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Elastic ribbons in bubble columns: When elasticity, capillarity, and gravity
govern equilibrium configurations
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Taking advantage of the competition between elasticity and capillarity has proven to be an efficient way to
design structures by folding, bending, or assembling elastic objects in contact with liquid interfaces. Elastocap-
illary effects often occur at scales where gravity does not play an important role, such as in microfabrication
processes. However, the influence of gravity can become significant at the desktop scale, which is relevant
for numerous situations including model experiments used to provide a fundamental physics understanding,
working at easily accessible scales. We focus here on the case of elastic ribbons placed in two-dimensional
bubble columns: by introducing an elastic ribbon inside the central soap films of a staircase bubble structure in
a square cross-section column, the deviation from Plateau’s laws (capillarity-dominated case dictating the shape
of usual foams) can be quantified as a function of the rigidity of the ribbon. For long ribbons, gravity cannot
be neglected. We provide a detailed theoretical analysis of the ribbon profile, taking into account capillarity,
elasticity, and gravity. We compute the total energy of the system and perform energy minimization under
constraints, using Lagrangian mechanics. The model is then validated via a comparison with experiments with
three different ribbon thicknesses.
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I. INTRODUCTION

Systems involving both elastic and capillary forces have
been attracting a growing interest to tackle practical chal-
lenges and provide novel engineering and design tools,
compelling for the microfabrication of two-dimensional (2D)
surfaces and three-dimensional (3D) structures [1,2], for the
design of actuators in the emerging soft robotics field [3], but
also in the context of biomechanics or biomimetic approaches
[4–6], to cite only a few cases. The field of elastocapillarity
includes not only the deformation of soft solids by surface
tension [7], but also systems where the geometry of the elastic
objects is of particular importance, especially in the con-
text of slender structures for which bending dominates over
stretching [8]. In appropriate conditions, capillary forces are
sufficient to force such slender structures to undergo large
deformations, in systems at multiple length scales, provided
that capillary and elastic energies are of the same order of
magnitude [9,10]. A fundamental understanding of elastocap-
illary phenomena can be acquired with experiments at the
desktop scale [11,12], for systems conceptually very close to
those occurring in microfabrication processes [13,14]. How-
ever, when reaching centimetric scales, the effects of gravity
on slender elastic structures can be significant. Taking capil-
larity aside, a typical daily life experience of slender structures
for which gravity matters is the shape of curly hair [15]. A
few examples involving elasticity, capillarity, and gravity have
been studied in the literature, for instance, in the context of
floating thin elastic films [16], capillary in-drop spooling [17],
elastocapillary-driven snap-through [18], and capillary rise
between elastic sheets, revisiting Jurin’s law in the context of
elastocapillarity [19].

Here we focus on the question of the influence of gravity
on the equilibrium shape of centimetric ribbons inserted in-
side two-dimensional bubble columns. When confined inside
square cross-section tubes, bubbles rearrange themselves into
well-ordered structures that depend on the confinement ratio
(bubble size divided by the width of the tube) [20,21]. By
choosing an appropriate ratio, we can obtain the so-called
staircase structure, which is quasi-2D [Fig. 1(a)]. A ribbon
can then be inserted inside the central soap films, and its
shape depends on the minimization of the total energy of the
system. In our previous work [22,23], we placed ourselves in
conditions where gravity is negligible, by considering only
the very bottom of the elastic ribbons. The total energy of
the system was thus composed of the bending energy of the
ribbon and of the interfacial energies, and we studied how the
presence of the ribbon modified the classical Plateau’s laws
[24] for foams. Now, we consider long ribbons for which a
flattening due to gravity is observed, especially in the upper
parts, due to the weight of the lower parts.

II. MODEL DESCRIPTION AND NOTATIONS

As shown in Fig. 1, we describe a system similar to that
studied in [22]. An elastic ribbon of length L is inserted in the
middle of a 2D staircase arrangement of bubbles of longitu-
dinal size 2�. We divide the ribbon in half-cells (HCs), with
numbers defined by starting from the bottom of the ribbon
(HC no. 1 corresponds to the first half period containing a
ribbon in the whole central Plateau border). The ribbon is
characterized by a bending modulus per transverse length
α = Et3/[12(1 − ν2)], where t is the ribbon thickness, and
(E , ν), respectively, are the Young modulus and the Poisson
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(a) (b) (c)

