In Appendix D 1, we
provide formal group definitions, node space representation
matrices, and IRREP matrices.
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FIG. 4. Eigenmode structure and irreducible representations of diamond network. The energy levels and eigenmodes for each configuration
in Fig. 3 labeled according to IRREP. In each column, the local energetic properties are depicted in the upper-left panel. The bond stiffnesses
kα are chosen to be uniform for each network, while the prestress tps

α is shown with green arrows. In the bottom-right, we show the energy
levels ω2

�s
(eigenvalues of the Hessian written as squared vibrational frequencies). Each energy is labeled with an IRREP � and a copy number

s. In the right panel, we depict the eigenmodes of the Hessian |�s, i〉 corresponding to each energy level. Solid boxes group together modes
that transform according to the same IRREP �, while dashed boxes group together degenerate modes corresponding to a single copy s of �.
In red we highlight the energy level and eigenmodes that couple to the corresponding LZMs and LZEFs in Fig. 3. (a) When the symmetry
of the elastic response matches the geometric symmetry, the LZM spans the entire one-dimensional invariant subspace corresponding to the
1′ IRREP of D4. As a result, the LZM and LZEF are guaranteed to match. (b) When the energetic symmetry is more restrictive than the
geometric symmetry, the the LZM now couples to two different eigenmodes from two different copies of the 1′ IRREP for D2, but does not
span the entire two-dimensional subspace spanned by all copies of 1′. Therefore, the LZM and LZEF are no longer guaranteed to match. (c) The
symmetry of the elastic response matches the geometric symmetry again, so the LZM again spans the entire invariant subspace corresponding
to the 1′ IRREP of D4. The LZM and LZEF now both match again.

D. Example: Repeated symmetry breaking

The symmetry breaking shown in the previous example
can be taken one step further. We can use prestress to suc-
cessively break the symmetry group describing a system’s
elastic response to more and more restrictive subgroups. By
introducing prestress that preserves some, but not all, of a
system’s geometric symmetries, we can control the resulting
level of symmetry exhibited by the LZEFs due to the elastic
response.

We demonstrate this behavior in Fig. 5 for a 4 × 4 square
lattice of springs with periodic boundary conditions. As be-
fore, this network’s bonds and nodes exhibit fourfold dihedral
symmetry described by the group D4. The 4 × 4 square
grid also adds discrete translational symmetry along the x
and y axes. Because translations along the two axes com-
mute, the overall translational symmetry is described by
the product group Z4 ⊗ Z4. To obtain the overall geomet-
ric symmetry group, we take the semidirect product of the
two groups to obtain (Z4 ⊗ Z4) � D4 (the semidirect prod-
uct arises because Z4 ⊗ Z4 is a normal subgroup, while D4

is not).
This network contains a total of eight LZMs, each con-

sisting of nodes moving along one of the eight horizontal or
vertical filaments of bonds. In Figs. 5(a-i) and 5(a-iii), we
show a pair of these LZMs, exhibiting x- and y- translational
symmetry, respectively. By applying transformations of the

network’s geometric symmetry group to either one of these
modes, we can generate all eight of the network’s LZMs.

As in the previous example, we first consider the case
where the spring constants are identical, K = I, and set the
prestress to zero, �tps = 0, resulting in full S32 permutation
symmetry of the bond stiffnesses and prestresses. Since the
geometric symmetry is a subset of the energetic symmetry,
the symmetry of the overall elastic response is the same as the
geometry, (Z4 ⊗ Z4) � D4. As a result, the LZEFs exhibit the
same symmetries as the LZMs. As shown in Figs. 5(a-ii) and
5(a-iv), we find that each LZM couples to an identical LZEF.

In Fig. 6(a-ii), we depict the energy levels for this network
and classify them according to the IRREPs of (Z4 ⊗ Z4) � D4

(see Appendix D 2 for node space representation and IRREP
matrices). In red and blue, we highlight the energy levels
of the modes that couple to the LZMs consisting of motion
along the x- and y-directions, respectively, exhibiting x- and y-
translational symmetry. We see that the eight LZMs fully span
all eight modes corresponding to all copies of the IRREPs
2(2), 2(6), and 4(5). From Corollary 2, we conclude that the
LZMs are guaranteed to match the LZMs, consistent with our
expectations based on Fig. 5.

Next, in Fig. 5(b), we break the system’s discrete trans-
lational symmetry along the y-axis by introducing prestress
along two horizontal rows of bonds of size tps

α = 0.8. While
both LZMs are preserved [Figs. 5(b-i) and 5(b-iii)], only the
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FIG. 5. Repeatedly breaking translational symmetry with prestress. A central-force spring network forming a 4 × 4 periodic square lattice.
The network geometry exhibits fourfold dihedral symmetry, along with discrete translational symmetry along the x and y axes, forming the
group (Z4 ⊗ Z4) � D4. In each row, two linear zero modes (LZMs) and the linear zero-extension forces (LZEFs) that couple to them via the
susceptibility ∂ �u/∂�f are shown for a different choice of prestress. The central column lists the symmetry groups for each case describing
the geometry, energy (prestress), elastic response, LZMs, and LZEFs. In all cases, the spring constants are chosen to be uniform (K = I).
(a) For zero prestress (�tps = 0) the energy exhibits full permutation symmetry S32, resulting in overall (Z4 ⊗ Z4) � D4 symmetry. Each LZM
matches the LZEF that couples to it, with one pair, (a-i) and (a-ii), exhibiting x-translational symmetry, and the other pair, (a-iii) and (a-iv),
exhibiting y-translational symmetry. (b) Introducing nonzero prestress along two horizontal lines of bonds (tps

α = 0.8) breaks the y-translational,
symmetry reducing the energetic symmetry to S8 ⊗ S24, and the overall elastic response to Z4 � D2. The (b-iv) LZEF that previously displayed
y-translational symmetry no longer matches its (b-iii) LZM, while the (b-ii) LZEF that displayed x-translational symmetry is unaffected.
(c) Introducing additional prestress (tps

α = 0.4) along two vertical lines of bonds, but with smaller magnitude than the prestressed horizontal
bonds, breaks x-translational symmetry, reducing the energetic symmetry to S8 ⊗ S8 ⊗ S24, and the overall elastic response to twofold dihedral
symmetry D2. In this case, neither LZEF matches it corresponding LZM.

LZEF exhibiting x-translational symmetry remains the same
[Fig. 5(b-ii)]. In contrast, the other LZEF [Fig. 5(b-iv)] no
longer exhibits y-translational symmetry and localizes to the
two rows of prestressed bonds. The symmetry of the energy
has broken to the subgroup S8 ⊗ S24 ⊂ S32. As a result, the
symmetry of the elastic response is reduced to Z4 � D2, con-
sisting of translation symmetry along the x axis and twofold
dihedral symmetry.

Examining the energy levels in Fig. 6(b-ii) classified ac-
cording to the IRREPs of Z4 � D2, we find that the four
LZMs with x-translational symmetry fully span all four modes
corresponding to all copies of the IRREPs 1(5) and 1(7) (high-
lighted in red). This is consistent with our expectations that the
LZEFs for these LZMs should match because the system still
exhibits overall x-translational symmetry. In contrast, we now
observe that the LZMs with y-translational symmetry do not
completely span all modes belonging to all the copies of any
IRREP, instead coupling to a total of seven different modes
from three different IRREPs. As a result, their LZEFs are no
longer guaranteed to match.

