
PHYSICAL REVIEW E 110, 024901 (2024)

Interaction between gas channels in water-saturated sands

Germán Varas ,1 Gabriel Ramos ,2,3 and Valérie Vidal 4

1Instituto de Fisica, Pontificia Universidad Católica de Valparaiso (PUCV), Avenida Universidad 330, Valparaiso, Chile
2Institut de Mécanique des Fluides (IMFT), CNRS and Université de Toulouse, 31400 Toulouse, France

3Laboratoire de Génie Chimique (LGC), Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
4Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon—CNRS, 46 Allée d’Italie, 69364 Lyon Cedex 7, France

(Received 6 December 2023; accepted 15 July 2024; published 12 August 2024)

This work investigates the interaction between gas channels in a vertical Hele-Shaw cell when air is injected
simultaneously from two points at a constant flow rate. Unlike single-injection experiments, this dual-point
system induces the formation of numerous bubbles, thereby intensifying the interactions between air channels.
We use an image analysis technique for tracking motion in the granular bed to define a flow density parameter
throughout the cell. The vertical accumulation of this parameter (nz) reveals two specific heights, one marking a
finger-to-fracture transition and another indicating the average interaction height of the air channels. Conversely,
its horizontal accumulation (nx) assesses the extent of overlap in the fluidized zones created by each airflow.
Notably, the analysis indicates that the optimum distribution of the three phases in the system is more closely
related to the interaction’s variability than its intensity. This finding is significant for industrial applications such
as air sparging and catalytic reactors.
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I. INTRODUCTION

Multiphase flows through unconsolidated, deformable
porous media are encountered in many natural or industrial
applications. Among the most striking examples in nature are
volcanic eruptions, which may be directly driven by the com-
plex interplay between bubbles and crystals in magma [1,2].
At an even larger scale, massive methane or CO2 emissions at
the seafloor were pointed out as responsible for past climate
changes [3–5] and are among the most important scientific
challenges for hazard prediction [6]. They also play a crucial
role in human activities, as subsea gas release triggered by off-
shore oil and gas production is at the origin of the most deadly
incidents [7]. In addition to these risk assessment challenges,
such multiphase flows are also involved in soil decontamina-
tion by air sparging [8–10] or in three-phase catalytic reactors
[11]. In these latter applications, the larger the surface contact
area among the three phases (gas/liquid/solid), the more ef-
ficient the process, and since decades, the estimation of the
so-called gas and liquid holdup in these systems has been
attempted, as well as the optimization of the three phases
distribution [11,12].

These systems exhibit complex dynamics as capillary, vis-
cous, buoyant, and frictional forces can be at stake together
[13]. The complex interplay between these forces may lead
to the emergence of patterns [14,15], and the observation of
different flow regimes such as percolation, fluidization or frac-
ture of the granular medium [16]. Although some approaches
have considered a uniform gas injection and the transition to
hydraulic failure and fluidization [17], the amount of literature
on localized injection has grown in the last decades due to
its importance in the applications mentioned above. We fo-
cus here on studies relevant to this work, i.e., localized gas

injection at the bottom of an immersed granular medium, in
which gravity and buoyancy forces play a fundamental role,
being the main force driving the gas rise in the system. In
such configuration, different flow regimes are observed from
percolation to fluidization, fracture, or even instabilities in the
air-channel migration [18–25]. At long times, the repetitive
gas rise through the immersed granular layer leads to the
formation of a fluidized zone of parabolic shape due to a
slow particle convective motion [16,20,21,26–29]. Although
recent works have focused on the migration and trapping of
bubbles [25,30], little attention has been given to the funda-
mental study of interacting sources. However, this process
is of primary importance in the industrial or natural con-
text as two or more localized sources may coexist and, if
close enough, interact. This work focuses on the interaction
of two neighboring sources of localized air injection at the
bottom of an immersed granular medium. First, we present
the experimental setup, first observations, and image analy-
sis (Sec. II). In the next section, we quantify the transient
regime (Sec. III A), the air-channel dynamics in the two flu-
idized zones generated above each injection point as well
as their interaction (Sec. III B), and the global dynamics of
the interacting fluidized zones (Sec. III C). The fundamental
contribution of this work is to quantify four key variables,
namely the stabilization time, two specific heights associated
with the channel dynamics and interaction, and a proxy for
grain motion in the fluidized area. Section III demonstrates
that, although all four arise from the interaction between the
fluidized zones generated by the two injection points, they
display quite different dependence on the flow rate. We fi-
nally conclude in Sec. IV, and replace our results in a more
general perspective to point out their importance in terms of
applications.
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FIG. 1. Sketch of the experimental setup. Air is injected simul-
taneously at a constant flow rate (2Q) at the base of water-saturated
sand through two injection nozzles. Each air injection point generates
a fluidized zone (dashed lines) in the stationary regime. In a given
range of parameters, the air channels rising in the fluidized zones
interact in a specific area (hatched region).