FIG. 1. Illustration of the studied system. (a) Schematic repre-
sentation of a bubble column in a tube of square cross section. The
ratio of the bubble size to the container dimension is chosen to ob-
tain the so-called staircase structure [20,21], invariant by translation
along the axis perpendicular to the tube. (b) Experimental visual-
ization of the insertion of an elastic ribbon [polydimethylsiloxane
(PDMS)] in a staircase bubble structure. (c) X-ray microtomography
slice of the bubble column containing a thin PDMS ribbon (thickness
t = 45 µm), and zoom on a half-cell presenting the definitions of the
half bubble size � and of the amplitude � f . Note that the half-cell
numbers are defined by starting from the bottom of the ribbon, and
that the upper extremity of the ribbon is clamped above the visible
part.

ratio of the ribbon, and a lineic mass per transverse length λ

(λ = ρt , with ρ the ribbon mass density). Contrary to the case
studied in [22], the gravity g operating in the longitudinal Oz
direction is not supposed to be negligible. Its main effect is
to flatten the upper regions of the ribbon due to the weight
of the lower regions pulling downwards. The purpose of the
present theory is to compute the equilibrium shape of a long
ribbon, tied at its upper end at z = 0, in the limit of a long
ribbon L/� � 1 (to avoid finite size effects that are difficult to
handle, which moreover would obscure the understanding of
the theory).

The elastocapillary energy excess �E per unit (transverse)
length of the system, with respect to the situation where only
the bubbles are present, is given by

�E = α

2

∫ L

0
ds C2 − λg

∫ L

0
ds z(s)

+ 2γ L − γ
∑
HC

[� fi +
√

3�], (1)

where s is the curvilinear coordinate along the ribbon, starting
from s = 0 at z = 0, C = f ′′(z)/

√
1 + [ f ′(z)]3/2 is the local

ribbon curvature [we denote y = f (z) as the profile of the
ribbon in the lateral direction], and � fi is the lateral am-
plitude of the ribbon deformation in the ith HC [we choose
to number the HC from the bottom (n = 1) upward, until
n = N]. The first three terms of the right-hand side (rhs) relate
to the ribbon as, respectively, its bending, gravitational, and
interfacial energies, with the latter constant term assuming
a perfect wetting of the ribbon. The second line of (1) is
the excess interfacial energy that the system has to pay to
substitute in each HC the original liquid staircase pattern by

a wet ribbon: if h is the width of the lateral dimension of
the tube [i.e., visible in Fig. 1(c)], this energy difference in
the ith HC is indeed γ [2L + h − � fi − ( 4�√

3
+ h − �√

3
)] =

2γ L − γ [� fi + √
3�]. The

√
3� term must not be discarded

as a constant due to the fact that the number of HC is variable
in the optimization process.

In writing (1), one assumed that the HC size � is a constant
along the tube and, moreover, is unaffected by the presence of
the ribbon. This approximation is justified in the Appendix.
The direct minimization of (1) is complicated because the
gravitational term breaks the vertical translational invariance.
However, the weight of the ribbon contained in just one HC
is very modest and it is relevant to assume that the gravita-
tional energy may be considered as constant at the scale of
the HC. This assumption assumes that the weight (per unit
transverse length) of just one HC, ∼λg�, is relatively small
with respect to the typical forces (per unit transverse length),
which can be either γ or α/�2 according to the considered
regime (discussed below). This assumption amounts to re-
place −λg

∫
HCn ds z(s) by −λg(N − n + 1

2 )�
∫

HCn ds, where
the integral encompasses the part of the ribbon present in the
nth HC. In doing so, one assumes that the center of mass of
the ribbon always stays in the middle of the HC, which is in
particular provided by configurations where the ribbon shape
is centrosymmetric within each HC. This would be exactly the
case for the optimal ribbon shape in the nth HC if its weight
was negligible because, in this case, the gravitational pulling
forces exerted by the neighboring HCs on each end of the
ribbon part contained in the HC would be strictly identical.