Finally, we break the network’s x-translational symmetry
as well. In Fig. 5(c), we introduce additional prestress along
two vertical lines of bonds, but with magnitude less than
that of the prestressed horizontal bonds of size tps

α = 0.4. We
now find that neither of the LZEFs [Figs. 5(c-ii) and 5(c-iv)]

matches its corresponding LZM [Figs. 5(c-i) and 5(c-iii)]. The
symmetry of the energy has broken further to the subgroup
S8 ⊗ S8 ⊗ S16 ⊂ S8 ⊗ S24, resulting in an overall twofold di-
hedral symmetry D2 for the elastic response.

A look at the energy levels in Fig. 6(b-iii) classified ac-
cording to the IRREPs of D2 reveals that the LZMs with
x-translational symmetry also no longer fully span the modes
corresponding to any IRREPs, coupling to seven different
modes just like the LZMs with y-translational symmetry. As a
result, none of the LZEFs are guaranteed to match their LZMs.

In the central column of Fig. 5, we summarize these
symmetry results by specifying the symmetry groups of the
system’s geometry, energy, and elastic response, along with
those of the depicted LZMs and LZEFs. In Appendix D 2, we
provide the group definitions, node space representations, and
IRREP matrices for groups describing the symmetry of the
elastic response used to create Figs. 5 and 6.

VII. DISCUSSION

In summary, we used an approach based on susceptibilities
to derive a generalization of the Maxwell-Calladine index
theorem that includes local energetic properties like stiffness
and prestress. In this generalized version, the classical lin-
ear zero modes (LZMs) and states of self-stress (SSSs) are
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FIG. 6. Energy levels and irreducible representations of 4 × 4
square lattice. The energy levels for each configuration in Fig. 5 la-
beled according to IRREP. The local energetic properties are depicted
in the top row. The bond stiffnesses kα are chosen to be uniform for
each network, while the prestress tps

α is shown with green arrows.
In the bottom row, we show the energy levels ω2

�s
, each with an

IRREP and copy number s. In red and blue we highlight the energy
levels that couple to the LZMs with x- and y-translational symmetry,
respectively (see Fig. 5). (a) When the elastic response symmetry
matches the geometric symmetry, the LZMs span the entire invari-
ant subspaces corresponding to the 2(2), 2(6), and 4(5) IRREPs of
(Z4 ⊗ Z4) � D4. As a result, the LZMs and LZEFs are guaranteed to
match. (b) Upon breaking y-translational symmetry with prestress,
the LZMs with y-translational symmetry no longer span the en-
tire invariant subspace for any IRREP and no longer match their
LZEFs. In contrast, preservation of x-translational symmetry causes
the LZMs with x-translational symmetry to fully span the subspaces
corresponding to the the 1(5) and 1(7) IRREPs of Z4 � D2 and there-
fore match their LZEFs. (c) Upon further breaking x-translational
symmetry with prestress, the LZMs with x-translational symmetry
also no longer span the entire invariant subspace for any IRREP, so
that none of the LZMs are guaranteed to match their LZEFs.

replaced with linear zero-extension forces (LZEFs) and zero-
displacement tensions (ZDTs). While the LZMs and SSSs
derive purely from the linearized geometric relationships be-
tween constraints and degrees of freedom, LZEFs and ZDTs
are types of external perturbations that necessarily depend on
both a system’s geometric structure and the details of the local
energetic deformation costs. We then explored the detailed
relationship between LZEFs and ZDTs and their classical
counterparts. While ZDTs and SSSs are identical, LZEFs and
LZMs are generally related by a nontrivial isomorphism, with
each LZEF coupling to a unique LZM.

Controlling the relationships between LZEFs and LZMs
represents an interesting avenue for designing mechanical
metamaterials with specific responses to external forces. As

we demonstrated using group representation theory, whether
or not LZEFs couple to identical LZMs depends on whether
the group describing the symmetry of a system’s elastic en-
ergy encompasses that of its structural geometry. Specifying
the symmetry of the local energy (e.g., via prestress) can then
be used to control the forms of the LZEFs that couple to the
LZMs.

Our analysis and examples presented in this paper focused
on LZMs and LZEFs, modes that preserve the lengths of
bonds to linear order. However, we would expect the design
principles we have demonstrated should apply to all types of
displacements and forces. In general, all eigenmodes of the
Hessian, whether or not they are LZMs or LZEFs, should
transform under the symmetries of the elastic response, which
can be controlled via bond stiffness, prestress, and geometry.
In fact, the proofs of Theorem 2 and Corollary 2 do not
rely on the fact that a set of displacements are LZMs, but
rather only on the property that they are degenerate modes
of compatibility matrix.

In this paper, susceptibilities to external perturbations pro-
vided a natural language for exploring mechanical rigidity and
the relationship between constraints and degrees of freedom.
This framework provides a natural extension to previous for-
malism proposed in Ref. [15], where the authors relate the
different vector spaces in a picture similar to Fig. 2. In that
work, the authors label node space and bond space as the
external and internal vector spaces, respectively, and connect
these two spaces via the compatibility matrix as we do here.
However, they then connect displacements and extensions to
forces and tensions via the principle of virtual work, whereas
we use the explicit maps provided by susceptibilities, allowing
us to easily transform between any of the four types of vectors.
We also believe that an approach based on susceptibilities
could provide a path out of the linear regime. The linear
susceptibilities we compute in Eq. (17) and the generalized
Maxwell-Calladine relation in Eq. (20) should in principle
capture all rigidity information described by the linear re-
sponse. However, they still do not fully capture the effects
of prestress-induced rigidity. This is evident in the examples
shown in Figs. 3–6, where the numbers of LZMs and LZEFs
do not change even if prestress stabilizes the system because
the geometry deforms at second order, but not first order.
This makes a strong case that a general theory of prestress
stability should require an analysis of the nonlinear regime.
Higher-order susceptibilities such as ∂2��/∂�f2 could prove
useful for deriving conditions for prestress stability beyond
linear order such as those in Refs. [17,18]. On a related note,
these nonlinear susceptibilities could be used to understand
anomalous rigidity in materials that appear underconstrained
to linear order such as packings of ellipses [21,22] or cell ver-
tex models [25]. They may also provide a means to integrate
energetic properties into a theory of topological protection for
nonlinear mechanisms [26]. Alternatively, they may elucidate
the scaling behavior of material properties near rigidity phase
transitions [27], just as they have been used historically to
investigate phase transitions throughout the field of statisti-
cal physics. It would also be interesting to combine such a
formalism with group representation theory to design mate-
rials that undergo specific finite deformations in response to
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external forces. Already, group theoretic descriptions have
been developed to analyze highly symmetric tensegrity
structures to ascertain whether LZMs extend to nonlinear
mechanisms and to analyze prestress-stability [15,28], but not
to control responses to external forces.