II. METHODS

A. Experimental setup

The experiment consists of a Hele-Shaw cell (height 50 cm,
width 80 cm, gap between the two glass plates 2 mm) filled
with a granular layer (height hg = 35 cm) immersed in wa-
ter (Fig. 1). The water height above the granular bed is
hw ≈ 2 cm, sufficiently small to prevent grain advection in
the water layer and potential crater formation [31]. The grains
are polydisperse spherical glass beads (Sovitec glass spheres
250–425) with a diameter d = 318 ± 44 µm from size dis-
tribution and a density ρg = 2300 kg m−3. The grains are
immersed in water, with a density ρw = 1000 kg m−3. Air
is injected at a constant flow rate through two nozzles (inner
diameter di � 1 mm) located at horizontal positions −ξ and
+ξ at the cell bottom (Fig. 1). We ensure a constant flow
rate Q at each injection point using a mass-flow controller
(M+W Instruments, model D-6321) connected to the nozzles
via capillary tubes so that any pressure drop associated with
gas emission through one nozzle does not affect the flow at
the neighboring nozzle. The flow rate Q ranges from 0.66 to
18.26 mL/s. Above this value, a hydraulic fracture occurs,
corresponding to the overcoming of the tensile strength of the
medium [32] and resulting in a fracture-like behavior of the
air rising straight from bottom to top, preventing interaction.
The distance between the air injection points is 2ξ � 14 cm
and has been chosen so that both fluidized zones overlap,
i.e., 2ξ < 2

√
Dhg � 24 cm, where D � 4 cm is the coeffi-

cient characterizing the fluidized zone parabolic shape over
a single-injection point in our experiment [23]. It should be
noted that in the first few millimeters, the channel may un-
dergo small displacements, forming a virtual injection point
beside the physical injection point (see Sec. III C). The system
dynamics is recorded by a PixeLINK camera (PL-B741U
model) capturing one image every 10 s (�t = 10 s) with a
1280 × 800 px2 resolution, giving an average spatial resolu-
tion of about 0.5 mm/px.

B. First observations

Previous works have highlighted the formation of a flu-
idized zone of parabolic shape when air is injected locally at
the bottom of an immersed granular, as displayed in Fig. 2,
left [28,29]. In this system, an upward movement of air, fo-
calized at the fluidized zone center, coexists with a convective
movement of the grains, which rise in the central zone and
move downwards on the sides [16] (see Supplemental Movie 1
[33]). In the stationary regime, few bubbles are trapped in
the fluidized region. Indeed, the convective motion forces
them toward the bottom center, where they coalesce with the
central air channel, with bubble lifetime exhibiting significant
variations depending on their distance to the fluidized zone
boundaries [30].

The system looks drastically different in the case of two in-
jection points (Fig. 2, second panel). We report first an overlap
of the fluidized zones generated by each gas point and, second,
and most notably, a large number of bubbles trapped in the flu-
idized region. Both air channels are influenced by surrounding
trapped bubbles and exhibit an erratic motion above a given
height, as well as intermittent horizontal interactions (Fig. 2,
second panel), which will be discussed in Sec. III B. This
leads to a substantial accumulation of bubbles in the overall
fluidized region, facilitating further a spontaneous connection
between the air channels and disrupting the fluidized zone’s
convective movement, which cannot entrain the bubbles back
in the gas channels anymore (see Supplemental Movie 2 [33]).

C. Image analysis

We use a stacking technique of image differences to en-
hance resolution for detecting air or grain motion within the
cell. A brief overview of this method is provided below,
and the full description can be found in Refs. [23,29]. The
technique calculates the flow density, ρn(x, z), as the sum of
consecutive image differences, Mk = |Ik+1 − Ik|, where Ik is
the intensity matrix for image k:

ρn(x, z) =
n−1∑
k=1

M k =
n−1∑
k=1

|Ik+1 − Ik|. (1)