For a long ribbon, a large upper amount is totally flat-
tened by the weight of its lower part, so it is relevant
to remove from �E the constant energy of a totally flat-
tened ribbon, (�E )flat = 2γ L + ∑L/�

n=1[−λg( L
�

− n + 1
2 )�2 −

γ
√

3�], and define

�E = �E − (�E )flat + γ	

[∫
ds − L

]
, (2)

where 	 is a dimensionless Lagrangian multiplier added to
encode the constraint that the total length of the ribbon is
conserved. If N denotes the total number of HCs that the
ribbons spans, the preceding expression can be recast into

�E =
N∑

n=1

[
α

2

∫
HCn

ds C2 − γ� fn

+
[
λg�

(
n − 1

2

)
+ γ	

](∫
HCn
ds − �

)]
+ γ �RN ,

(3)

RN = λg�

2γ
(L/� − N )2 + (

√
3 − 	)(L/� − N ). (4)

With this writing, one can expect that the bracketed series will
be convergent if N → ∞, since the large values of n will be
canceled by the terms ∝ (

∫
ds − �), which are very small at

the top of the ribbon (we will see that a remaining logarithmic
divergence remains, however negligible in the limit N � 1).
For the sake of simplicity, the L/� → ∞ (which entails N →
∞) limit will be systematically considered in the following. It
corresponds to taking the asymptotic sum of the series in (3),
but keeping in mind that L/� − N remains finite. If finite N
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corrections would have to be considered, then the boundary
effects associated to the extremities of the ribbon ending, in
general, in the middle of a HC should be carefully estimated,
a more detailed analysis which is beyond the scope of this
work.

We make the problem dimensionless by defining

λ̂ = λg�

γ
, (5)

η = α

γ �2
, (6)

and writing (note that �E is an energy per transverse unit
length)

�E/[γ �] =
N∑

n=1

en + RN , (7)

en = η

2

∫
HCn

ds

�
(C�)2 + ηκ2

n

(∫
HCn

ds

�
− 1

)
− � fn

�
, (8)

κ2
n = λ̂

(
n − 1

2

) + 	

η
. (9)

In the preceding formula, the curvature C is related to the
profile f (z) of the ribbon by the already mentioned classical
formula C = f ′′(z)/

√
1 + [ f ′(z)]3/2, and ds =

√
df 2 + dz2 =

dz
√

1 + [ f ′(z)]2. The optimization of (7) consists in (i) writ-
ing the Euler-Lagrange equations for f (z) of the ribbon in
each HC separately, which is possible since the optimal solu-
tion has extrema at the boundaries of the HC; (ii) expressing
the constraint “ribbon length =L” to remove N from (7) in
favor of 	; and (iii) extremalizing the resulting expression
for �E with respect to 	, which is equivalent to (but easier
than) extremalizing with respect to N . Notice that the whole
optimal solution is twice differentiable everywhere with slight
discontinuities of the second derivatives at the boundaries of
HC, which is not forbidden by the physics, as the lateral liquid
interfaces act as localized (“impulsive”) normal forces at these
boundaries on the ribbon.

In the general case, the optimization of (7) is probably
intractable, but as in [22], we can separately solve the case
η � 1 (stiff ribbons), where the ribbon remains everywhere
almost flat, and η 	 1 (soft ribbons), where the ribbon only
slightly perturbs the Plateau’s laws. In the latter case, a slight
difficulty must be overcome since the gravity significantly
flattens the bubbles in the upper parts of a long enough ribbon,
even if the ribbon elasticity does not.

A. Stiff ribbon limit: η � 1

This case is certainly less relevant experimentally, but it
is theoretically instructive, because much simpler to proceed
with. Here, f 	 � everywhere and it is relevant to Taylor-
expand en up to the second order,

en 
 η�

2

∫ �

0
dz[ f ′′(z)]2 + ηκ2

n �−1

2

∫ �

0
dz[ f ′(z)]2 − � fn

�
(10)

(notice that a translation in z is made so that z spans the
interval [0, �] whatever the HC that is considered). One
writes f (z) = (� fn)gn(z/�) since the particular structure of
(10) allows a separate optimization of the shape gn(z/�) and

the amplitude � fn of the profile. Solving the fourth-order
Euler-Lagrange equation with the four boundary conditions
[gn(0) = 0, gn(1) = 1, g′

n(0) = g′
n(1) = 0] gives, for the opti-

mal shape [25],

gn,opt

(
u = z

�

)
= tanh

(
κn
2

)
[cosh(κnu) − 1] + κnu − sinh(κnu)

κn − 2 tanh κn
2

. (11)

To get the optimal value of � fn, we express the energy en

optimized with respect to gn as

en = η

2

(
� fn

�

)2 ∫ 1

0
dug′

n,opt

[ − g(3)
n,opt + κ2

n g′
n,opt

] − � fn

�
.