Finally, in our formalism, each discrete component im-
poses a soft constraint on the degrees of freedom associated
with its energetic cost of deformation. In some systems, it is
often useful to also include hard constraints, such as in foams
where the Plateau rule restricts the angles of the films at each
vertex to 120◦ [29], or in origami structures where one may
wish to impose fixed areas to the facets [20]. It would be
interesting to extend our formalism to explicitly include such
hard constraints and repeat the analysis performed here to
discover how it modifies the relationships between collective
modes.
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APPENDIX A: DERIVATION OF MECHANICAL
SUSCEPTIBILITIES

1. Exact formulas

Here, we derive the expressions for the susceptibilities in
Eq. (17). To begin, we observe that in the absence of external
forces or tensions, the ground state is determined by force
equilibrium, i.e., the internal net forces are zero,

f int
i ≡ ∂E

∂ui
= 0, (A1)

where E is the energy defined by Eq. (2). For convenience, we
use the ground state configuration (which may not always be
unique) as the reference state for each degree of freedom so
that �u = 0 at the ground state,

∂E

∂ui

∣∣∣∣
�u=0

= 0. (A2)

We also assume we are dealing with a stable ground state.
Next, we take the gradient of the Hamiltonian in Eq. (1)

with respect to the displacements and set it to zero, giving us

0 = ∂H
∂ui

= ∂E

∂ui
+ λui − fi −

∑
α

tα
∂�α

∂ui
. (A3)

Taking a second derivative with respect to f j , we find

0 =
∑

k

(
Hik + λδik −

∑
α

tα
∂2�

∂ui∂uk

)
∂uk

∂ f j
− δi j, (A4)

where Hik is the Hessian which takes the form in Eq. (5).
When tα = 0, this becomes

0 =
∑

k

(Hik + λδik )
∂uk

∂ f j
− δi j . (A5)

Changing over to matrix form, this becomes

0 = [H + λI]
∂ �u
∂�f − I. (A6)

Because the ground state is stable, H is guaranteed to be
positive semidefinite and this equation can readily be solved,
giving us

∂ �u
∂�f = [H + λI]−1. (A7)

Using the chain rule, we can use this solution to find the
susceptibility for the extensions with respect to forces,

∂��
∂�f = ∂��

∂ �u
∂ �u
∂�f = C[H + λI]−1. (A8)

Similarly, taking the derivative of the relation between ex-
ternal tensions and forces from Eq. (10), �f = CT�t, we find
that the following is true for forces that can be completely
expressed in terms of tensions:

∂�f
∂�t = CT . (A9)

Using this, we can derive the remaining two susceptibilities
using the chain rule,

∂ �u
∂�t = ∂ �u

∂�f
∂�f
∂�t = [H + λI]−1CT , (A10)

∂��
∂�t = ∂��

∂�f
∂�f
∂�t = C[H + λI]−1CT . (A11)

In summary, the exact formulas for the four susceptibilities
are(

∂ �u
∂�f

∂ �u
∂�t

∂��
∂�f

∂��
∂�t

)
=

(
[H + λI]−1 [H + λI]−1CT

C[H + λI]−1 C[H + λI]−1CT

)
. (A12)

2. Matrix psuedoinverse

Next, we take the limit in which the regularization constant
goes to zero, λ → 0. To do this, we first define the pseu-
doinverse of a general matrix A of size n × m. We define
the left and right singular vectors of A as |li〉 and 〈ri| with
positive singular values σi, where i = 1, . . . , k with k � m, n.
In this notation, we can write the singular value decomposition
of A as

A =
∑

i

σi|li〉〈ri|. (A13)

We can then define the pseudoinverse of A as

A+ =
∑

i

1

σi
|ri〉〈li|. (A14)

Note that the singular values become inverted and that the left
and right singular vectors switch places.

For a real symmetric positive semidefinite matrix A, we
will use the following identity for small λ:

[A + λI]−1 ≈ 1

λ
[I − AA+] +

∞∑
n=0

(−λ)n(A+)n+1. (A15)
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To prove this, we note that for a real symmetric matrix,
the singular value decomposition and the eigendecomposition
are identical because the left and right singular vectors are
the same and can be chosen to form an orthonormal basis. We
may write the eigendecomposition of A as

A =
∑

i

σi|i〉〈i|, (A16)

where |i〉 are the eigenvectors and σi are the eigenvalues which
are real and nonnegative. Sorting the eigenvalues into those
where σi = 0 and σi > 0, we express the pseudoinverse as

A+ =
∑

i:σi>0

1

σi
|i〉〈i| (A17)

and the projector onto the kernel of A as

I − AA+ =
∑

i:σi=0

|i〉〈i|. (A18)

We can then derive the identity by expanding the inverse in
small λ,

[A + λI]−1 =
∑

i

1

σi + λ
|i〉〈i|

≈ 1

λ

∑
i:σi=0

|i〉〈i| +
∞∑

n=0

(−λ)n
∑

i:σi>0

1

σ n+1
i

|i〉〈i|

= 1

λ
[I − AA+] +

∞∑
n=0

(−λ)n(A+)n+1. (A19)

3. Zero-regularization limit (λ → 0)

Finally, we find approximate forms for the susceptibilities
in Eq. (A12) by taking the limit in which the regularization
constant goes to zero, λ → 0. Using the above identity, the
susceptibilities then become(

∂ �u
∂�f

∂ �u
∂�t

∂��
∂�f

∂��
∂�t

)
=

(
H+ + 1

λ
PZEM

H

[
H+ + 1

λ
PZEM

H

]
CT

C
[
H+ + 1

λ
PZEM

H

]
C

[
H+ + 1

λ
PZEM

H

]
CT

)
,

(A20)

where PZEM
H = I − HH+ is a projector onto the zero-energy

modes in the kernel of H.

APPENDIX B: THEOREMS AND PROOFS

This Appendix contains proofs for the theorems presented
in the main text. For convenience, we first define the following
vector spaces:

(i) Constraint (component/bond) space: RNc ,
(ii) Degree-of-freedom (node) space: RNdof ,
(iii) Space of states of self-stress (SSSs):

VSSS ≡ ker(CT ) = {�t ∈ RNc |CT�t = 0},
(iv) Space of linear zero modes (LZMs):

VLZM ≡ ker(C) = {�u ∈ RNdof |C�u = 0},
(v) Space of zero-displacement tensions (ZDTs):

VZDT ≡ ker

(
∂ �u
∂�t

)
=

{
�t ∈ RNc

∣∣∣∣∂ �u
∂�t

�t = 0

}
,

(vi) Space of linear zero-extension forces (LZEFs):

VLZEF ≡ ker

(
∂��
∂�f

)
=

{
�f ∈ RNdof

∣∣∣∣∂��
∂�f

�f = 0

}
.

1. Proofs of Theorem 1 and Corollary 1

Theorem 1. Consider a discrete elastic system described
by the Hamiltonian in Eq. (1). The following statements are
true:

(i) The ZDTs and SSSs are equivalent.
(ii) The LZEFs are isomorphic to the LZMs, with each

LZEF �f coupling to a unique LZM �u according to the bijective
map

�u = ∂ �u
∂�f

�f . (B1)

Proof. To start, we prove statement (i). Consider a SSS �t
that by definition, lies in the kernel of CT ,

0 = CT�t. (B2)

Multiplying both sides of this equation by ∂ �u/∂�f , we obtain

0 = ∂ �u
∂�f CT�t

= ∂ �u
∂�t

�t, (B3)

where in the second equality we have used the expression for
∂ �u/∂�t in Eq. (17). Therefore, �t lies in the kernel of ∂ �u/∂�t
and is a ZDT. Since this holds for every SSS, it must be that
VSSS ⊆ VZDT.

