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Vibrational lifetimes and viscoelastic properties of ultrastable glasses
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Amorphous solids are viscoelastic. They dissipate energy when deformed at finite rate and finite temperature.
We here use analytic theory and molecular simulations to demonstrate that linear viscoelastic dissipation can be
directly related to the static and dynamic properties of the fundamental vibrational excitations of an amorphous
system. We study ultrastable glasses that do not age, i.e., that remain in stable minima of the potential energy
surface at finite temperature. Our simulations show four types of vibrational modes, which differ in spatial
localization, similarity to plane waves and vibrational lifetimes. At frequencies below the Boson peak, the
viscoelastic response can be split into contributions from plane-wave and quasilocalized modes. We derive a
parameter-free expression for the viscoelastic storage and loss moduli for both of these modes. Our results show
that the dynamics of microscopic dissipation, in particular the lifetimes of the modes, determine the viscoelastic
response only at high frequency. Quasilocalized modes dominate the linear viscoelastic response at intermediate
frequencies below the Boson peak.
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I. INTRODUCTION

Solid materials deform in response to external load. In ideal
elastic solids, the energy stored in the deformation is fully
recovered once the load is removed and they return to their
original state. Real solids always dissipate energy at finite
deformation rates. Such viscoelastic effects are strong for soft
polymeric (rubbery) materials, but they are also present in
hard materials such as glasses, alloys or even crystals [1,2].
Viscoelasticity is responsible for limiting the quality factor
(line width) of oscillators, and the design of micro- or na-
noelectromechanical oscillators seeks to minimize this effect
[3–9]. The resilience of glasses toward impact or shock is
determined by its ability to absorb energy, which requires ma-
terials with large viscoelasticity [10–13]. Understanding the
atomistic origins of viscoelastic dissipation in hard materials
is therefore crucial for the design of mechanical devices and
resilient materials.

The microscopic mechanism behind viscoelastic dissipa-
tion is thermalization. While the first law of thermodynamics
tells us that energy is conserved, “dissipation” of energy
is the result of processes that evolve an out-of-equilibrium
system toward its thermodynamic equilibrium [14,15]. These
processes become apparent when we regard only an (open)
subsystem of a larger system, e.g., by integrating out part
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of the microscopic degrees of freedom that do not belong to
the subsystem: The separation into a system of interest and a
“heat bath” (whose detailed state we do not know) leads to
the emergence of frictional forces (potentially with memory)
in the equations for excitations of the subsystem [14,15]. For
solids, such as crystals or glasses, the natural description of
excitations is in the form of vibrational normal modes. For
a three-dimensional solid with N atoms and therefore 3N − 3
vibrational modes, the canonical view is to regard one of these
modes as the system of interest and the rest as the heat bath.

In a linear system, each vibrational mode is fully inde-
pendent and there is no coupling between mode and bath.
Linear systems do not evolve toward thermodynamic equi-
librium and there is no “dissipation”. Coupling and hence
dissipation emerges solely through nonlinearities in the inter-
mode (or interatomic) interactions. The time required for a
vibrational mode to return to the thermodynamic equilibrium
is given by its vibrational lifetime. Vibrational lifetimes can
either be obtained via simulations or from perturbation theory
[16–19]. The mode-coupling process is particularly interest-
ing for glassy solids that are intrinsically out-of-equilibrium
[20]. Besides excitation of vibrational modes, viscoelastic dis-
sipation is triggered by atomic rearrangements, i.e., transitions
between inherent structures [19,21–24]. We here focus only
on the excitation aspect of viscoelastic dissipation in glasses
and study “ultrastable” glasses, which remain in the same in-
herent structure even at temperatures comparable to the glass
transition temperature [25].

In computer glass models, energy dissipation is studied
either by measuring the phase shift between the applied strain
and the resulting stress in brute-force simulations [26–29],
or by relating the dynamics of vibrational normal modes
to the macroscopic viscoelastic properties [30–35]. In the
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brute-force approach, a sinusoidal strain γ (t ) = γ0 sin(�t )
with driving frequency � and amplitude γ0 is applied to
a representative volume element and the resulting stress
σ (t ) is measured. The temperature is kept constant dur-
ing deformation by using a thermostat, which typically
adds a viscous damping with a characteristic time con-
stant τBF [36–39]. Fitting the stress response with σ (t ) =
σ0 sin(�t + δ) yields stress amplitude σ0 and phase shift δ.
If the macroscopic deformation is pure shear with strain
γ (t ), the complex shear modulus Ĝ(�) = G′(�) + iG′′(�) is
given by [2]

G′ = σ0/γ0 cos δ and G′′ = σ0/γ0 sin δ, (1)

where G′ is the storage modulus (measure of stored elastic
energy) and G′′ is the loss modulus (measure of the amount of
dissipated energy).

In the microscopic approach, the movement of atoms
around their inherent structure is modeled as driven, damped
harmonic Langevin oscillators [30,31]. Prior work has
used constant microscopic damping with a wavelength-
independent relaxation time τ in such microscopic determi-
nation of viscoelastic properties [30,31,33,34]. The value of
τ was chosen in such a way that the temperature remained
constant during deformation or by examining the results for
different choices of damping, lacking an intrinsic physical
motivation for the specific choice. Constant damping leads to
dissipation that is independent of wavelength, and this violates
momentum conservation. In other words, fast modes will be
generally underdamped and slow modes will be generally
overdamped, as discussed for example in Ref. [40]. As we will
show below, a good choice for τ is a value where the whole
finite system is underdamped, in which case the timescales
of energy flow to the thermostat and of coupling between
vibrational excitations of the glass are separated.

In the present work, we lift this restriction and use the
actual damping constant (or lifetime) of the respective vi-
brational normal mode. Inspired by the seminal works of
Ladd, McGaughey, and coworkers [41,42], we measure the
lifetimes from the decay of energy autocorrelation functions.
This yields a first-principles theory of viscoelastic dissipation
in disordered solids. It allows us to predict the complex shear
modulus Ĝ as a function of driving frequency � and temper-
ature T , as well as to make a statement about the accuracy of
assuming constant damping.