(12)

By optimizing en with respect to � fn, we obtain

� fn,opt

�
= η−1 κn − 2 tanh κn

2

κ3
n

, (13)

en,opt = −1

2

� fn,opt

�
. (14)

As announced in anticipation, it can be observed that the
optimal value of the series in (7) keeps a slight divergence
since en,opt ∼ − 1

2̂λn
for large values of n. This divergence

gives a term ∝ ln(N ), which we make explicit by writing

N∑
n=1

en,opt 

∞∑

n=1

[
en,opt + 1

2̂λn

]
− ln N

2̂λ
. (15)

The constraint that the ribbon length in the optimal shape is L
reads L/� − Nopt = �−1 ∑

HC[
∫

ds − �], and up to the second
order in fn,

L/� − N = 1

2

Nopt∑
n=1

(
� fn

�

)2 ∫ 1

0
dug′

n,opt (u)2 ∼ S, (16)

S = 1

2η2

∞∑
n=1

1

κ5
n

[
−κn

2
tanh2

(
κn

2

)
+ 3

κn

2
− 3 tanh

(
κn

2

)]
,

(17)

where the summation has been pushed to +∞ since the series
is convergent. Note that S = ∂	

∑
[en,opt + 1/(2̂λn)], which

is understood by considering Eq. (10): The derivative of this
expression with respect to 	 has two parts, one implicit be-
cause f depends on 	, which is identically zero because a
first-order variation of the optimal f is always zero whatever
its value, and one explicit because κ2

n depends on 	, which
gives exactly the second-order approximation to L/� − N , i.e.,
S . Note, also, that we discarded the term ∝ ln(N ) which in-
duces negligible corrections for long enough ribbons. Finally,
one uses (4), (7), and (16) to write

�E/γ � =
∞∑

n=1

[
en,opt + 1

2̂λn

]
+ λ̂

2
S2 + (

√
3 − 	)S. (18)

This expression has to be optimized with respect to 	, a
step equivalent to finding the optimal number Nopt of HC
spanned by the ribbon at equilibrium [via Eq. (16)]. The fact
that ∂	

∑
n[en,opt + 1/(2̂λn)] = S shows that the equation ful-

filled by the optimal 	 is either ∂	S = 0 (which is impossible

024803-3



JEAN FARAGO et al. PHYSICAL REVIEW E 110, 024803 (2024)

because en,opt is a convex function of 	) or

	 − √
3

λ̂
= S. (19)

To go further, one can evaluate numerically the preceding
expression and solve for 	, but one can also make use of
the fact that η � 1. For small values of λ̂/η = λg�3/α, the
parameter κn is slowly varying with n, and we can use the
Euler-MacLaurin formula and replace the sum in (17) with
an integral (plus the correction terms “ f (1)

2 − f ′(1)
12 ” [26] to

be comprehensive at the order η−4). After a cumbersome
calculation, one finds

	 =
√

3 + 1

24η
−

√
3

240η2
+ 11 − 17

48 λ̂2

10080η3
+ o(η−3). (20)

It is remarkable that the first three orders of the expansion
do not depend on λ̂. This expression corresponds to the limit
of large η at constant λ̂, and can also be used in the experi-
mentally relevant limit of large t , with η ∝ t3 and λ̂ ∝ t . The
term ∝ λ̂2η−3 must in this case be considered as O(t−7) and
overcomes the O(η−3) = O(t−9) one.

Another interesting case corresponds to λ̂ = 0 whatever η.
In this case, the lowest approximation for κn in the case λ̂ = 0
is κn ∼ 31/4/

√
η, a result we obtained in [22] (formula (11) in

[22], κn ≡ 2κ . The shape gn and the transverse amplitude � fn

are also the same).
Particularly interesting is the evolution of � fn/� with n =

O(1) (lower part of the ribbon). In the approximation η � 1
that we are considering here, κn is, for the lower part of the
ribbon, a small quantity and one can approximate (13) by

√
3� fn,opt

�
= 1

4
√

3η

[
1 −

√
3 + λ̂

(
n − 1

2

)
10η

]
. (21)

As a result, a linear reduction of the lateral amplitude can
be expected, with a slope λ̂/[40

√
3η2] quite small with rea-

sonable values of γ̂ and η � 1. This limit, η � 1, therefore
does not appear as a relevant one to capture a signature of the
gravitational effects. However, the theory is particularly clear.
In the next paragraph, the same line of reasoning is followed
in the opposite limit, when η 	 1, which is a more compli-
cated case due essentially to the fact that it is an expansion
around a singular solution, reminiscent, for instance, of the
zero-temperature expansion of fermionic gas.