The normalized flow density, ρ = ρn/max(ρn), quantifies mo-
tion in the granular bed from gas or grain movement. Note
that the water layer above the grains is excluded from this
computation. An example of a flow density map is shown in
Fig. 2 (third panel), highlighting the motion density around
the gas channels and the overlapping contours of the fluidized
zones. We define the horizontal and vertical accumulations,
nx and nz, as the cumulative values of the flow density matrix
along the vertical and horizontal axes, respectively:

nx(x, t ) =
∑

z

ρn(x, z) ; nz(z, t ) =
∑

x

ρn(x, z). (2)

and their normalized value n̄x and n̄z over a given time series.
The normalized vertical cumulation, n̄z(z), is shown in Fig. 2
(right). It displays two local maxima, which we define as
the average interaction height 〈hI〉 of the gas channels and
the finger-to-fracture transition h∗ (see Sec. III B). Finally,
to observe the dynamics of the system, we define a sliding
average over M = 10 images (n̄M

x,z).
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FIG. 2. (Left) Single-injection point (Q = 2 mL/s, see Supplemental Movie 1 [33]). The successive passage of air channels creates a
fluidized zone of parabolic shape, underlined by the black tracers corresponding to finer grains [16,34]. The black dotted line corresponds to
the parabolic contour of the central fluidized zone. (Second panel) Double injection point (Q = 3.32 mL/s, see Supplemental Movie 2 [33]).
Note the larger number of bubbles compared to a single-injection point and the horizontal channel interaction. (Third panel) Normalized flow
density ρ for the double injection experiment [stacking over 4000 images, �t = 10 s between successive images, corresponding colormap on
the right]. (Right) Normalized vertical accumulation nz as a function of z. The two local maxima correspond to the average interaction height,
〈hI〉, and the finger-to-fracture transition height h∗. The black dotted lines indicate the parabolic contours associated with each injection point,
based on the outer fluidized zone borders.

III. RESULTS

In this section, we first describe the transient regime and
quantify the stabilization time of the channel (Sec. III A).
We then focus on the air-channel dynamics, with a thorough
description of its fingering to fracturing transition and the in-
teraction between the two gas channels (Sec. III B). We finally
quantify the global dynamics, namely the characteristics of the
overall fluidized zone and the interaction region (Sec. III C).

A. Transient regime

At short times, when the gas first invades the immersed
granular medium, it tends to explore a large area in the cell.
At the low flow rates in our experiments, the first invasion
is mainly through a percolation process, although fluidization
may occur locally. The air, therefore, first reaches the free sur-
face at multiple points due to the scattering of the gas arrival
at the granular free surface. From this moment on, similarly
to the single-injection experiment [29], the development of
the final fluidized zone starts at the surface and then spreads
downwards. The different air channels rising through the sys-
tem gradually merge until only two remain. This evolution
can be clearly seen when representing the spatiotemporal evo-
lution of the horizontal accumulation nx(x, t ) [Fig. 3(a), top
panel]. The stabilization of both channels happens at a time τs,
hereafter named the stabilization time [white line, Fig. 3(a)].
Although the movement focuses roughly on the vertical of the
two injection points, it is distributed almost homogeneously
along the vertical axis. Indeed, the spatiotemporal evolution of
the vertical accumulation nz(z, t ) [Fig. 3(a), bottom panel] dis-
plays, for t > τs, a roughly homogeneous background motion
(green color), over which are superimposed yellow patches
representing the signature of interacting channels.

Figure 4 displays the stabilization time, τs, as a function
of the airflow rate, Q. As expected, the stabilization time
decreases drastically when the injection flow rate is increased.
It shows a power-law dependence, τs ∝ 1/Q2 (Fig. 4, inset).

This dependence is consistent with what was previously re-
ported in Ref. [29], although other works had reported a
stabilization time-varying as 1/Q [35]. Note that a simple
argument based on the exploration of a porous matrix predicts
accurately that τs ∝ 1/Q2 (see details in Ref. [29]).

B. Air-channel dynamics

The gas rising in the fluidized granular medium experi-
ences a complex dynamics. Above the injection nozzles, it
forms a finger rising through the medium, which stops then
fractures the above immersed granular layer (Sec. III B 1).
Then, we also report a peculiar interaction between the two air
rises, contributing to bubble generation in the fluidized region
(Sec. III B 2).