II. METHODS

A. Polydisperse model and preparation protocol

We use the polydisperse model glass described in Ref. [43]
and only summarize the key parameters and the interaction
potential here. The system consists of N particles of equal
mass M and varying size λ. The size λ is drawn from a
distribution P(λ) ∼ λ−3 with λ ∈ [λmin = 1.0, λmax = 2.22],
where we use σ ≡ λmin as our unit of distance. The density
of the solid is fixed at ρ = 0.58 σ−3 and periodic bound-
ary conditions are employed in all three spatial directions.
The interaction is governed by a pair-wise smoothed inverse

power-law potential of the form

U (rIJ ) =
⎧⎨
⎩

ε
[(

λIJ
rIJ

)β + ∑q
l=0 c2l

( rIJ
λIJ

)2l]
, rIJ � rcλIJ ,

0, rIJ > rcλIJ ,

where β determines the softness, rc is the cutoff radius, λIJ

is the pairwise interaction length and ε is an energy scale.
The pairwise interaction length is given by the nonadditive
mixing rule

λIJ = 1
2 (λI + λJ )(1 − na|λI − λJ |) (2)

with na = 0.1. The coefficients c2l in the potential are chosen
such that the potential is continuous up to the qth derivative
at the cutoff [44]. Requiring that the potential and its first q
derivatives vanish at the cutoff rc fixes the coefficients [43],

c2l = (−1)l+1

(2q − 2l )!!2l!!

(β + 2q)!!

(β − 2)!!(β + 2l )
r−(β+2l )

c . (3)

We set β = 10 and smooth the potential up to the q = 3
derivative. Throughout the paper we employ reduced
Lennard-Jones units, where energy is measured in units of
ε, temperature in ε/kB, time in

√
Mσ 2/ε ≡ t∗, frequency in

f ∗ ≡ (t∗)−1, and stress in ε/σ 3.
Glassy configurations are obtained by equilibrating the

structure at a parent temperature Tp using the swap Monte
Carlo algorithm [25,43]. Our ensembles of glasses consist of
100 individual configurations prepared at either Tp = 0.3 ε/kB

or Tp = 0.4 ε/kB. System-size dependence is studied using
configurations with N = 2k, N = 8k, N = 64k, and N =
256k atoms, where k = 1000. The timestep for the molecular
dynamics simulations is determined by running equilibrium
microcanonical (NVE) simulations and studying the change
in total energy. A timestep of �t = 0.001 t∗ for temperatures
T � 10−2 ε/kB is sufficient to guarantee energy conservation.
To reduce computational cost, a timestep of �t = 0.003 t∗
is used at temperatures lower than T = 10−2 ε/kB. Atomic
configurations at finite temperature are equilibrated in the
canonical (NVT) ensemble using a Nosé-Hoover chain ther-
mostat with a relaxation time of 1 t∗ [38,45].

These model glasses interact via purely repulsive forces.
This means that the final configurations are always under
hydrostatic stress. Therefore, care needs to be taken when
interpreting the elastic constants [46]. We come back to this
in the discussion below.

B. Vibrational modes

The ultimate goal is to model viscoelastic energy dissi-
pation triggered by the excitation and subsequent decay of
vibrational normal modes. These vibrational modes are ex-
cited because a time-dependent long-wavelength deformation
gives rise to nonaffine displacements that have a nonzero
projection onto the normal modes [30,47,48]. This mechanism
is not limited to disordered systems but is also relevant even
for simple crystals [2,28].

In the following we denote 3-vectors by arrows (e.g., �χIi)
and 3N-vectors using bold symbols (e.g., em). Similarly, we
will use an underline for a 3 × 3 tensor (e.g., HIJ ) and a
calligraphic symbol for a 3N × 3N tensor (e.g., H). Atoms
are identified by capital Roman indices, modes (see below)
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by lowercase Roman indices and Cartesian components by
Greek indices. We consider a simulation cell whose shape is
described by the cell matrix h̊ ≡ (�a1, �a2, �a3). The cell is filled
with N atoms residing in a local potential energy minimum at
positions �̊rI . We refer to this initial state as “reference” and
mark all quantities which are defined in this reference by a
circle. For amorphous solids, the set of equilibrium positions
{�̊rI} is typically called the inherent structure [20,49].

In the athermal limit, we distinguish between affine and
nonaffine mechanical deformation [50]. The initial simulation
cell h̊ and the atomic positions �̊rI are remapped by an affine
transformation

�rI = h · h̊
−1 · �̊rI , (4)

where h and �rI are now the “current” cell and atomic positions.
For amorphous solids, such an affine transformation does not
result in an atomic configuration in equilibrium. Net “non-
affine” forces �αβηαβ on the atoms remain, where

�αβ = − ∂2U

∂ηαβ∂r
(5)

is a force tangent and η is the Green-Lagrange strain tensor
[30,46]. Allowing the solid to relax to the closest local mini-
mum leads to a configuration with vanishing nonaffine forces.
The atomic displacements �uI during relaxation are called
nonaffine displacements. We can write the current atomic po-

sitions as �rI = h · h̊
−1 · �̊rI + �uI . The nonaffine motion is best

visualized by pulling the current atomic positions back to the
reference and defining pulled-back nonaffine displacements as
�χI ≡ h̊ · h−1 · �uI .

At small finite temperature, atoms vibrate within their
inherent structure. We express these dynamics as a set
of coupled, driven Langevin oscillators in the reference
configuration,

Mχ̈(t ) + F · χ̇(t ) + H · χ(t ) = �αβηαβ (t ) + S · ξ(t ). (6)

The matrix H is the Hessian with blocks

HKL = ∂2U

∂�rK∂�rL
, (7)

F is a friction matrix and S is a matrix with noise amplitudes.
The fluctuation-dissipation theorem is [51]

S · ST = 2kBTF (8)

and the vector ξ(t ) contains independent white noise vari-
ables, i.e., 〈ξIα (t )ξJβ (t ′)〉 = δIJδαβδ(t − t ′). The dynamics of
the Langevin oscillators is driven by the nonaffine forces that
emerge during cell deformation.