To prove the opposite direction, consider a ZDT �t that by
definition, lies in the kernel of ∂ �u/∂�t,

0 = ∂ �u
∂�t

�t. (B4)

Because ∂ �u/∂�f is full rank, it is invertible. Multiplying both
sides of this equation by [∂ �u/∂�f]−1, we obtain

0 =
[
∂ �u
∂�f

]−1
∂ �u
∂�t

�t

=
[
∂ �u
∂�f

]−1
∂ �u
∂�f CT�t

= CT�t, (B5)

where in the second equality we have again used the expres-
sion for ∂ �u/∂�t in Eq. (17). Therefore �t lies in the kernel of
CT and is an SSS. Since this holds for every ZDT, it must be
that VZDT ⊆ VSS. Combining this with the previous result, we
conclude that the two spaces are equal, VZDT = VSSS.

Next, we prove statement (ii). Consider a LZEF �f which by
definition, lies in the kernel of ∂��/∂�f ,

0 = ∂��
∂�f

�f . (B6)

Because the susceptibility ∂ �u/∂�f is full rank, we may map �f to
the unique nonzero displacement that it creates when applied
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to the system,

�u = ∂ �u
∂�f

�f . (B7)

Multiplying both sides by C, we find

C�u = C
∂ �u
∂�f

�f

= ∂��
∂�f

�f

= 0, (B8)

where in the second equality we have used the expression for
∂��/∂�f from Eq. (17). We find that �u lies in the kernel of C and
is, therefore, a LZM. Therefore, every LZEF �f can be mapped
to the LZM �u it gives rise to via the relation

�u = ∂ �u
∂�f

�f . (B9)

To prove the opposite direction, consider a LZM �u which
by definition, lies in the kernel of C,

0 = C�u. (B10)

Using [∂ �u/∂�f]−1, we may map �u to the unique external force
that creates it when applied to the system,

�f =
[
∂ �u
∂�f

]−1

�u. (B11)

Multiplying both sides by ∂��/∂�f , we find

∂��
∂�f

�f = ∂��
∂�f

[
∂ �u
∂�f

]−1

�u

= C
∂ �u
∂�f

[
∂ �u
∂�f

]−1

�u

= C�u
= 0, (B12)

where in the second equality we again have used the expres-
sion for ∂��/∂�f from Eq. (17). We find that �f lies in the kernel
of ∂��/∂�f and is therefore a LZEF. Therefore, every LZM �u can
be mapped to the LZEF �f that gives rise to it via the relation

�f =
[
∂ �u
∂�f

]−1

�u. (B13)

Combing this with the previous result, we conclude that the
two spaces are isomorphic, VLZEF ∼= VSSS, related by the
bijective map

∂ �u
∂�f :VLZEF → VSSS. (B14)

�
Corollary 1. Consider a LZM �u and a LZEF �f related by

Eq. (B1). The two modes are parallel, �u ‖ �f , if and only if they
are eigenmodes of Hessian.

Proof. This is a straightforward consequence of Eq. (B1).
If the two modes are parallel, then they must correspond to an

eigenmode of the susceptibility ∂ �u/∂�f . Since the susceptibil-
ity is just the inverse of the Hessian plus a term proportional to
the identity, it will have the same eigenmodes as the Hessian.
Conversely, if the two modes correspond to an eigenmode of
the Hessian, then they will be parallel. �

2. Linear invariance relations

In this section, we derive the matrix invariance relations in
Eqs. (28)–(32), along with invariance relations for many other
matrix operators that appear in the main text. We formulate
these derivations into Lemmas that we will later use to prove
Theorem 2 and Corollary 2. Throughout these proofs, we use
repeated indices to imply sums and will often suppress the
subscript for matrix representations that indicate their group.
We will also use the fact that the matrix representations are
unitary and real (because they simply permute the bonds or
nodes and rotate vectors), allowing us to write

D(g)T = D(g)† = D(g)−1 = D(g−1) (B15)

for any of our representations.
Lemma 1. If a system displays geometric equivariance ac-

cording to Eq. (26), then the following invariance relations
hold for the compatibility matrix and its derivative:

C = D(�)
G (g−1)CD(u)

G (g), (B16)

∂2�α

∂ui∂u j
= D(�)

G,αβ (g−1)
∂2�β

∂uk∂ul
D(u)

G,ki(g)D(u)
G,l j (g). (B17)

Proof. First, we take the derivative of Eq. (26) with respect
to �u. Defining �u′ = D(u)(g)�u, we find

∂�α (�u)

∂ui
= D(�)

αβ (g−1)
∂�β (�u′)

∂ui

= D(�)
αβ (g−1)

∂�β (�u′)
∂u′

j

∂u′
j

∂ui

= D(�)
αβ (g−1)

∂�β (�u′)
∂u′

j

D(u)
ji (g). (B18)

Evaluating at �u = �u′ = 0, we find that C obeys the invariance
relation

C = D(�)(g−1)CD(u)(g). (B19)

Taking an additional derivative of Eq. (B18) with respect
to �u, we find an invariance relation for the second derivative
of �α ,

∂2�α (�u)

∂ui∂u j
= D(�)

αβ (g−1)
∂2�β (�u′)
∂u′

k∂u j
D(u)

ki (g)

= D(�)
αβ (g−1)

∂2�β (�u′)
∂u′

k∂u′
l

D(u)
ki (g)

∂u′
l

∂u j

= D(�)
αβ (g−1)

∂2�β (�u′)
∂u′

k∂u′
l

D(u)
ki (g)D(u)

l j (g). (B20)

Evaluating at �u = �u′ = 0, we find

∂2�α

∂ui∂u j
= D(�)

αβ (g−1)
∂2�β

∂uk∂ul
D(u)

ki (g)D(u)
l j (g). (B21)

�
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Lemma 2. If a system displays energetic invariance ac-
cording to Eq. (27), then the following invariance relations
hold for the local energetics:

�tps = D(�)
H (h)�tps, (B22)

K = D(�)
H (h−1)KD(�)

H (h). (B23)

Proof. First, we take a derivative of Eq. (27) with respect
to ��. Defining δ��′ = D(�)(h)δ��, we find

∂E (��)

∂�α

= ∂E (��0 + δ��′
)

∂�α

= ∂E (��0 + δ��′
)

∂�′
β

∂�′
β

∂�α

= ∂E (��0 + δ��′
)

∂�′
β

D(�)
βα (h). (B24)

Evaluating at δ�� = δ��′ = 0, this gives us an invariance relation
for the prestress �tps,

�tps = D(�)(h)�tps (B25)

(since this is true for all h, we replaced h−1 with h).
Taking an additional derivative of Eq. (B24) with respect

to ��, we find

∂2E (��)

∂�α∂�β

= ∂2E (��0 + δ��′
)

∂�′
γ ∂�β

D(�)
γα (h)

= ∂2E (��0 + δ��′
)

∂�′
γ ∂�′

δ

D(�)
γα (h)D(�)

βδ (h). (B26)

At δ�� = δ��′ = 0, this also gives us an invariance relation for
the stiffness matrix K,

K = D(�)(h−1)KD(�)(h). (B27)

�
Lemma 3. If a system displays obeys both the geometric

and energetic symmetry conditions, Eqs. (26) and (27), then
the Hessian transforms as

H = D(u)
G∩H (g−1)HD(u)

G∩H (g), (B28)

and the susceptibilities transform as

∂ �u
∂�f = D(u)