1. Finger-to-fracture transition

In the stationary regime, the air rises above each injection
point as a vertical finger. The surrounding medium thus acts
as an effective fluid. Similarly to what was already reported
in the case of a single gas injection point at the bottom of an
immersed granular material, this finger propagates upwards
and then stops. Beyond this point, due to the continuous air
injection, the gas fractures the medium [23,36]. This transition
can be clearly seen in Fig. 2, second panel. As it happens at an
almost constant height h∗ for a given flow rate, it is associated
with a maximum in n̄z (first maximum from the bottom in the
example shown in Fig. 2, right panel). Note that it does not
always correspond to the first maximum (see Sec. III B 2), but
it can be easily identified as it is always associated with the
maxima in the flow density matrix (yellow spots, Fig. 2, third
panel). Figure 5 (open symbols) displays the evolution of h∗
as a function of the gas flow rate Q. Similarly to previous
experimental results for a single gas channel, h∗ increases
linearly with Q [36]. This linearity can be retrieved by the
simple following argument. Let us consider the generalized
Darcy law, which gives the finger rising velocity v = v(t ) and
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FIG. 3. (a) Spatiotemporal diagram of n̄M
x (top panel) and n̄M

z (bottom panel) (Q = 6.64 mL/s). The stabilization time τs is indicated by the
white dashed line (here τs � 4 min) and corresponds to the stabilization of the two main air channels. The movement focuses roughly on the
vertical of the two injection nozzles indicated by the white dots (top panel) while it is almost homogeneously distributed along the vertical axis
(bottom panel). Sporadic unions between both channels are occasionally observed (bottom panel, yellow lines). (b) Tracking the connection
between the two air channels. (Left) Zoom corresponding to the black rectangle in panel (a), focusing on the channels interaction. (Second
to last panels) Pictures at three successive times show the evolution of the horizontal interaction between the two air channels. As seen in the
spatiotemporal diagram, this connection rises through the system and is frequently repeated throughout the experiment.

accounts for the buoyancy forces:

v = α

(
Ptop − P0

hg − h
− ρg

)
, (3)

with α = e2/12η, e the cell gap, and (η, ρ) the effective vis-
cosity and density of the particle-laden fluid, respectively. Ptop

is the pressure in the upper part of the finger, P0 the atmo-
spheric pressure (neglecting here the water height above the

FIG. 4. (a) Stabilization time of the air channels τs as a function
of the flow rate Q. The time is computed as the duration for the last
channel to stabilize. Inset: The data follow a power law, τs ∝ 1/Q2.

granular layer), hg the initial granular layer height (Fig. 1), h
the finger height at time t and g = 9.81 m s−2 the gravitational
acceleration.

FIG. 5. Finger-to-fracture transition h∗ (white dots) and average
air-channel interaction height, 〈hI〉 (black dots) as a function of the
gas flow rate Q. The solid line shows the linear behavior of h∗ with Q.
The blue region indicates the region in which h∗ � 〈hI〉 and departs
from its linear behavior. The dashed line represents the average
interaction height across all flow rates, and the gray region indicates
the standard deviation.
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The effective density of the medium above the gas channel
is ρ = φρg + (1 − φ)ρw � 1730 kg m−3, where φ � 56% is
the loose random packing fraction in the fluidized zone. The
effective viscosity is estimated using the semiempirical model
of Zarraga et al. [37], which quantifies the viscosity of dense
suspensions for packing fractions up to 60%,

η = ηw

e−2.34φ

(1 − φ/φm)3
, (4)

where φm = 62% corresponds to the maximum poured ran-
dom packing, leading to η � 0.3 Pa s.

Assuming a Poiseuille flow of the gas in the finger, the flow
rate can be written as

Q = β

(
Pdown − Ptop

h

)
, (5)

with Pdown the pressure at the injection point, β = we3/12ηair,
w the finger width and ηair = 1.8 × 10−5 Pa s the air dynamic
viscosity. Experimentally, the finger width w remains roughly
constant, of about w � 1 cm. The pressure at the injection
point can be estimated as Pdown = P0 + ρghg + 4γ /di where
γ = 72 mN/m is the air-water surface tension and di the inner
nozzle diameter (see Sec. II A).

Combining the previous equations makes it possible to link
the finger rise velocity v to its height h as

v = α

hg − h

(
ρgh + 4γ

di
− hQ

β

)
. (6)

The finger-to-fracture transition may then be defined as fol-
lows. The granular medium will fracture when the finger
velocity v becomes larger than the grain rearrangement ve-
locity vs. This latter velocity is typically of the order of
magnitude of the Stokes velocity, vs ∼ d2�ρg/18ηw, with
�ρ = ρg − ρw the density difference between the particles
and fluid. The finger will then compact quickly the above
grain layer and stop. The pressure inside will, therefore, rise
up to the critical point until it is able to fracture the above
granular layer up to the surface. Considering Q/β 	 (vs/α +
ρg), which is always true in our experimental range, gives the
finger-to-fracture transition height:

h∗ � (vs/α)hg − 4γ /di

vs/α + ρg

(
Q

(vs/α + ρg)β
+ 1

)
. (7)