The natural frequencies and eigenvectors are obtained from
diagonalization of the Hessian, namely by solving

Mω2
mem = Hem. (9)

Since H is symmetric, the eigenvectors are orthogonal and we
also assume that they are normalized such that em · el = δml .
Given Q = (e1, ..., e3N ), we can write H = MQ · Ĥ · Q−1,
where Ĥ is a diagonal matrix of the corresponding eigenfre-
quencies ω2

m. We can use the normal-mode basis em to define
modal displacements X = MQ−1 · χ. The dynamical Eq. (6)

then becomes

Ẍ (t ) + F̂ · Ẋ (t ) + Ĥ · X (t ) = �̂αβηαβ (t ) + Ŝ · Z(t ), (10)

with F = MQ · F̂ · Q−1, S = MQ · Ŝ · Q−1, and �αβ = Q ·
�̂αβ . The random vector Z(t ) = Q−1 · ξ(t ) is just a rotation of
independent white noise variables, which itself is a vector of
independent white noise variables.

The core assumption of the viscoelastic model, which is
often not spelled-out explicitly, is that Q not only diagonalizes
H, but also the friction matrix F , and therefore by virtue of
Eq. (8) also S . This means, the time evolution of each mode
m is given by an independent, driven Langevin oscillator

Ẍm + τ−1
m Ẋm + ω2

mXm = �̂m,αβηαβ + 2kBT τ−1
m Zm, (11)

with vibrational lifetime τm. The inverses of the lifetimes are
the entries of the diagonal matrix F̂ . The common treatment
in the literature assumes τm = τ , independent of the mode m
[30,31,33]. We here relax this specific assumption by using
mode-dependent vibrational lifetimes τm, which implicitly in-
clude full anharmonic scattering [17,52].

C. Characterization of modes

We characterize ω2
m and em by the vibrational density of

states (VDOS) g(ω), the participation ratio Pm and the phonon
order parameter Om [53–57]. The VDOS is given by

g(ω) = 1

3N − 3

3N∑
m=4

δ(ω − ωm), (12)

where δ(ω − ωm) is the Dirac δ function and we neglect the
three translational modes.

A common measure used to characterize the spatial local-
ization of vibrational modes is the participation ratio, which
is defined as [53–55]

NPm =
[

N∑
I=1

(�emI · �emI )2

]−1

, (13)

where NPm is the approximate number of atoms participat-
ing in the vibration. For extended modes, Pm is of the order
of unity, independent of N , because all atoms participate
equally in the vibration. For localized modes, it scales with
1/N because only a finite number of atoms participate in the
vibration.

In an elastic medium with translational symmetry, we
expect a population of plane-wave vibrational modes, the
phonons. We evaluate the similarity of the vibrational ex-
citations to plane waves by computing the phonon order
parameter defined in Ref. [56,57]. The idea is to expand the
eigenvectors em in the basis of plane waves wp(�q). The basis
expansion is written as

em =
∑
�q,σ

Am,p(�q)wp(�q), (14)

where Am,p(�q) are the expansion coefficients. In this equation,
�q is the wave vector and p denotes the polarization, which is
either longitudinal or transversal. The amplitude of a phonon
mode with a certain (�q, p) for an atom I in the amorphous
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configuration is given by the Fourier basis

�wI,p(�q) = �np(�q)√
N

exp (i �q · �̊rI ), (15)

where �np(�q) is the polarization vector. The longitudinal po-
larization vector is defined as �nL(�q) = �q/| �q| and the two
transversal polarization vectors need to fulfill �nT1(�q) · �q =
�nT2(�q) · �q = �nT1(�q) · �nT2(�q) = 0.

The phonon-order parameter is defined as the sum of the
projection of the eigenvectors em onto the plane-wave basis
w �qp, which are larger than some threshold α:

Om =
�qmax∑

�q=�qmin

∑
p

|em · w∗
p(�q)|2θ (|em · w∗

p(�q)|2 − α). (16)

Here θ (x) is the Heaviside step function and the star indicates
the complex conjugate. The sum runs over all wave vectors
from the smallest ∼2π/L (where L is the linear size of the
system) up to a largest wave vector, that is given by the
minimal distance between two atoms in the configuration. In
our analysis, we use a threshold value of α = 50/(3N − 3).
We compared different thresholds but found no influence on
the result.

We characterize the anharmonicity of the vibrational
modes using higher order derivatives of the potential energy
as described in Refs. [58–60]. The atomic positions are dis-
placed from the inherent structure �̊rI in the direction of the
eigenvectors em by a distance sem, where s is a scale factor of
units length. We then expand the potential energy U ({�rI}) in a
Taylor series,

U (sem) − U (0) = 1
2αms2 + 1

6βms3 + 1
24γms4, (17)

with

αm =
N∑

I,J=1

∂2U

∂�rI∂�rJ
: (�emI ⊗ �emJ ), (18)

βm =
N∑

I,J,K=1

∂3U

∂�rI∂�rJ∂�rK

... (�emI ⊗ �emJ ⊗ �emK ), (19)

γm =
N∑

I,J,K,L=1

∂4U

∂�rI∂�rJ∂�rK∂�rK
:: (�emI ⊗ �emJ ⊗ �emK ⊗ �emL ),

(20)

where ⊗ is the outer product and :,
..., and :: are a double, triple,

and quadruple contraction over all indices of the tensors of
second, third, and fourth order, respectively, on both sides of
the symbol. Note that αm = Mω2

m.

D. Measuring the vibrational lifetimes

We measure lifetimes of the vibrational modes in micro-
canonical (NVE) simulations of our equilibrated glasses. The
computation of lifetimes is based on the assumption that the
glass remains in its initial inherent structure, {�̊rI (t )} ≡ {�̊rI (t =
0)}. Therefore, it is necessary to discard those simulations, in
which the system evolves toward a new potential energy min-
imum. A transition toward a new energy minimum is detected
from the difference in the inherent structure. We define (see

also Ref. [19])

�rIS(�t ) = |r̊(t ) − r̊(t − �t )| (21)

and test for jumps in �rIS. In our simulations, we observe that
atomic rearrangements result in values �rIS(�t ) ≈ 1 − 10 σ ,
independent of temperature. To eliminate margin for error,
we use a threshold around 100 times smaller than this value
and discard simulations where �rIS > 10−2 σ , assuming that
those undergo a configurational transition.