B. Floppy ribbon limit: η � 1

1. The η = 0 case

In this opposite limit, the gravitational pull and the elas-
tocapillary interaction oppose each other since the capillarity
largely dominates the forces opposing the bending and forces
the ribbon to a winding shape. To tackle this case, it is useful
to note that λ̂ ∝ t (t is the ribbon thickness), whereas η ∝ t3,
which suggests that one first considers the case where for-
mally η = 0 and λ̂ �= 0. We define

ω2
n = λ̂

(
n − 1

2

)
+ 	, (22)

instead of κ2
n = ω2

n/η. The energy terms now read

e◦
n = ω2

n

∫ �

0

dz

�
{
√

1 + [ f ′(z)]2 − 1} − � fn

�
. (23)

The optimal shape is readily g◦(u) = u, from which we de-
duce the optimal amplitude � f ◦

n ,

ω2
n

� f ◦
n /�√

1 + (� f ◦
n /�)2

− 1 = 0 ⇒ � f ◦
n

�
= 1√

ω4
n − 1

, (24)

and the optimal energy e◦
n = √

ω4
n − 1 − ω2

n. Once again, the
series in (7) has a logarithmic divergence, and we write, in the
large L/� limit,

�E◦/[γ �] 

∞∑

n=1

[
e◦

n + 1

2̂λn

]
− 1

2̂λ
ln(N ) + RN . (25)

One finds the same type of calculations as before, and the
ribbon length constraint equation (16) is written as

	 − √
3

λ̂
=

∞∑
n=1

ω2
n − √

ω4
n − 1√

ω4
n − 1

, (26)

where the series in the rhs is convergent. This equation is
the self-consistent equation setting the value of 	 (present
in the ωn as well). It is important to note (regarding the next
section) that as for the η � 1 case, ∂	(

∑
n e◦

n) = L/� − N ,
which yields a similar structure between Eqs. (19) and (26).

The limit λ̂ → 0 is instructive. The right-hand side series
is found (using the Euler-MacLaurin formula) equivalent to
[	 − √

	2 − 1]/̂λ, which gives 	 ∼ 2 in this limit. This is
coherent in (24) with the value � f ◦

n /� = 1/
√

3 expected ev-
erywhere in this limit λ̂ = η = 0.

2. η � 1 is a singular expansion

To account for the cases where η 	 1, but nonzero, the
idea is to expand from the preceding solution. A key point is
that the preceding solution is piecewise linear and therefore
not twice differentiable as expected for a ribbon with a finite
bending modulus. As a result, a naive expansion is bound
to fail since the perturbative term should “cure” the zeroth-
order singularity to yield a regular solution, which is just
impossible.

To tackle this difficulty, one formally writes fn(z) =
� f ◦

n
�

z + ξn(z), where ξn is a small departure from a zeroth
order, which is similar to that computed in Sec. II B 1, but for
the value 	, which is not fixed at the zeroth order by (26), but
will be later on. One makes a Taylor expansion of the energy
up to the second order in (8) and (9), which gives

en = e◦
n + η�

2

ω2
n

(
ω4

n − 1
)1/4(

ω4
n − 1

)3/4 + 1

{∫ �

0
dz[(ξ ′′

n )2 + k2
n (�−1ξ ′

n)2]

}
,

(27)

where

k2
n = 1

η

(
ω4

n − 1
)5/4[(

ω4
n − 1

)3/4 + 1
]

ω6
n

, (28)

and wherein ω2
n the value of 	 is yet to be determined.
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At this point, it is crucial to express (27) back in terms of
fn and optimize the energy with respect to fn rather than ξn

(a path also followed in [22]). The reason is that the expected
solution is at least C1 and even twice differentiable, and that
the zeroth order of our expansion is singular with respect to
this requirement. As a result, as we cannot expect to recover
with � f ◦

n
�

z + ξn(z) a twice differentiable solution, since ξn(z)
would be twice differentiable as the result of an optimization
process, it is compulsory to reexpress ξn in (27) in terms of
fn and do the optimization directly on fn. It is interesting
to note that no obvious alternate method seems at hand to
solve this issue and produce a first-order expansion in η of
the solution with the required regularity. This singularity will
be manifest in the fact that the first correction to � f ◦

n in � f
will be O(

√
η), not O(η).