We therefore retrieve a linear variation of h∗ with Q. Fig-
ure 6(a) compares the experimental data with the prediction
given by Eq. (7). For φ � 56% (loose random packing frac-
tion), the model predicts h∗ � 27 cm for Q = 10 mL/s [dark
orange curve, Fig. 6(a)], to be compared with the experi-
mental value of h∗ = 20.6 ± 0.6 cm. This approximate model
therefore succeeds in predicting the order of magnitude of h∗.
However, although it predicts a linear variation of h∗ with Q,
as reported in the experiments, it fails to predict the correct
slope when varying Q. Indeed, for a fixed packing fraction
φ, h∗ predicted by the model does not vary significantly in
the range Q = [0 − 20] mL/s. However, the packing fraction
influences strongly the finger-to-fracture transition height h∗
[colored lines, Fig. 6(a)]. In addition, Fig. 6(a) reports the
model prediction for a fixed grain diameter, d = 318 µm,
while the solid particles are polydisperse and exhibit a large

FIG. 6. (a) Comparison between the experimental values of the
finger-to-fracture transition height h∗ (white dots, same than Fig. 5)
and the model [Eq. (7) with d = 318 µm]. The colorbar indicates
different values of the packing fraction φ. (b, c) Model prediction
of h∗ for a fixed flow rate (here Q = 10 mL/s), as a function of
(b) the particle diameter d , for different values of φ (colorbar and
colored lines) and (c) the packing fraction φ, for different values
of d (colorbar and colored lines). The experimental value is re-
ported as the horizontal black dashed line, with its standard deviation
corresponding to the surrounding light gray region. The solid and
dotted lines in panels (b) and (c) indicate the average grain diameter
(d = 318 µm, solid black line) and its variation estimated from the
polydisperse size distribution (d = 318 ± 44 µm, dotted black lines).

distribution (d = 318 ± 44 µm). To explore further the depen-
dence of the model prediction on the parameters d and φ, we
estimate with Eq. (7) the finger-to-fracture transition height h∗
for a fixed flow rate, here Q = 10 mL/s. Figure 6(b) displays
h∗

Q=10 mL/s as a function of the particle diameter d , for differ-
ent values of φ (colorbar and colored lines). The experimental
value is reported as the horizontal black dashed line, with its
standard deviation corresponding to the surrounding light gray
region. The vertical solid and dotted lines indicate the average
grain diameter and its variation estimated from the polydis-
perse size distribution, d = 318 ± 44 µm. Figure 6(c) shows
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the evolution of h∗
Q=10 mL/s when varying the packing fraction

φ, for different particle diameter (colorbar and colored lines).
The black lines and light gray region indicate the same as in
Fig. 6(b).

Although simplistic, the above model not only provides the
correct order of magnitude for the finger-to-fracture transi-
tion height, but also points out the influence of the different
parameters. In particular, it highlights the drastic impact of
the packing fraction φ on h∗. The model relies on simple
assumptions and does not account for the complex interplay
that may exist between the flow-rate and the local packing
fraction at the tip of the air finger. The grain diameter affects
less the variations of h∗. However, grains polydispersity is not
accounted for by the model, and could have further impact
on the finger-to-fracture height estimation. Note that in both
the model and experiments, h∗ does not tend to zero when
Q → 0. This is due to the fact that at very small Q, the air only
percolates through the grain matrix and does not fluidize the
granular layer anymore, therefore prohibiting any gas finger
formation. The model is then not valid anymore. Conversely,
at high Q, h∗ departs from the linear trends (blue region,
Fig. 5). This behavior will be discussed in the next section.

2. Gas channels interaction

Above the finger-to-fracture transition height, a peculiar
phenomenon is reported. The two gas channels interact by
forming a horizontal fracture, first right above h∗, then repet-
itively up to a given height [see Fig. 3(b), picture at t1, for
example]. This dynamics repeats in time and displays a clear
pattern on the spatiotemporal diagram representing n̄M

z (z, t )
[Fig. 3(a), bottom panel, and Fig. 3(b)]. It is associated with
a maximum in n̄z (second maximum from the bottom in the
example shown in Fig. 2, right panel). This maximum makes
it possible to define an average interaction height, 〈hI〉. Inter-
estingly, this average gas channel interaction height remains
constant when varying the flow rate Q (Fig. 5, black dots) and,
for high flow rates, becomes smaller than h∗.