For structures where no atomic rearrangement occurred
during the simulation, we compute the lifetimes of the vibra-
tional modes from the decay of the autocorrelation of the total
energy [41,42,61]. We write the Hamiltonian of the system
without external deformation in the harmonic approximation,
Hharmonic = ∑

m Hm with

Hm(Xm(t ), Ẋm(t )) = 1
2

(
Ẋ 2

m(t ) + ω2
mX 2

m(t )
)
, (22)

the contribution to the Hamiltonian of mode m. The value of
Hm(t ) for a specific mode m at a specific time t is computed
by projecting the atomic configuration r(t ) from the NVE
simulation onto the eigenmodes em to obtain Xm. The contri-
bution Hm(t ) to the overall energy is then computed from the
harmonic approximation, Eq. (22).

The lifetimes τm are given by the decay of the normalized
total energy autocorrelation function Cm [18,41,42,61],

Cm(t ) = 〈δHm(t )δHm(0)〉
〈δH (0)δH (0)〉 , (23)

where δHm(t ) = Hm(t ) − 〈Hm〉 is the deviation of the current
total energy from its expectation value for mode m. The ther-
modynamic average 〈·〉 has to be interpreted as being taken
over the basin of the potential energy landscape that belongs
to the current inherent structure. We sample it by running
dynamic simulations and ensuring that the inherent structure
does not change, as discussed in the previous paragraph.

In the high-temperature limit, equipartition of energy holds
and it follows that 〈H〉 = T ε. Prior work has shown (nu-
merically and theoretically) that Cm(t ) exhibits an exponential
decay Cm ∝ exp(−t/τm) [18,19,42,61,62]. For fitting τm, we
compute a first guess by integrating Cm(t ) up to a certain
maximal threshold,

τ ′
m =

∫ tmax

0
dt

〈δHm(t )δHm(0)〉
〈δH (0)δH (0)〉 , (24)

where tmax is taken as the value where the correlation functions
drops below 1/e. The approximated lifetimes τ ′

m are used as
initial guesses for least-squares fits of τm to Cm(t ). The data is
fitted again up to the time where Cm(t ) has dropped to 1/e.

E. Viscoelastic moduli

To derive an expression for the viscoelastic response, we
follow the derivation of Lemaı̂tre et al. [30]. We consider the
variation of the stress � from time-dependent box deforma-
tion, described by a Lagrange strain η(t ). We write

��αβ (t ) = 1

V̊

(
∂U

∂ηαβ

∣∣∣∣
η=η(t )

− ∂U

∂ηαβ

∣∣∣∣
η=0

)
, (25)
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where � has the properties of a second Piola-Kirchhoff stress.
We consider only small fluctuations and expand Eq. (25) in a
Taylor series up to first order,

��αβ (t ) = c�
αβμνημν (t ) − V̊ −1�μν · χμν (t ), (26)

where

c�
αβμν = 1

V̊

∂2U

∂ηαβημν

∣∣∣∣
η=0

(27)

is the tensor of elastic constants at constant Piola-Kirchoff
stress and without nonaffine displacements [44,46].

Following the derivation of Sec. II B, we project onto the
vibrational normal modes to obtain

��αβ (t ) = cαβμνημν (t ) − 1

V̊

∑
m

�̂m,αβXm(t ). (28)

Considering only oscillatory deformations, we perform a
Fourier transformation of Eqs. (11) and (28). This yields

��̃αβ (�) = Dαβμν (�)η̃μν (�), (29)

with

D�
αβμν = c�

αβμν + 1

V̊

∑
m

�̂m,αβ�̂m,μν

�2 − i�τ−1
m − ω2

m

, (30)

where a tilde indicates a Fourier-transformed quantity. This
result is an extension of the theory derived by Lemaître and
Maloney [30] that includes a mode-dependent lifetime τm.
We can write this equation in the more common form for the
storage D′

αβμν and loss modulus D′′
αβμν as

D�′
αβμν = c�

αβμν + 1

V̊

∑
m

�̂m,αβ�̂m,μν

(
�2 − ω2

m

)
(
�2 − ω2

m

)2 + �2τ−2
m

, (31)

D�′′
αβμν = 1

V̊

∑
m

�̂m,αβ�̂m,μντ
−1
m �(

�2 − ω2
m

)2 + �2τ−2
m

. (32)

Lemaı̂tre et al. showed that the values of �̂m,αβ can be
considered as independent random variables which are self-
averaging quantities [30]. Therefore, we define the nonaffine
correlator

�αβμν (ω) = 1

3N − 3

3N∑
m=4

δ(ω − ωm)�̂m,αβ�̂m,μν. (33)

Using the nonaffine correlator, we can write the storage and
loss modulus as

D�′
αβμν = c�

αβμν + 1

V̊

∫ ∞

0
dω

g(ω)�αβμν (ω)(�2 − ω2)

(�2 − ω2)2 + �2τ−2(ω)
,

(34)

D�′′
αβμν = 1

V̊

∫ ∞

0
dω

g(ω)�αβμν (ω)τ−1(ω)�

(�2 − ω2)2 + �2τ−2(ω)
(35)

in the thermodynamic limit of large systems. In the limit
� → 0, the loss modulus vanishes and the storage modulus
converges to the static elastic constants,

D�′
αβμν → c�

αβμν − 1

V̊

∫ ∞

0
dω

g(ω)�αβμν (ω)

ω2
, (36)

where the last summand is the correction to the elastic con-
stants from nonaffine forces [30,46]. Conversely, in the limit
� → ∞ the loss modulus also vanishes but the storage mod-
ulus converges to D�′

αβμν → c�
αβμν , which are the static elastic

constants under the assumption of purely affine deformation.
Equation (30) is valid for arbitrary deformation modes.

Since amorphous solids behave isotropically, the stress is hy-
drostatic and our interatomic potential is purely repulsive, we
consider only the case of simple shear. Therefore, we define
the mean shear modulus,

G�(ω) = [
D�

1212(ω) + D�
1313(ω) + D�

2323(ω)
]/

3, (37)

which is the susceptibility that we discuss throughout this
paper. We will also refer to the shear correlator � below, which
is the mean shear component of the correlator, Eq. (33).