Owing to these remarks, one writes (27), making the sub-
stitution ξ ′

n = f ′
n − � f ◦

n /� and ξ ′′
n = f ′′

n , to obtain

en = e◦
n + η�

2

ω2
n

(
ω4

n − 1
)1/4(

ω4
n − 1

)3/4 + 1

{∫ �

0
dz[( f ′′

n )2 + k2
n (�−1 f ′

n)2]

}

+ 1

2ω4
n

[√
ω4

n − 1 − 2
(
ω4

n − 1
)� fn

�

]
. (29)

Comparison between (29) and (10) shows that fn(z) =
� fnhn(u = z/�), where hn is given by the same formula as for
gn in (11), but with kn replacing κn. Likewise, the amplitude
� fn minimizes

en,opt − e◦
n = 1

2

kn
(
ω4

n − 1
)3/2

ω4
n

(
kn − 2 tanh kn

2

)(
� fn

�

)2

+ 1

2ω4
n

[√
ω4

n − 1 − 2
(
ω4

n − 1
)� fn

�

]
, (30)

from which one gets

� fn,opt

�
=

(
1 − tanh kn

2

kn/2

)(
1√

ω4
n − 1

)
(31)

and

en,opt = e◦
n +

√
ω4

n − 1

ω4
nkn

tanh
kn

2
, (32)

which shows that the correction to the energy is consequently
a convergent series. In (31), 	 (implicit in ω2

n and kn) is given
by taking into account the constraint equation expressing that
the length of the ribbon is L. Up to the first order in ξ ′

n =
f ′
n − � f ◦

n /�, this is

S†(	) = L

�
− N

=
∑

n

[
ω2

n − √
ω4

n − 1√
ω4

n − 1
− 1 + 3ω4

n

4ω6
n

√
ω4

n − 1

tanh kn
2

kn/2

]

+
∑

n

√
ω4

n − 1

4ω6
n

[
1 − tanh2 kn

2

]
. (33)

The value of 	 is finally found as the one minimizing

�E (	)

γ �
=

∞∑
n=1

[
en,opt + 1

2̂λn

]
+ λ̂

2
S†2 + (

√
3 − 	)S†,

(34)

which is simply done using, for instance, MATLAB. It is worth
noting that here the structure of the equation is more compli-
cated than before (η � 1 or η = 0 cases). This is due to the
fact that in (29), the explicit (i.e., not in fn) dependence of
the expression with respect to 	 is not of the form 	(L/� −
N ) (as before), but also involves the curvature energy term.
Consequently, we no longer have ∂	

∑
n[en,opt + 1/(2̂λn)]

equating S†, and (34) does not boil down to (	 − √
3)/̂λ =

S† anymore.

III. COMPARISON WITH EXPERIMENTS

A. Materials and methods

A bubble column is produced by bubbling air via a pressure
controller through a nozzle in a detergent solution [com-
posed of water with 4.5 vol% Fairy (dishwashing liquid,
used as a surfactant), 1.5 vol% Glycerol (Sigma-Aldrich), and
10 g L−1 J-Lube lubricant (Jorgensen Labs)]. Once the square
cross-section tube of width 15 mm is filled with bubbles, a
polydimethylsiloxane thin ribbon (PDMS Sylgard 184, Dow
Corning, 10:1 base to curing agent ratio, cured at 60 ◦C) of
width 14.5 ± 0.1 mm, hydrophilized via plasma cleaning
treatment on both sides, is inserted in the central Plateau
border. All details of the preparation procedure can be found
in our previous article [22] and are visually highlighted in the
video provided in the Supplemental Material [27]. The surface
tension of the solution is γ = 26 ± 1 mN/m, the thickness
of the ribbons are varied using different spin-coating speeds
(t = 45, 55, and 127 µm), and the elastic material parameters
are taken as E = 1.7 ± 0.2 MPa for the Young’s modulus,
0.45 for the Poisson’s ratio, and ρ = 1027 kg m−3 for the
mass density.

A specific care has been given in the current work to avoid
any 3D effect in the case of long ribbons. To do so, the
top of the ribbon has been pierced with six holes of 2 mm
diameter, equally spaced on a horizontal line, to release lateral
constraints at the upper clamping point. We also noticed that
when the bottom of the ribbon arrives right at a node of the
bubble column, there can be a pinning force exerted on the
system, so we avoided this case and considered systems where
the end of the ribbon is not at the extremity of a half-cell.