G∩H (g−1)
∂ �u
∂�f D(u)

G∩H (g), (B29)

∂ �u
∂�t = D(u)

G∩H (g−1)
∂ �u
∂�t D(�)

G∩H (g), (B30)

∂��
∂�f = D(�)

G∩H (g−1)
∂��
∂�f D(u)

G∩H (g), (B31)

∂��
∂�t = D(�)

G∩H (g−1)
∂��
∂�t D(�)

G∩H (g). (B32)

Proof. There are two alternative routes to derive Eq. (B28).
The first is to combine the invariance relations from
Lemmas 1 and 2 and use the formula for the Hessian in
Eq. (5). Alternatively, we may take derivatives of the energy
directly via Eq. (27) with respect to �u. Following this route, we

first combine Eqs. (26) and (27) to find an invariance relation
for the energy under transformation of the displacements.
We also restrict ourselves to representation matrices in the
intersection G ∩ H . We find

E [��(�u)] = E [��0 + D(�)(g)δ��(�u)]

= E [��0 + δ��(D(u)(g)�u)]

= E [��(D(u)(g)�u)]. (B33)

Defining �u′ = D(u)(g)�u, we take two derivatives to find

∂2E [��(�u)]

∂ui∂u j
= ∂2E [��(�u′)]

∂ui∂u j

= ∂2E [��(�u′)]
∂u′

k∂u′
l

∂u′
k

∂ui

∂u′
l

∂u j

= ∂2E [��(�u′)]
∂u′

k∂u′
l

D(u)
ki (g)D(u)

l j (g). (B34)

Evaluating at �u = �u′ = 0, we get

H = D(u)(g−1)HD(u)(g). (B35)

Next, we derive the invariance relations for the suscep-
tibilities by combing the invariance relations derived up to
this point with the exact formulas for the susceptibilities in
Eq. (A12). First, we compute the invariance relation for the
node-space susceptibility ∂ �u/∂�f ,

∂ �u
∂�f = [H + λI]−1

= [D(u)(g−1)HD(u)(g) + λI]−1

= [D(u)(g−1)(H + λI)D(u)(g)]−1

= D(u)(g)−1[H + λI]−1D(u)(g−1)−1

= D(u)(g−1)[H + λI]−1D(u)(g)

= D(u)(g−1)
∂ �u
∂�f D(u)(g). (B36)

To compute the invariance relation for ∂ �u/∂�t, we need an
invariance relation for CT ,

CT = [D(�)(g−1)CD(u)(g)]T

= D(u)(g)T CT D(�)(g−1)T

= D(u)(g−1)CT D(�)(g). (B37)

Combining this with the invariance relation for ∂ �u/∂�f , we find

∂ �u
∂�t = ∂ �u

∂�f CT

= D(u)(g−1)
∂ �u
∂�f D(u)(g)D(u)(g−1)CT D(�)(g)

= D(u)(g−1)
∂ �u
∂�f CT D(�)(g)

= D(u)(g−1)
∂ �u
∂�t D(�)(g). (B38)
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Similarly, we derive the invariance relation for ∂��/∂�f ,

∂��
∂�f = C

∂ �u
∂�f

= D(�)(g−1)CD(u)(g)D(u)(g−1)
∂ �u
∂�f D(u)(g)

= D(�)(g−1)C
∂ �u
∂�f D(u)(g)

= D(�)(g−1)
∂��
∂�f D(u)(g). (B39)

Finally, we derive the invariance relation for ∂��/∂�t,
∂��
∂�t = C

∂ �u
∂�t

= D(�)(g−1)CD(u)(g)D(u)(g−1)
∂ �u
∂�f D(u)(g)

= D(�)(g−1)C
∂ �u
∂�t D(�)(g)

= D(�)(g−1)
∂��
∂�t D(�)(g). (B40)

�

3. Proofs of Theorem 2 and Corollary 2

Theorem 2. Consider a discrete elastic system described
by the Hamiltonian in Eq. (1). Suppose the geometry exhibits
the symmetry of a group G [Eq. (26)], the energy exhibits
the symmetry of a group H [Eq. (27)], and the elastic re-
sponse obeys the symmetry of the group G ∩ H , all with the
corresponding matrix representations defined above. Then the
following is true:

(a) The LZMs obey the symmetry of the geometric sym-
metry group G, forming an invariant subspace under the action
of D(u)

G (g) such that for every LZM �u and g ∈ G, D(u)
G (g)�u is

also a LZM.
(b) The LZEFs obey the symmetry of elastic response

symmetry group G ∩ H , forming an invariant subspace un-
der the action of D(u)

G∩H (g) such that for every LZEF �f and
g ∈ G ∩ H , D(u)

G∩H (g)�f is also a LZEF.
Proof. To prove (a), suppose there exists a LZM �u which

lies in the kernel of C,

C�u = 0. (B41)

Now consider the mode D(u)
G (g)�u for an arbitrary element g ∈

G. Acting on this mode with C and applying Lemma 1, we
find

CD(u)
G (g)�u = D(�)

G (g)C�u = 0. (B42)

We conclude that D(u)
G (g)�u is also a LZM. Therefore, the

LZMs form an invariant subspace of RNdof under G.
Next, we prove (b). Suppose there exists a LZEF �f which

lies in the kernel of ∂��/∂�f ,

∂��
∂�f

�f = 0. (B43)

Now consider the mode D(u)
G∩H (g)�f for an arbitrary element

g ∈ G ∩ H . Acting on this mode with ∂��/∂�f and applying
Lemma 3, we find

∂��
∂�f D(u)

G∩H (g)�f = D(�)
G∩H (g)

∂��
∂�f

�f = 0. (B44)

We conclude that D(u)
G∩H (g)�f is also a LZEF. Therefore, the

LZEFs form an invariant subspace of RNdof under G ∩ H . �
Corollary 2. Consider a discrete elastic system that satis-

fies Theorem 2 with a set of LZMs and LZEFs related by
Eq. (25), spanning the vector spaces VLZM and VLZEF, re-
spectively. Define the subspace V� spanned by all vectors that
transform according to some IRREP � under the action of the
elastic response node space representation D(u)

G∩H [satisfying
Eq. (33)],

V� =
⎧⎨
⎩

n�∑
s=1

d�∑
i=1

a�s,i|�s, i〉
∣∣∣∣∣∣a�s,i ∈ R

⎫⎬
⎭, (B45)

where |�s, i〉 is an arbitrary complete orthonormal basis that
block-diagonalizes D(u)

G∩H [Eq. (34)].
If either the LZM subspace VLZM or LZEF subspace VLZEF

is equal to a subspace V� for some IRREP �, then the LZM
sand LZEF subspaces are equal, VLZM = VLZEF.

Proof. Let us choose the basis |�s, i〉 to be the eigenmodes
of the Hessian H. Now if the LZM subspace VLZM is equal
to V� some IRREP �, then we may write the LZMs as
eigenmodes of the Hessian. The same is true for the LZEF
subspace VLZEF. In either case, we may appeal to Corollary 1
to conclude that the LZMs and LZEFs span the same space as
eigenmodes of the Hessian. �

APPENDIX C: IRREDUCIBLE REPRESENTATIONS
AND MODE STRUCTURE

In this Appendix, we provide a partial derivation of
Eqs. (33)–(35). In doing so, we illustrate how knowledge
of the irreducible representations of a symmetry group can
provide information about the mode structure of operators that
transform under that group. For a more thorough treatment,
we recommend Ref. [24].