F. Brute-force calculations

The previous section describes the linear response the-
ory for viscoelastic dissipation. We also compute viscoelastic
properties from “brute-force” calculations of oscillatory cell
deformation. The cell is subjected to time-dependent simple
shear with strain γxy(t ), which means we evolve the cell ma-
trix according to

h(t ) =

⎛
⎜⎝1 γxy(t ) 0

0 1 0
0 0 1

⎞
⎟⎠ · h̊ (38)

and affinely remap all atomic positions during each strain
increment. We measure the resulting shear stress σxy from
the virial theorem [63] and fit amplitude σ0 and phase lag
δ to compute the complex shear modulus via Eq. (1) (see
also Refs. [26,28,29,31,33]). For each excitation frequency
� we simulate 60 periods. We neglect the first 10 periods
during which the system approaches a dynamical steady-state
and average the results for each excitation frequency over
the remaining 50 periods and ensembles with 50 indepen-
dent configurations. The system is strained to γ0 = 1.0% and
the temperature is kept constant at T = 10−2 ε/kB using a
Langevin thermostat with a relaxation time constant of τBF =
0.1 t∗ [39]. This maximal strain is well below the yield point.
We tested that using a strain amplitude of 0.5% or 1.5% does
not affect the results.

Care needs to be taken when comparing the microscopic
theory to brute-force calculations. In the former, the stress is
defined as the derivative of the potential or free-energy with
respect to the Green-Lagrange strain tensor η. In the latter,
we compute the instantaneous stress using the virial theorem,
which gives the Cauchy stress [63]. Elastic constants derived
from either expression differ by a constant that depends ex-
plicitly on the stress. Since our system is (approximately)
hydrostatic, the difference between the shear modulus at con-
stant Cauchy stress G and at constant second Piola-Kirchhoff
stress G� is [46,64]

G = G� − P, (39)

where P = −σαα/3 is the hydrostatic pressure. In the fol-
lowing we report just G for both microscopic theory and
brute-force calculations.
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FIG. 1. Ensemble averaged reduced VDOS for all ensembles
with N = 2k up to N = 256k atoms prepared at a parent temperature
of Tp = 0.4 ε/kB.

III. RESULTS

A. Spatial structure of vibrational modes

To classify vibrational modes in amorphous solids, it is
useful to define two characteristic frequencies. The first one
is the frequency of the Boson peak, ωBP, which is determined
from the maximum in the reduced VDOS g(ω)/ω2 [57,65].
The second one is the frequency of the lowest phonon mode
ωPh, which can be obtained from [66]

ωPh = 2π

L

√
G′(� → 0)

ρ
, (40)

where ρ is the density and L is the linear size of the box.
In Fig. 1 we show the reduced vibrational density of states

for our simulation model. The local peak in the reduced
VDOS is the Boson peak, which is located at 〈ωBP〉 ≈ 3 f ∗.
For the lowest phonon mode, we obtain 〈ωPh〉 = 1.23 f ∗
for the ensemble of configurations with N = 8k atoms and
〈ωPh〉 = 0.39 f ∗ for the larger system size with N = 256k
atoms.

Figure 2 shows the raw vibrational density of states
(VDOS), the participation ratio Pm and the plane-wave order
parameter Om. At frequencies higher than the Boson peak,
we see [Fig. 2(a)] that the VDOS has one dominant local
maximum at ≈10 f ∗ and one shoulder at ≈21 f ∗. In the
mid-frequency range 3 f ∗ � ω � 23 f ∗, we find delocalized
vibrational modes (large Pm). In the high-frequency end above
ω � 23 f ∗, we see a sudden decrease of Pm, indicative of spa-
tial localization. The vibrational modes in the mid-frequency
as well as in the high-frequency range are poorly described by
plane waves, as shown in Fig. 2(c). We call vibrational modes
in the midfrequency range disordered and the strongly local-
ized vibrational modes in the end of the frequency spectrum
localized [67].

Vibrational modes with frequencies below the Boson peak
show discrete local maxima. The first peak coincides with
the lowest phonon frequency ωPh. Based on the participation

FIG. 2. The ensemble averaged VDOS, the participation ratio Pm

and the overlap parameter Om for a subset of configurations with
N = 8k atoms (a)–(c) and N = 256k atoms (d)–(f). Each configura-
tion is prepared at a parent temperature of Tp = 0.4 ε/kB. The vertical
arrows mark the first phonon frequency 〈ωPh〉 and the location of the
Boson peak 〈ωBP〉. The horizontal dashed lines mark the thresholds
in the participation ratio to distinguish localized and delocalized vi-
brational modes. Threshold are chosen as Pm = 10−2 and Pm = 10−3

for systems with N = 8k and N = 256k atoms.

ratio and the phonon order parameter in Figs. 2(b) and 2(c),
two types of vibrational modes coexist in this limit: There
are clusters of delocalized vibrational modes with similar fre-
quencies ωm, and large Pm and Om. The absolute values of Pm

and Om in one of these clusters show large fluctuations. Based
on their similarity to phonons in crystalline materials, we term
these vibrational modes plane waves [57,66]. The second type
of vibrational modes observed in the low-frequency range
are localized and have a low overlap with plane waves. In
accordance with the literature, we term this type of vibrational
mode quasilocalized [53,54,57].

Larger systems [Figs. 2(e) and 2(f)] show identical be-
havior. In the low-frequency limit [Fig. 2(d)], the number of
discrete maxima increases over the smaller system as lower
vibrational frequencies are resolved. While the separation
between quasilocalized and plane-wave vibrational modes
becomes clearer as a consequence of the increasing system
size, the overlap parameter shows larger fluctuations within
each cluster of plane-wave modes. These observations are
in agreement with previous works on vibrational modes in
disordered solids [53,54,57].
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FIG. 3. Vibrational lifetimes τm for ten configurations with N = 8k atoms (a) and for full ensembles with N = 64k atoms (b) and N = 256k
atoms (c). All configurations are prepared at a parent temperature of kBTp = 0.4 ε. Lifetimes are computed at a temperature of T = 10−4 ε/kB.
(d) Rescaled vibrational lifetimes for one configuration prepared at kBTp = 0.3 ε with N = 2k atoms. The lifetimes are rescaled with kBT ω2 as
expected from a third-order perturbation theory. Symbols in each panel are used to distinguish localized and delocalized modes, as determined
from their participation ratio.