The structure is allowed to drain for 30 minutes, to avoid
motion artifacts, and is then scanned with an x-ray microto-
mograph EasyTom 150/160 (RX Solutions). A helical scan
of 48 minutes is performed at resolution 12 µm to capture the
deformation of the ribbon. The 3D image is then converted
into 100 slices equally spaced, taken on planes perpendicular
to the ribbon. On each slice, the amplitude of the deformation
� f and the half-cell size � are measured, and values are
averaged over the 100 slices.
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FIG. 2. Decrease of � fn/� as a function of n for three dif-
ferent ribbon thicknesses : t = 45 µm (red), t = 55 µm (blue), and
t = 127 µm (yellow). The symbols are results of measurements from
experiments (two different samples for t = 45 µm), the solid lines
are the result of the theory of Sec. II B (η 	 1) without adjustable
parameters, the dashed lines are the results of the theory where the
dimensionless mass density λ̂ has been adjusted (with a factor 1.4
and 1.5 for the red and blue curves, respectively), and the yellow
dash-dotted curve is the result of the theory of Sec. II A (η � 1).
Notice that for the sake of readability, the red curves on the y axis
are located to the right, whereas the other’s is to the left. For the
three experiments, the average values of � are, respectively, 5.7,
6.3, and 6.0 mm and the associated η are 1.9 × 10−2, 2.8 × 10−2,
and 0.38.

B. Results and discussion

We compared the prediction of the above theory with ex-
periments and the results are plotted in Fig. 2, where three
different ribbons with different thicknesses were tested. For
the thicknesses t = 45 µm and t = 55 µm, the parameters η

are, respectively, 1.9 × 10−2 and 2.8 × 10−2 and it is relevant
to use the theory of Sec. II B. Interestingly, the theory cor-
rectly predicts � f1/�, but slightly underestimates the decrease
of � fn/�, which is correctly taken into account only if the di-
mensionless mass density λ̂ is allowed to be renormalized by
a factor 1.4–1.5. This discrepancy could be accounted for by
the potential presence of two thin liquid layers of thickness of
the order of tw ∼ 10 µm each, coating the hydrophilic ribbon
on each side. The complex rheologic nature of the liquid that
is used allows long-lasting structures, but also slows down
drainage, which makes this hypothesis likely. In the case of
a thicker ribbon t = 127 µm, we used the theory of Sec. II A
(η � 1), which captures well the experimental data, as shown
in yellow in Fig. 2.

IV. CONCLUSION

In this work, we have tackled the question of the equilib-
rium shape of elastic ribbons in 2D bubble columns, in the
case where gravity, capillarity, and elasticity compete to set

the equilibrium architecture. We have performed the analysis
in multiple limit cases and highlighted the most relevant one
(floppy ribbon limit, for which gravity, capillarity, and elas-
ticity all significantly matter in the shape optimization). This
specific problem is fundamentally interesting as it involves an
optimization around a singular shape, provided by Plateau’s
laws when bubbles only are present. Finally, we have suc-
cessfully compared our analysis to experiments with multiple
ribbon thicknesses, providing evidence of the importance of
considering gravity in such systems and assessing the validity
of our modeling.
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APPENDIX: JUSTIFICATION OF THE APPROXIMATION
� = const

The volume variations induced by the ribbon are tiny and
negligible, and � = const is a good approximation, provided
the experimental setup warrants the generation of identical
bubbles. To see this, one balances the deformation work done
on a bubble by the typical energy of curvature of a zigzagging
ribbon: δV/V 
 α/P0V , where V is a bubble volume (the
geometry of the staircase bubbles is such that all relevant
typical length scales, either direct or transverse, have the same
order of magnitude, �). With typical values for (α, P0,V ),
one gets δ�/� ∼ δV/V ∼ 10−5, which validates the constant
� assumption. Another even more important source of volume
variation is associated to the fact that the ribbon thickness is
not entirely negligible with respect to the tube lateral size:
for a ribbon of size ∼100 µm, the induced (negative) vol-
ume variations are a priori δV/V ∼ 10−2. If the pressure
stays constant, δV must actually vanish, which would occur
via a (positive) variation δ�/� ∼ 10−2 between a HC with a
ribbon and a HC without. If the pressure actually increases
slightly, δ�/� is even smaller. All in all, we remark that
δ�/� is always quite small and we will henceforth neglect its
variations.
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