To begin, we define the irreducible representations, or IR-
REPs, of G, indexed by �, as D� : G → GL(V� ) where V� is
a vector space of dimension d� . As a reminder, an IRREP is a
representation under which V contains no nontrivial invariant
subspaces. A subspace V ′ ⊂ V is invariant if D(g)|a〉 ∈ V ′ for
all |a〉 ∈ V ′ and for all g ∈ G. A nontrivial invariant subspace
is one other than V or the null vector {0}.

Next, let D : G → GL(V ) be a representation of G that acts
on a vector space V of dimension N . Using the IRREPs, we
may construct the set of operators

P�,i j = d�

NG

∑
g∈G

D�
ji(g

−1)D(g), (C1)

where � ranges through the different IRREPs and i and j
range from 1 to d� . These operators can be used to create
projectors onto the invariant subspaces of V that transform
according to each IRREP under the action of D.
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To show this, we will first prove that these operators are
orthogonal to one another and are complete. To prove orthog-
onality, we will need the following identity:

P�,i jD(g) = d�

NG

∑
g′∈G

D�
ji(g

′−1)D(g′)D(g)

= d�

NG

∑
g′∈G

D�
ji(g

′−1)D(g′g)

= d�

NG

∑
g′′∈G

D�
ji(gg′′−1)D(g′′)

=
d�∑

k=1

D�
jk (g)

d�

NG

∑
g′′∈G

D�
ki(g

′′−1)D(g′′)

=
d�∑

k=1

D�
jk (g)P�,ik . (C2)

We will also need the Great Orthogonality Theorem for
IRREPs [24],

1

NG

∑
g∈G

D�
ik (g−1)D�′

l j (g) = 1

d�

δ��′δi jδkl . (C3)

Using these identities, we may now write

P�,i jP�′,kl = d�′

NG

∑
g′∈G

D�′
lk (g′−1)P�,i jD(g′)

=
d�∑

m=1

P�,im d�′

NG

∑
g′

D�′
lk (g′−1)D�

jm(g′)

=
d�∑

m=1

P�,imδ��′δlmδ jk

= δ��′δ jkP�′,il . (C4)

We see that these operators are indeed orthogonal to one
another. Furthermore, the operators P�,ii are orthogonal
projectors.

To prove completeness, we will need an identity for group
character orthogonality [24]. We define the group characters
as χ (g) = trD(g). In addition, we use the notation C(g) to
denote the conjugacy class of g. All elements in C(g) have
the same character, so we will also use χ (C(g)) to indicate
character of elements in the conjugacy class of g. Now we
have the identity,

∑
�

χ� (C(g−1))χ� (C(g′)) = NG

NC(g)
δC(g)C(g′ ). (C5)

We use this to prove completeness,

∑
�

d�∑
j=1

P�, j j =
∑

�

d�∑
j=1

d�

NG

∑
g∈G

D�
j j (g

−1)D(g)

=
∑
g∈G

D(g)
1

NG

∑
�

χ� (g−1)d�

=
∑
g∈G

D(g)
1

NG

∑
�

χ� (g−1)χ� (I )

=
∑
g∈G

D(g)
1

NG

∑
�

χ�[C(g−1)]χ�[C(I )]

=
∑
g∈G

D(g)
1

NC(I )
δC(g)C(I )

=
∑
g∈G

D(g)δgI

= D(I )

= I. (C6)

In the third line, we identified d� as the character of the
identity element for each IRREP.

Now that we have defined these operators, we use them
to construct a basis for the vector space V . We construct the
orthonormal basis |�s, i〉 such that the operators decompose
as follows:

P�,i j =
n�∑

s=1

|�s, i〉〈�s, j|, (C7)

such that

〈�s, i|�s′ , j〉 = δ��′δss′δi j,
∑

�

n�∑
s=1

d�∑
j=1

|�s, j〉〈�s, j| = I.

(C8)

Each basis element |�s, i〉 in index by both an IRREP � and
a mode number i = 1, . . . , d� . Furthermore, we define an
additional index s = 1, . . . , n� where n� is the rank of the
operator P�,i j . It is straightforward to see that these operators
obey their proper orthogonality and completeness properties
when written in this way.

We note that this decomposition is not unique. In particu-
lar, we may arbitrarily rotate between vectors with different
values of s to acquire equally valid sets of basis vectors, as
long as we do not mix between different IRREPs � and mode
numbers i, e.g.,

|�s, i〉 →
∑

s′
Sss′ |�s, i〉, (C9)

where S is an n� × n� orthogonal matrix ST S = SST = I.
Now we show that in this basis, the matrix representation

D acquires the block-diagonal form in Eq. (34),

D(g) =
∑

�

d�∑
j=1

P�, j jD(g)

=
∑

�

d�∑
j,k=1

D�
jk (g)P�, jk

=
∑

�

n�∑
s=1

d�∑
j,k=1

|�s, j〉D�
jk (g)〈�s, k|. (C10)

We see that we can interpret n� as the number of times the
IRREP D� appears within our representation D and that s
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labels each copy. Furthermore, we see that in this basis, each
collection of basis elements for fixed �s forms an invariant
subspace under the action of D [Eq. (33)],

D(g)|�s, i〉 =
∑
�′

n�′∑
s=1

d�′∑
j,k=1

|�′
s, j〉D�′

jk (g)〈�′
s, k||�s, i〉

=
d�∑
j=1

|�s, j〉D�
ji(g). (C11)

Now we use our basis to diagonalize the Hessian H. First,
we act with P�, j j onto the Hessian to find

P�, j jH = 1

Ng

∑
g∈G

P�, j jD(g−1)HD(g)

= 1

Ng

∑
g∈G

d�∑
k=1

D�
jk (g−1)P�, jkHD(g)

=
d�∑

k=1

P�, jkH
1

Ng

∑
g∈G

D�
jk (g−1)D(g)

= 1

d�

d�∑
k=1

P�, jkHP�,k j . (C12)

From this, we sum over � and j to find

H =
∑

�

d�∑
j=1

P�, j jH

= 1

d�

∑
�

d�∑
j,k=1

P�, jkHP�,k j

= 1

d�

∑
�

∑
ss′

d�∑
j,k=1

|�s, j〉〈�s, k|H|�s′ , k〉〈�s′ , j|

=
∑

�

n�∑
s,s′=1

d�∑
j=1

|�s, j〉H�
ss′ 〈�s′ , j|, (C13)

where we have defined the n� × n� matrix

H�
ss′ = 1

d�

d�∑
k=1

〈�s, k|H|�s′ , k〉. (C14)

To fully diagonalize H, we perform an eigendecomposition
of H� ,

H�
ss′ =

n�∑
t=1

Sstω
2
�t

ST
ts′ , (C15)

where ω2
�t

are the eigenvalues of H� and the columns of S con-
tain the eigenvectors, which may be chosen to be orthonormal
because H� is symmetric. This means that S is an orthogonal
matrix, so we may use it to define a new set of orthonormal
basis vectors,

|�s, i〉 ≡
n�∑

t=1

ST
st |�t , i〉. (C16)