B. Lifetimes of vibrational modes

Amorphous solids are intrinsically out-of-equilibrium and
therefore their atomic structure evolves in time (the struc-
ture ages) even at temperatures far below the glass transition
temperature [19,21]. To suppress aging during measurement
of vibrational lifetimes, simulations are performed at a low
temperature of T = 10−4 ε/kB. As described in the methods,
we detect aging by comparing the atomic positions in the
inherent structure and discard simulations when these atomic
positions change over time.

Figures 3(a)–3(c) show the vibrational lifetimes for config-
urations with N = 8k, N = 64k and N = 256k atoms. Each
ensemble is prepared at a parent temperature of kBTp = 0.4 ε.
For N = 8k atoms, we show the full frequency spectrum in
Fig. 3(a). The high-frequency end, ω � 23 f ∗, is dominated
by localized modes. Their vibrational lifetimes are frequency-
independent. Decreasing the frequency to ωBP, increases the
vibrational lifetimes. Below the Boson peak, we identify a
splitting of the vibrational lifetimes. The lifetimes can be
separated in vibrational modes with long lifetimes and vi-
brational modes with short lifetimes. Comparing this result
with Fig. 2, we identify the modes with long lifetimes as the
plane-wave modes and the latter as the quasilocalized modes.
This splitting of vibrational lifetimes is more clearly visible in
Figs. 3(b) and 3(c) where we show lifetimes for larger system
sizes with N = 64k and N = 256k atoms. We can clearly
observe that the upper limit of lifetimes of plane-wave modes
scales as ω−2 and that their value in a cluster fluctuates over
up to two orders of magnitude.

Aging effects are more pronounced for larger sample sizes
and in less stable glasses, which are prepared at higher parent
temperature Tp [19]. To avoid aging, we study the temperature
dependence of the vibrational lifetimes for temperatures up
to kBT = 0.1 ε using amorphous configurations with N = 2k
atoms prepared at a low parent temperature of kBTp = 0.3 ε.
The highest temperature is in the same order of magnitude
as their mode-coupling temperature (kBTMCT ≈ 0.56 ε [68]).
Third-order perturbation theory predicts the vibrational life-
times to scale as τm ∝ (kBT )−1 [16,17,19]. Figure 3(d) shows
kBT τm for one exemplary configuration. The temperature-
scaled lifetimes collapse onto an universal curve.

C. Correlator of nonaffine forces

In Fig. 4(a) we show the ensemble-averaged shear cor-
relator 〈�(ω)〉 defined in Eq. (33) for configurations with
N = 8k, N = 64k, and N = 256k atoms. For frequencies
above the Boson peak, the shear correlator increases with
increasing vibrational frequency. In the mid-frequency region
of the disordered modes, the increase is well represented by a
power-law ∝ ωa. By fitting the N = 8k data in the frequency
range 3 � ω � 24 we obtain a ≈ 0.6. For vibrational modes
with frequencies smaller than the Boson peak frequency, the
shear correlator splits in two branches. For the first branch we
observe a frequency independent shear correlator of 〈�(ω)〉 ≈
200 σ/ε. The shear correlator of the second branch decreases
with a power a ≈ 2.4, computed for the ensemble with N =
256k and vibrational frequencies ω � 1.5 f ∗. The behavior
in both branches is independent of system size. Note that
Zaccone and Scossa-Romano [69] derived a value of a = 2
for an effective medium description of an amorphous solid.

Figure 4(b) shows the shear correlator as a function of the
corresponding participation ratio 〈Pm〉. Spatially delocalized
vibrational modes (large Pm) have a small shear correlator
while localized vibrational modes (small Pm) have large values
of the shear correlator. The shear correlator as a measure of
nonaffinity is hence also a measure of localization.

D. Frequency-dependent viscoelastic properties

We compare the frequency-dependent viscoelastic moduli
computed by three different approaches. In the first approach,
we compute the shear moduli from Eqs. (31) and (32) using
the mode-dependent vibrational lifetimes τm at a temperature
of T = 10−2 ε/kB. For the second approach, we assume a con-
stant lifetime, i.e., we set τm = τ and evaluate again Eqs. (31)
and (32). In the last approach we perform brute-force (BF)
simulations, in which we directly “wiggle” the simulation
cell and measure the resulting stress (see Methods). Note
that in contrast to the simulations from which we extracted
the vibrational lifetimes, we kept atomic trajectories in which
atomic rearrangements occurred during mechanical deforma-
tion. The results are summarized in Fig. 5, which shows
storage modulus G′ and the loss modulus G′′ for oscillating
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FIG. 4. (a) Mean shear correlator as a function of vibrational
frequency. The two dashed lines are power-law fits ∝ cωa. The
power-law ∝ ω0.6 is a fit to the N = 8k data in the frequency range
3 � ω � 20 while the power-law fit ∝ ω2.4 is fitted to the N = 256k
data for 〈�(ω)〉 � 102 and ω � 1.5. (b) Dependence of the shear
correlator on the spatial localization of the vibrational modes. Sym-
bols in each panel are used to distinguish localized and delocalized
modes, as determined from their participation ratio.

shear deformation as a function of oscillation frequency �.
From Figs. 5(a) and 5(b) we see that the results for the loss
modulus and the storage modulus match perfectly for brute-
force calculations and microscopic theory with a constant
τm = τBF. This is an indication that at the temperatures and
excitation frequencies studied here atomic rearrangement do
not contribute to the viscoelastic modulus.