In this fracturing regime, the physical arguments developed
in the above Sec. III B 1 do not hold, as the immersed grains
cannot be considered an effective fluid anymore. However, the
order of magnitude of 〈hI〉 can be retrieved by considering the
simple following argument. To propagate by fracturing, the air
in the channel has to overcome the pore overpressure, given by
�P � γ /εd , where (εd) is the typical pore size in the grain
pile, with ε of the order of a few percents. The gas channel
will preferentially lift the above layer rather than open a path
through the grains when its tip reaches the height hc such that
ρghc = �P, where ρ is the effective density of the medium
(see Sec. III B 1). We thus get the critical height hc = γ /ρgεd .
Taking ε � 5–7% leads to hc � 18–26 cm, of the order of the
average interaction height. We can, therefore, interpret 〈hI〉 as
the height at which a channel starts lifting the above water-
grains layer and exploring the horizontal direction – leading
to an interaction with the neighboring channel in the case the
fluidized zones overlap.

C. Global dynamics

In this section, we quantify the global dynamics of the
system, namely the properties of the overall fluidized zone.

First, we use the horizontal cumulation to quantify the move-
ment resulting, in particular, from the interaction between
the two fluidized regions generated by each injection point
(Sec. III C). Second, we compute the theoretical interaction
area between two fluidized zones of parabolic shape, discuss
the discrepancy with the observed overall fluidized region,
and propose a proxy to quantify the real interaction area
(Sec. III C 2).

1. Horizontal cumulation

An important point for many applications is how the solid-
liquid phases (grains-water) or all three phases are distributed
in the system and how these phases interact with each other
in time. From the flow density computation, we represent
in Fig. 7(a) the horizontal cumulation, n̄x(x). It displays two
maxima, representative of the strong motion of the air chan-
nels at the vertical of the injection nozzles. The fact that the
central value, n̄x(0), is not null is the signature of the fluidized
zones overlapping. A theoretical estimation of n̄x(x) can be
obtained as follows. We consider that the overall fluidized
zone corresponds to the simple addition of two single source
contributions located at x = ±ξ . Following Ramos et al. [29],
we write the horizontal cumulation for each source as the sum
of the contribution of a central air channel, taken as a Gaussian
(amplitude a, standard deviation σ ) and of a spatially homo-
geneous region (constant amplitude c) limited by a parabola,
z = (x ± ξ )2/D:

nsingle
x (x) =

∫ hg

(x±ξ )2

D

c dz +
∫ hg

0
a e− (x±ξ )2

2σ2 dz. (8)

Note that D can be interpreted as a diffusion coefficient or
rather, having the dimension of a length, a diffusive length.
For a single source located at x = ±ξ , integrating both terms
in Eq. (8) and normalizing leads to

n̄single
x (x) = (1 − A) − (x ± ξ )2

D′ + A exp

(
− (x ± ξ )2

2σ 2

)
, (9)

with A = a/(c + a) and D′ = Dhg(c + a)/c (see Eq. (11) in
Ref. [29]). Adding the two contributions in x = ±ξ therefore
gives the following expression for two sources separated by a
distance 2ξ :

n̄x(x) = 2(1 − A) − 2

D′ (x2 + ξ 2) + 2A cosh

(
ξx

σ 2

)

× exp

(
−x2 + ξ 2

2σ 2

)
. (10)

The horizontal cumulation n̄x(x) depends on four parame-
ters, namely ξ , σ , A, and D. The source location coordinate ξ

is fixed experimentally (ξ = 14 cm). The standard deviation
of the Gaussian contribution σ corresponds roughly to the
width of the air finger, which is experimentally measured
and found to be equal for either one or two injection points,
σ � 1 cm. The two remaining unknown parameters, A and D′,
are directly linked to a and c, the amplitudes of the Gaussian
central air-channel contribution and of the homogeneous re-
gion, respectively.

The solid line in Fig. 7(a) represents the best adjustment of
the experimental data with Eq. (10) with two free parameters
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FIG. 7. (a) Normalized horizontal cumulation, n̄x , as a function
of x (Q = 6.67 mL/s). We note n̄x (0), the minimum value of nx at the
center of the cell, and δm, the distance between the two local maxima.
The white dots at n̄x = 0 indicate the position of the injection nozzles
separated by a distance 2ξ . The red dots indicate the maxima and the
central minimum of the solid black curve, used to quantify δm and
n̄x (0). The results (dashed line) are well-fitted by the superposition of
two noninteractive injection points (solid line). (b) n̄x (0) as a function
of the injected flow rate Q (black curve is a guideline). (c) Maximum
interaction distance δm normalized by the injection distance (2ξ )
(open circles) and by the virtual injection points distance (light blue
square). Inset: Zoom on the flow density map close to the injection
nozzle at x = +ξ (Fig. 2, third panel) showing the injection point
(open circle) and the virtual injection point (light blue square).

to match the constants in the model. We recover the main
shape of n̄x with the two maxima and the central value of
n̄x(0), although the model does not adjust the exact curve
shape in the central region. Indeed, instead of a local mini-
mum as predicted by Eq. (10), n̄x displays a Totoro shape [38].
This highlights the fact that the overall fluidized zone cannot
be considered simply as the sum of two fluidized regions, as
will be commented further in Sec. III C 2.