Substituting this into Eq. (C13), we see that H is now fully
diagonalized,

H =
∑

�

n�∑
s,s′=1

d�∑
j=1

|�s, j〉
(

n�∑
t=1

Sstω
2
�t

ST
ts′

)
〈�s′ , j|

=
∑

�

n�∑
t=1

ω2
�t

d�∑
j=1

(
n�∑

s=1

ST
ts|�s, j〉

)(
n�∑

s′=1

〈�s′ , j|Ss′t

)

=
∑

�

n�∑
t=1

ω2
�t

d�∑
j=1

|�t , j〉〈�t , j|. (C17)

The set of vectors |�t , j〉 for fixed � spans the same vector
space as the vectors |�t , j〉. We can easily show that these vec-
tors properly transform according to their respective IRREPs
under the action of D,

D(g)|�s, i〉 =
n�∑

t=1

D(g)ST
st |�t , i〉

=
n�∑

t=1

ST
st

d�∑
j=1

|�t , j〉D�
ji(g)

=
d�∑
j=1

|�s, j〉D�
ji(g). (C18)

APPENDIX D: GROUP DEFINITIONS, IRREDUCIBLE
REPRESENTATIONS, NODE SPACE REPRESENTATIONS

In this Appendix, we define the groups used in the main
text and report their irreducible representations. We also ex-
plain how we construct the node space representations for
these groups used to classify the modes of the Hessian.

1. Diamond network

Here we describe the groups used to capture the symme-
tries of the diamond network in Figs. 3 and 4.

a. D4 group

The geometric symmetry of diamond network in Figs. 3
and 4 is described by the fourfold dihedral group D4, with
group presentation

D4 = 〈r, σ | r4 = σ 2 = (σ r)2 = 1〉, (D1)

where the generator r corresponds to a 90◦ counterclockwise
rotation of the network about the center node, and σ corre-
sponds to reflection across the central vertical axis.

In Fig. 7, we depict the action of these generators on the
nodes of the network. In Fig. 7(a), we assign labels to the
nodes of this network. The generators r and σ then permute
these nodes as shown in Figs. 7(c) and 7(d), respectively.

In Fig. 7(a) we assign labels to the nodes of this network.
As shown in Fig. 7(c), the generator r corresponds to a 90◦
counterclockwise rotation of the network about the center
node. The generator σ , shown in Fig. 7(d), corresponds to a
horizontal reflection about the center.
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FIG. 7. Generators of the dihedral groups D2 and D4 on the
diamond network with label assignments for the nodes shown in
panel (a).

The character table for D4 is shown in Table II. Each
element of the character table contains the character χ� =
trD� (g) for a group element g in the conjugacy class C.

The matrix representations we use for the one-dimensional
IRREPs � = 1, 1′, 1′′, and 1′′′ are the same as the characters
values in reported in Table II, i.e., D� (g) = χ� (g). For the
two-dimensional IRREP � = 2, we use the following matrices
for the generators:

D2(r) =
(

0 −1
1 0

)
, D2(σ ) =

(−1 0
0 1

)
. (D2)

To construct node space representation D(u)(g) we use to
analyze the mode structure of the Hessian under D4, we first
define a five-dimensional matrix representation D(p)(g) using
permutation matrices of the nodes as shown in Fig. 7. We
then construct the node space representation by taking the ten-
sor product of D(p)(g) and the representation matrices of the
� = 2 IRREP,

D(u)(g) = D(p)(g) ⊗ D2(g), ∀g ∈ G. (D3)

TABLE II. Character table for D4.

Conjugacy class Class size IRREP �

C nC 1 1′ 1′′ 1′′′ 2

{I} 1 1 1 1 1 2
{r, r3} 2 1 1 −1 −1 0
{σ, σ r2} 2 1 −1 1 −1 0
{r2} 1 1 1 1 1 −2
{σ r, σ r3} 2 1 −1 −1 1 0

TABLE III. Character table for D2.

Conjugacy class Class size IRREP �

C nC 1 1′ 1′′ 1′′′

{I} 1 1 1 1 1
{r} 1 1 1 −1 −1
{σ } 1 1 −1 1 −1
{σ r} 1 1 −1 −1 1

b. D2 group

The symmetry of the elastic response in Figs. 3(b) and
4(b) is described by the twofold dihedral group D2 with group
presentation

D2 = 〈r, σ | r2 = σ 2 = (σ r)2 = 1〉. (D4)

The generator r is a 180◦ counterclockwise rotation about the
center, while σ is a reflection that is the same as D4. The
action of these generators on the nodes is shown in Figs. 7(b)
and 7(d).

The character table of D2 is shown in Table III. Because all
of the IRREPs are one-dimensional, the representation matri-
ces are all the same as the character values, D� (g) = χ� (g).

To construct the node space representation, we the use fact
that D2 ⊂ D4 and simply reuse the representation matrices of
D4 for the appropriate subset of group elements.

2. Periodic square lattice

Here we describe the groups used to capture the symme-
tries of the diamond network in Figs. 5 and 6.

a. (Z4 ⊗ Z4) � D4 group

The geometric symmetry of the 4 × 4 periodic square
lattice is captured by the group (Z4 ⊗ Z4) � D4 with group
presentation

(Z4 ⊗ Z4) � D4 = 〈r, σ, x, y | r4 = σ 2 = x4 = y4

= (σ r)2 = (σx)2 = 1, rx = yr〉. (D5)

This group has four generators: r corresponds to a 90◦ coun-
terclockwise rotation, σ corresponds to reflection across the
central vertical axis, and x and y represent translations by 1/4
a unit cell along the x and y axes, respectively.

In Fig. 8, we depict the action of these generators on the
nodes of the network, with labels assignments for the nodes
shown in Fig. 8(a). We depict the actions of r, σ , x, and y in
Figs. 8(c)–8(f), respectively.

The character table for this group is reported in Ta-
ble IV. This group has 20 conjugacy classes and 20
IRREPs. We take the matrix representations for the six
one-dimensional IRREPs, 1(1) through 1(6), to simply
be the characters for each element. For the generators
of the six two-dimensional IRREPs, we use the matrix
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FIG. 8. Generators of the groups (Z4 ⊗ Z4) � D4, Z4 � D2, and D2 the 4 × 4 square lattice network with label assignments for the nodes
shown in panel (a).

TABLE IV. Character table for (Z4 ⊗ Z4) � D4.

Conjugacy class Class size IRREP �

C nC 1(1) 1(2) 1(3) 1(4) 1(5) 1(6) 1(7) 1(8) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6) 4(1) 4(2) 4(3) 4(4) 4(5) 4(6)