Having validated the microscopic theory, we now turn
to the question of whether an optimal choice of a mode-
independent lifetime can recover the correct frequency-
dependent behavior. In contrast to the calculations with τ =
0.1 t∗, the storage modulus has a clear minimum at the
Boson peak frequency, � = ωBP. With increasing excita-
tion frequency, the storage modulus increases rapidly and
reaches a maximum of ≈24.6 ε/σ 3 at � ≈ 26 f ∗ before drop-
ping to a value of G′ ≈ 21 ε/σ 3 at the high-frequency end.
Using a constant lifetime of τm = 10 t∗ matches the full

microscopic theory over the range of excitation frequencies
considered here.

Figure 5(c) shows the low-frequency limit of the storage
modulus. We present only results for the ensemble of struc-
tures with N = 8k atoms because the sum in Eq. (30) requires
all eigenmodes up to the Debye frequency of the system for
convergence, but this is computationally prohibitive for the
larger systems. The convergence of this sum has been studied
in Ref. [70]. For the small system sizes, the storage modulus
in the limit � → 0 converges independent of the assumed
lifetime τ to the static solution. The peaks in the storage mod-
ulus at low frequencies occur at the characteristic frequencies
of the plane-wave vibrational modes. At the Boson-peak fre-
quency, the storage modulus has a local minimum which can
be traced back to a combination of many vibrational modes,
long vibrational lifetimes and a high nonaffine correlator.

The behavior of the loss modulus Fig. 5(b) reflects the
shape of the VDOS in Figs. 2(a) and 2(d). For increasing
excitation frequencies, we observe a dramatic increase of the
loss modulus near the Boson peak. The loss modulus has a
broad local maximum at � ≈ 10 f ∗ and a “shoulder” at � ≈
21 f ∗. In the low and the high end of the frequency spectrum,
the loss modulus decreases rapidly and converges to zero.
Similar to the VDOS, we observe the occurrence of discrete
local maxima in the low-frequency end of the spectrum at
frequencies of the plane-wave-like vibrational modes. Below
the smallest vibrational frequency in the system, the loss mod-
ulus scales linearly with the excitation frequency ∝ �; see
Eq. (32). Examining the results for the loss modulus obtained
for constant lifetimes, we see that the mid-frequency and the
high-frequency part of the spectrum is in agreement with the
correct results as long as τ � 0.1 t∗. One feature visible in
Fig. 5 is that the Boson-peak frequency marks a turning point
at which the loss modulus becomes strongly dependent on the
choice of lifetime. Using fixed lifetimes tends to overestimate
the loss modulus below the Boson peak and fails to reproduce
the local maxima. This effect is even more pronounced for
larger system sizes shown in Fig. 5(d).

Although we only performed a partial diagonalization,
the contribution from vibrational modes with frequencies ωm

away from the excitation frequency � do not contribute much.
Using mode-dependent lifetimes, we observe that the discrete
peaks become narrower with decreasing frequency. In regions
without vibrational modes, the loss modulus is overestimated
up to three orders of magnitude while in regions with vibra-
tional modes it tends to be underestimated.

The effect of temperature on the loss modulus is intrin-
sically included in the vibrational lifetimes. In Fig. 6, we
show the loss modulus G′′ for two different temperatures. The
shape and the mean magnitude of the loss modulus above the
Boson peak frequency is independent of temperature. Below
the Boson peak, but in the frequency range where vibrational
modes exist, narrower and larger peaks compared to the sur-
rounding are visible for lower temperature. It appears, that
these discrete peaks have the same amplitude as the mean
value at higher temperatures, i.e., the peaks are smeared out.
Below the first vibrational mode, the loss modulus decays
linearly for both temperatures. The loss moduli at low fre-
quency differ by a constant factor that depends linearly on
temperature.
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FIG. 5. Ensemble averaged storage 〈G′〉 (a) and loss modulus 〈G′′〉 (b) for the configurations with N = 8k atoms in the full frequency
range. The vertical arrow marks the location of the Boson peak. (c) Detailed view on the storage modulus in the low-frequency limit. The
horizontal dashed-dotted line marks the value of 〈G′〉 in the static limit � → 0. (d) Loss modulus in the low-frequency limit for the ensemble
of configurations with N = 256k atoms. Results for 〈G′〉 and 〈G′′〉 indicated by lines are computed using Eq. (30). We employ the actual
vibrational lifetimes τm or we assumed a certain constant and mode-independent lifetime τm = τ . Results from brute-force simulations are
denoted by τBF and marked by points. All lines represent mean values obtained from averaging over multiple configurations while the shaded
areas and the error bars mark the standard deviation.

IV. DISCUSSION

The physical interpretation of Eq. (30) is that storage
and loss modulus are determined by the superposition of
vibrational modes with eigenfrequencies near the excitation
frequency. Magnitude as well as frequency dependency of
the viscoelastic properties are directly related to the proper-
ties of the excited vibrational modes. Based on the excellent
agreement in Fig. 5 between brute-force simulations in which
atomic rearrangements occur and the theory in Eq. (30), ex-
citation of vibrational modes by nonaffine displacements is
the dominant mechanism of viscoelasticity in the investigated
frequency range.

In the frequency range above the Boson peak, vibrational
modes are continuously distributed. This distribution together
with short lifetimes results in a smooth frequency dependency
of the viscoelastic moduli due to averaging over many vi-
brational modes. The density of vibrational modes is lower
toward the high-frequency end of the spectrum than near the
Boson peak. These modes have a short lifetime and large
nonaffine correlator, but the loss modulus at high frequency
is low because the low density of states.

Below the Boson peak, both viscoelastic moduli are dom-
inated by the structure of plane-wave or hybridized modes
that occur in discrete frequency bands for the finite-sized
systems studied here. The discrete bands are visible in the
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FIG. 6. Temperature dependence of the loss modulus 〈G′′〉 for
the ensemble of configurations with N = 8k atoms. The vertical
dashed line marks the location of the Boson peak. In both figures,
the straight lines mark the ensemble mean while the shaded areas
mark the standard deviation.

loss modulus [Figs. 5(b), 5(d) and Fig. 6(b)]. They smooth
out at high temperature [Fig. 6(a)] as, by virtue of the
temperature-dependence of the lifetimes, the line width of
each oscillator becomes broader with temperature. The stor-
age modulus interpolates smoothly between low-frequency
and high-frequency limit (see Sec. II E) as each oscillator
contributes steplike rather than a Lorentzian function.