Figure 7(b) displays the value of n̄x(0) as a function of the
flow rate Q injected at each source. This parameter provides a
good estimation of the grains motion at the center of the cell
(x = 0). The curve is nonmonotonous and exhibits a maxi-
mum, at a flow rate Qmax � 3 mL/s. Contrary to intuition,
the most effective grain motion in the overlapping zone is

not for the highest flow rates but for intermediate ones. Two
possible explanations can be proposed. First, when the flow
rate increases, the air explores the system more and more and
has a tendency to generate more bubbles and more movement
in the granular layer, leading to an increase in n̄x(0). How-
ever, for higher flow rates, the air channels tend to be more
focalized and rise more straightforward, which could be at
the origin of the decrease of n̄x(0) for Q > Qmax. A second
explanation is the following. We observe in Fig. 7(a) that the
distance between the two maxima of the Totoro shape, δm,
is slightly larger than 2ξ . Figure 7(c) (white dots) displays
the variations of δm/(2ξ ) as a function of Q. Although it
remains equal to 1, as expected, for low flow rates, we observe
that for Q > Qmax, it increases for increasing Q. Figure 7(c)
inset shows a zoom on the flow density map close to the
injection point at x = +ξ . Although the air is injected at a
given location, the system forms a small gas channel, the
top end of which acts as a virtual source for the associated
fluidized region. These virtual sources tend to repel each other,
and for Q > Qmax, their distance increases when Q increases.
Rescaling δm by the distance between these virtual sources
instead of the imposed ±ξ makes all the data collapse on the
dashed curve representing unity [Fig. 7(c), blue squares]. If
the distance between the virtual sources increases, then the
interaction area between the two fluidized zones generated by
each source should decrease, which may explain the decrease
in n̄x(0) observed for Q > Qmax, and its nonmonotonous vari-
ation as a function of Q.

2. Interaction area

The interaction area AI between two parabolas limited to a
height hg is represented by the hatched zone in Fig. 1. Defining
the two parabolas as z = (x ± ξ )2/D, it can be obtained by
simple geometrical analysis:

AI = 4

3

√
Dh3/2

g + 2

3

ξ 3

D
− 2hgξ . (11)

Note that this relationship is valid only if
√

Dhg > ξ ; below
this value, the parabolas do not overlap and AI = 0. The
interaction area depends on the coefficient D, the height hg,
and the distance between the origins (injection points in our
experiments) 2ξ .

Figure 8(a) presents the parametric study of AI as a func-
tion of D for different ξ . The interaction area is null for
D � Dc = ξ 2/hg, the critical coefficient under which the
parabolas do not intersect [Fig. 8(a), dots]. For D > Dc, the
curves exhibit a monotonic growth, and the slope at small
AI is primarily determined by the proximity of the injection
points (ξ ). The bold line in Fig. 8(a) represents the curve for
our experimental parameters. Determining D in our system is
not an easy task. As shown in Sec. III C 1, the overall fluidized
zone cannot be described simply as the superposition of two
parabolas generated by each source. Indeed, we clearly see in
Fig. 2, third panel, that the inner branches of the supposed
parabolas have a larger diffusion coefficient than the outer
branches. Determining D from the inner or outer contours
proved to be challenging. Indeed, contrary to the fluidized
zone borders of a single source, it is not possible to fit a
parabola from bottom to top in either case. A rough estimation
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FIG. 8. (a) Interaction area as a function of the coefficient D for
different distances between the source 2ξ the colormap indicates the
value of ξ . The bold line corresponds to ξ = 7 cm, and the vertical
gray zone defines the values for D = [4–5] cm (see text). The dots for
AI = 0 indicate the critical coefficient below which AI = 0 for each
ξ . (b) Critical coefficient Dc as a function of ξ for different granular
layer heights hg. The bold line corresponds to our experimental value
(hg = 35 cm). The colored dots are the critical Dc reported from (a).

gives D = [4–5] cm whichever Q, Reporting this range in
Fig. 8(a) (gray region) provides an estimation of the interac-
tion area, AI � 145 ± 35 cm2. A good proxy to estimate the
interaction area would be Am

I = δm(hg − 〈hI〉), which can be
easily determined from n̄x(x) and n̄z(z). Such estimation for
our experiments leads to Am

I � 225 cm2. Although they are of
the same order of magnitude, these values cannot be directly
compared, as Am

I is, by definition, expected to be larger than
AI . Further experiments varying ξ would be required to check
the robustness of this proxy.