{I} 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4 4 4
{r, · · · } 16 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
{σ, · · · } 4 1 1 −1 −1 1 1 −1 −1 2 0 0 0 0 −2 2 2 0 0 −2 −2
{x, y, · · · } 4 1 −1 1 −1 1 −1 1 −1 0 2 0 0 −2 0 2 −2 0 0 2 −2
{r2, · · · } 4 1 1 1 1 1 1 1 1 2 −2 −2 −2 −2 2 0 0 0 0 0 0
{σ r, · · · } 8 1 1 −1 −1 −1 −1 1 1 0 0 0 0 0 0 0 0 2 −2 0 0
{rx, ry, · · · } 16 1 −1 1 −1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
{σx, · · · } 4 1 −1 −1 1 1 −1 −1 1 0 0 2 −2 0 0 2 −2 0 0 −2 2
{x2, y2} 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0 0 −4 −4 0 0
{σy, · · · } 8 1 −1 −1 1 1 −1 −1 1 0 0 −2 2 0 0 0 0 0 0 0 0
{xy, · · · } 4 1 1 1 1 1 1 1 1 −2 2 −2 −2 2 −2 0 0 0 0 0 0
{r2x, r2y, · · · } 8 1 −1 1 −1 1 −1 1 −1 0 −2 0 0 2 0 0 0 0 0 0 0
{σ rx, σ ry, · · · } 16 1 −1 −1 1 −1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
{σxy, · · · } 8 1 1 −1 −1 1 1 −1 −1 −2 0 0 0 0 2 0 0 0 0 0 0
{x2y, xy2, · · · } 4 1 −1 1 −1 1 −1 1 −1 0 2 0 0 −2 0 −2 2 0 0 −2 2
{σy2, · · · } 4 1 1 −1 −1 1 1 −1 −1 2 0 0 0 0 −2 −2 −2 0 0 2 2
{σ rx2, σ rxy, σ ry2, · · · } 8 1 1 −1 −1 −1 −1 1 1 0 0 0 0 0 0 0 0 −2 2 0 0
{r2xy, · · · } 4 1 1 1 1 1 1 1 1 −2 −2 2 2 −2 −2 0 0 0 0 0 0
{σxy2, · · · } 4 1 −1 −1 1 1 −1 −1 1 0 0 2 −2 0 0 −2 2 0 0 2 −2
{x2y2} 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 −4 −4 4 4 −4 −4
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TABLE V. Character table for Z4 � D2.

Conjugacy class Class size IRREP �

C nC 1(1) 1(2) 1(3) 1(4) 1(5) 1(6) 1(7) 1(8) 2 2′

{I} 1 1 1 1 1 1 1 1 1 2 2
{r, rx2} 2 1 1 −1 −1 1 1 −1 −1 0 0
{σ, σx2} 2 1 1 1 1 −1 −1 −1 −1 0 0
{x, x3} 2 1 −1 1 −1 1 −1 1 −1 0 0
{σ r} 1 1 1 −1 −1 −1 −1 1 1 2 −2
{rx, rx3} 2 1 −1 −1 1 1 −1 −1 1 0 0
{σx, σx3} 2 1 −1 1 −1 −1 1 −1 1 0 0
{x2} 1 1 1 1 1 1 1 1 1 −2 −2
{σ rx, σ rx3} 2 1 −1 −1 1 −1 1 1 −1 0 0
{σ rx2} 1 1 1 −1 −1 −1 −1 1 1 −2 2

representations

D2(1)
(r) =

(
0 1
1 0

)
, D2(1)

(σ ) =
(

1 0
0 1

)
, D2(1)

(x) =
(−1 0

0 1

)
, D2(1)

(y) =
(

1 0
0 −1

)
,

D2(2)
(r) =

(
0 −1
1 0

)
, D2(2)

(σ ) =
(−1 0

0 1

)
, D2(2)

(x) =
(

1 0
0 1

)
, D2(2)

(y) =
(

1 0
0 1

)
,

D2(3)
(r) =

(
0 −1
1 0

)
, D2(3)

(σ ) =
(−1 0

0 1

)
, D2(3)

(x) =
(−1 0

0 1

)
, D2(3)

(y) =
(

1 0
0 −1

)
,

D2(4)
(r) =

(
0 −1
1 0

)
, D2(4)

(σ ) =
(−1 0

0 1

)
, D2(4)

(x) =
(

1 0
0 −1

)
, D2(4)

(y) =
(−1 0

0 1

)
,

D2(5)
(r) =

(
0 1

−1 0

)
, D2(5)

(σ ) =
(

1 0
0 −1

)
, D2(5)

(x) =
(−1 0

0 −1

)
, D2(5)

(y) =
(−1 0

0 −1

)
,

D2(6)
(r) =

(
0 1
1 0

)
, D2(6)

(σ ) =
(−1 0

0 −1

)
, D2(6)

(x) =
(

1 0
0 −1

)
, D2(6)

(y) =
(−1 0

0 1

)
, (D6)

and for the six four-dimensional IRREPs, we use

D4(1)
(r) =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, D4(1)

(σ ) =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, D4(1)

(x) =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, D4(1)

(y) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠,

D4(2)
(r) =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, D4(2)

(σ ) =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, D4(2)

(x) =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠, D4(2)

(y) =

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠,

D4(3)
(r) =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎠, D4(3)

(σ ) =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠, D4(3)

(x) =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠, D4(3)

(y) =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠,

D4(4)
(r) =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, D4(4)

(σ ) =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠, D4(4)

(x) =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠, D4(4)

(y) =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠,

D4(5)
(r) =

⎛
⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 1 0 0

⎞
⎟⎠, D4(5)

(σ ) =

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, D4(5)

(x) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠, D4(5)

(y) =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠,

D4(6)
(r) =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, D4(6)

(σ ) =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠, D4(6)

(x) =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠, D4(6)

(y) =

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠.

(D7)

Similar to the construction node space representation for
the diamond network in the previous section, we first create

a node permutation representation D(p)(g), this time of di-
mension 16, using the permutation matrices of the nodes as
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shown in Fig. 8. The node space representation can then be
created by taking the outer product of this representation with
the two-dimensional IRREP � = 2(2),

D(u)(g) = D(n)(g) ⊗ D2(2)
(g), ∀g ∈ G. (D8)

b. Z4 � D2 group

The symmetry of the elastic response in Figs. 5(b)
and 6(b) is captured by the group Z4 � D2 with group
presentation

Z4 � D2 = 〈r, σ, x, y | r2 = σ 2 = x4 = (σ r)2 = (σx)2 = 1〉.
(D9)

This group has three generators: r corresponds to a 180◦
counterclockwise rotation, σ corresponds to reflection across
the central vertical axis, and x represents translations by
1/4 a unit cell along the x axis. The action of these gen-
erators on the nodes is shown in Figs. 8(b), 8(d) and 8(e),
respectively.

The character table of Z4 � D2 is shown in Table V.
This group has 10 conjugacy classes and 10 IRREPs. We
take the matrix representations for the eight one-dimensional
IRREPs, 1(1) through 1(8), to simply be the characters for
each element. For the generators of the two two-dimensional

representations, we use the matrix representations

D2(r) =
(−1 0

0 1

)
, D2(σ ) =

(−1 0
0 1

)
,

D2(x) =
(

0 1
−1 0

)
,

D2′
(r) =

(
1 0
0 −1

)
, D2′

(σ ) =
(−1 0

0 1

)
,

D2′
(x) =

(
0 1

−1 0

)
. (D10)

To construct the node space representation, use the fact that
Z4 � D2 ⊂ (Z4 ⊗ Z4) � D4 and simply reuse the representa-
tion matrices of (Z4 ⊗ Z4) � D4 for the appropriate subset of
group elements.

c. D2 group

The symmetry of the elastic response in Figs. 5(c) and
6(c) is captured by the twofold dihedral group D2 with group
presentation shown in Eq. (D4). The action of the two genera-
tors r and σ are shown in Figs. 8(b) and 8(d), respectively.
The character table and IRREP matrices are presented in
Appendix D 1 b.

To construct the node space representation, use the fact that
D2 ⊂ Z4 � D2 and simply reuse the representation matrices of
Z4 � D2 for the appropriate subset of group elements.
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