Vibrational lifetimes can be directly computed using per-
turbation theory [16,17,71]. By comparing theoretical and
numerical vibrational lifetimes, previous publications showed
that cubic anharmonicity is the main source of anhar-
monic coupling between vibrational excitations in glasses
[17,19,62]. Furthermore, perturbation theory predicts that vi-
brational lifetimes scale with temperature ∝ T −1 which is
consistent with our results in Sec. III B [17]. This scaling is
observed to be independent of the type of vibrational mode
and even holds for temperatures near the glass transition.

To understand whether vibrational modes with shorter
lifetimes are related to a larger cubic anharmonicity as sug-
gested by perturbation theory, we evaluate the third order
anharmonicity defined in Eq. (20). In Fig. 7 we present the
anharmonicity of the low-frequency vibrational modes for the
ensemble of configurations with N = 8k and N = 64k atoms
prepared at Tp = 0.4 ε/kB. The figure shows that vibrational
modes with shorter lifetimes tend to have a larger anhar-
monicity. Furthermore, we observe that quasilocalized modes
feature larger anharmonicity and therefore shorter lifetimes.

In molecular simulations we can only probe the high-
frequency limit of the viscoelastic response, in the regime
of THz for real solids. While the storage modulus appears to
converge within the frequency range addressable in the simu-
lation, the asymptotic behavior of the loss modulus remains
unclear. We now attempt to extrapolate the low-frequency
behavior of the loss modulus from the general trends of our
simulations. First, we rewrite Eq. (35) as

G′′(�) = π

V̊

∫ ∞

0
dω g(ω)〈�(ω)〉L(�2 − ω2; �τ−1), (41)

with normalized Lorentzian L(x; ε) = ε[x2 + ε2]−1/π . Since
the lifetime τ is roughly constant for quasilocalized modes

FIG. 7. Scaled vibrational lifetimes as a function of the cubic
μm anharmonicity of vibrational modes in the low-frequency limit
ω � 〈ωBP〉 for configurations with N = 64k atoms.

and scales as ω−2 for plane waves, i.e., it does not decrease
with frequency ω, we can approximate the Lorentzian by a δ

function at small �. This yields

G′′(�) ≈ π

2V̊

g(�)〈�(�)〉
�

(42)

in the low-frequency limit. This result also means that us-
ing a single relaxation time (as in brute-force calculations)
works in the low-frequency response limit because at low
enough frequency the dominant modes are always under-
damped. However, studying the high-frequency viscoelastic
response near the Boson peak requires either the use of the
correct (mode-dependent) relaxation times or of a global re-
laxation time that is low enough such that the whole system is
underdamped (see also Fig. 5).

Our results and prior work [53,54,57,72–74] show that we
need to distinguish between delocalized (plane-wave-like) and
(quasi)localized modes in the low-frequency limit. We there-
fore split the the loss modulus into these two contributions. We
know that plane waves have a density of states gDL(ω) ∝ ω2

[75], while quasilocalized modes contribute with gL(ω) ∝ ω4

[54,57,74,76–78] From our data, we find that the correlator
〈�(ω)〉 has power-law behavior 〈�DL(ω)〉 ∝ ωa with a ≈ 2.4
for plane waves but is roughly constant 〈�L〉 = const. for
quasilocalized modes. We hence find

G′′
DL(�) ∝ �3.4 (43)

for the delocalized modes and

G′′
L(�) ∝ �3 (44)

for the localized modes. This result means that the localized
modes dominate the low-frequency viscoelastic response. We
note that we cannot rule out from our data that the correlator
for the localized modes has a weak power-law dependency
〈�L〉 = �b. For b > a − 2 ≈ 0.4, the delocalized modes be-
come dominant at low �. Current limitations in accessible
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frequency are of a numerical nature, since either the diagonal-
ization of the sparse Hessian or the accessible timescales in
brute-force calculations become prohibitive for large system
sizes.

One question that arises in this context is whether the
scaling relations in Eqs. (43) and (44) are valid for arbitrar-
ily small excitation frequencies in the thermodynamic limit
N → ∞. This question is directly linked to the existence of
localized modes in the thermodynamic limit. In Ref. [79] it
was shown that localized vibrational modes and plane-wave-
like modes can only be clearly identified and coexist in a
frequency range

ωg ∼ L−3/5 � ω � L−2/5 ∼ ω†. (45)

This scaling suggests that in the thermodynamic limit, the
two types of mode can no longer be distinguished due
to hybridization with each other. Another limitation is the
existence of two-state processes, which we did not con-
sider in the present work. As the probability of transition
between distinct minima in the potential energy land-
scape [21,24] of the glass increases with waiting time,
these transitions will also become dominant in the low-
frequency limit of the loss modulus. We therefore conclude
that our derived scaling represent a distinct intermediate
regime, similar to the one observed in wave scattering in
glasses [80].

We note that our model glasses were chosen for their sta-
bility. This allowed us to study the linear viscoelastic behavior
in the absence of jumps between inherent structures, which
will also contribute to the low-frequency viscoelastic response
of the glasses [21,24,26,27]. The polydisperse sphere model
that enables the ultrastability is likely most representative for
either colloidal systems and multicomponent glasses, such as
bulk metallic glasses [81,82].

V. SUMMARY AND CONCLUSION

In summary, we performed an extensive characterization
of vibrational modes in ultrastable glasses. We observe four
different types of vibrational modes which have different
static and dynamic properties. In the low-frequency limit,
where quasilocalized and plane-wave-like modes coexist, we
observe different scaling relations for vibrational lifetimes of
these modes. While the temperature dependency of both types
of vibrational modes agrees with the prediction from pertur-
bation theory, the predicted frequency dependency is observed
only for the plane-wave modes. We used the mode-dependent
vibrational lifetimes to extend the theory of Lemaı̂tre et al.
[30], yielding a parameter-free theory of linear viscoelas-
ticity. The resulting expression indicates that quasilocalized
excitations may become the dominant dissipation channel at
intermediate frequency, while the low-frequency viscoelastic
response is likely dominated by two-state processes in which
the glass jumps between local minima in the potential energy
landscape [21,24,26,27].
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