Figure 8(b) displays the variation of the critical coefficient
Dc as a function of ξ for different granular layer heights hg.
The bold line stands for our experiments. If varying (and
estimating) D proves to be difficult in our experiments, vari-
ations of ξ , once again, may prove useful to see how the
interaction area, when varying, affects the system dynamics
and the overall fluidized zone geometry.

IV. CONCLUSION

This work presents an experimental study of gas injection
into water-saturated sands with two interacting sources. The
results demonstrate that going from a single to two injection
points significantly increases the number of bubbles trapped in
the overall fluidized zone, resulting in a complex interaction
between the air channels. This observation highlights how the

configuration of the injection points impacts the dynamics
of the three-phase system, a key aspect for enhancing our
understanding of these processes (see Sec. I).

Analyzing the accumulation of movement along the verti-
cal (n̄z) uncovers two local maxima, contrasting with previous
studies that reported only one maximum [29]. The first maxi-
mum, situated directly above the injection points, corresponds
to a finger-to-fracture transition. The proposed model ac-
curately predicts the critical height h∗ for both channels,
although it fails to predict its dependence on the flow rate. The
second maximum, emerging above the finger-fracture transi-
tion, only exists when considering multiple injection points.
This is attributed to the lateral interactions between air chan-
nels, modifying the vertical rise expected for a single-injection
point only. Based on a simplified model, we interpret the as-
sociated height hI as the height at which the air channel starts
to lift the grain-water layer, thereby exploring the horizontal
direction and interacting with the adjacent channel.

We analyzed the horizontal movement distribution (n̄x) to
quantify the interaction between the air channels. The results
display two local maxima indicative of the air channels’ mo-
tion and a central zone, distinct from zero, confirming the
channel interaction. They are well-fitted by considering two
superimposed, noninteracting point sources. Interestingly, the
movement in the central zone exhibits an optimum at an
intermediate flow rate (Q � 3 mL/s). It can be interpreted as
a competition between the generation of more bubbles when
the flow rate increases and the air channels’ focalization at
high flow rates, which reduces the gas exploration. More-
over, past a critical flow, the air exhibits a thin, localized
channeling close to the injection points, generating virtual
gas sources slightly repelling each other and widening the
effective distance between them. Finally, we computed the
total interaction area using two parabolic equations based on
the grain layer height hg, coefficient D, and the source distance
2ξ . This method yields an analytical result comparable to the
experimental estimate. However, the robustness of this proxy
would require varying the distance between the sources to be
checked.

The take-home message of this work is that the four key
variables, namely τs, h∗, 〈hI〉, and n̄x(0), which all four arise
from the interaction between the fluidized zones generated by
two injection points, display quite different dependence on the
flow rate. The stabilization time τs of the air channels exhibits
an inverse quadratic dependence on the airflow, a similar
dependence to what has been previously demonstrated for a
single-injection point [29]. It seems, therefore, that the stabi-
lization time is not affected by the number of air channels. The
finger-to-fracture transition h∗ increases linearly with the flow
rate, whereas the height at which the air channels begin an
horizontal exploration, 〈hI〉, remains roughly constant. Both
dependencies can be accounted for by simple models. Finally,
n̄x(0) represents the movement at the midpoint between the
injection points and reveals a complex dependence with the
flow. No overall model, at present, is able to account for
the connection between these four variables, and their depen-
dence with the flow rate.

This work paves the way for future research on how
multiple injection points coexist and interact in complex
ways, highlighting the need for further studies. Unanswered
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questions remain, such as the impact of the injection points
distance on bubble generation and how this parameter might
significantly influence the bubble production efficiency, which
is crucial in industrial applications. Future exploration should,
therefore, consider the extension from two to several injection
points up to a uniform, continuous gas injection. We expect in
particular an increasing complexity in the sources interaction,
with a direct impact on the gas holdup which is a crucial
parameter, for instance, in heterogeneous catalysis. Last, the
interaction of air channels offers a chance to quantify their
dynamics using statistical analysis or techniques like particle

image velocimetry, promising valuable insights into the dy-
namics within the fluidized zone.
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