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Simple dynamical model that leads to sputter cone formation
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We introduce a model for sputter cone formation that includes only the angular dependence of the sputter
yield and a fourth-order smoothing effect like surface diffusion. In one dimension, a sputter cone is a particular
kind of shock wave that is known as an undercompressive shock. Simulations of our model show that a wide
variety of initial conditions lead to the formation of sputter cones and that the opening angle of the cones does not
depend on the detailed form of the initial condition. In two dimensions, a sputter cone is a higher-dimensional
analog of an undercompressive shock. For two particularly simple choices of parameters, a sputter cone is a
four-sided pyramid with rounded edges that is produced by the superposition of two orthogonal, one-dimensional
undercompressive shocks.
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I. INTRODUCTION

In a now-classic kind of experiment, the initially planar
surface of a solid composed of the elemental material B is
bombarded with a broad, normally incident noble-gas ion
beam and impurity atoms of species A are deposited concur-
rently. If the sputter yield of material A is lower than the yield
of material B, then, after a time, a disordered array of conical
projections appears on the surface of the sample [1–8]. These
so-called sputter cones are said to be “seeded” by the codepo-
sition of atoms of species A. It has been argued that sputter
cones form as the impurity atoms diffuse and agglomerate
on the surface [1–3]. These agglomerations would have a low
sputter yield, and so they would shield the underlying material
from the ion flux, leading to the formation of protrusions with
clusters of impurity atoms at their apexes.

Sputter cones are close to being conical away from their
tips, which are rounded. In addition, the cones all seem to have
very nearly the same opening angle in a given experiment.
The opening angle does, however, depend on the choice of
materials and on the ion species and energy. These observa-
tions have not yet been satisfactorily explained, even though
the first account of sputter cone formation appeared in the
literature over 80 years ago [9].

Sputter cones can also be produced in a different fashion
that will be the focus of this paper [10]. In this alternate
approach, atoms of atomic species A are not deposited during
ion bombardment of the sample surface. Instead, a thin film of
material A is first deposited on the planar surface of a sample
composed of material B. The surface of the sample is then
subjected to normal-incidence bombardment with a broad
noble gas ion beam. Because the thickness of a thin film is
never completely uniform, after a time, only isolated patches
of material A remain. These patches shield the material B
beneath them from being sputtered, and protrusions therefore

form on the surface of the substrate. In time, the isolated
patches of low sputter yield material are also eroded away and
only material B remains. Protrusions will, however, still be
present on the surface. As the ion bombardment continues,
the protrusions become nearly conical in form if material B is
amorphous. If material B is crystalline and remains so during
the ion erosion, then the protrusions are polygonal pyramids
instead of cones [10].

The formation of sputter cones is fascinating, and it is not
just of academic interest. Metal cones with sharp tips can be
operated as cold cathodes at a low electric fields and might
be useful in flat-panel displays, for example [6]. In addition, a
dense array of sputter cones can greatly enhance the optical
absorption of a surface and so could play a crucial role in
increasing the efficiency of solar cells [11].

In this paper, we introduce and study a model that leads to
sputter cone formation. In general, quite a number of physical
phenomena could conceivably contribute to the formation of
sputter cones, although the effect of some of these is expected
to be minor. Rather than attempt to incorporate all of the
different phenomena that might have an influence, we will
develop a model that is as simple as possible but neverthe-
less contains the essential physics needed to produce sputter
cones. In particular, we show that a model that includes only
the angular dependence of the sputter yield and a fourth-
order smoothing effect like surface diffusion produces sputter
cones. We begin by studying our model in one dimension
(1D). We show that a sputter cone is a particular kind of shock
wave that is known as an undercompressive shock. Our nu-
merical integrations of our equation of motion (EOM) for the
solid surface show that a wide variety of initial conditions lead
to the formation of sputter cones and that the morphology and
the opening angle of the cones does not depend on the detailed
form of the initial condition. We then show how these ideas
generalize to two dimensions. In this case, a sputter cone is a
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higher-dimensional analog of an undercompressive shock. For
two particularly simple choices of parameters, a sputter cone
is a superposition of two orthogonal 1D undercompressive
shocks.

This paper is organized as follows: We develop our min-
imal model of sputter cone formation in Sec. II. We carry
out an analytical study of our EOM in Sec. III and find exact
sputter cone solutions in both one and two dimensions. We
extend the model to include the effects of curvature-dependent
sputtering and ion-induced mass redistribution in Sec. IV. The
simulation results given in Sec. V show that for a broad range
of initial conditions, the surface converges to the sputter cone
solutions we found in Sec. III. Additional discussion of our
results is given in Sec. VI and we conclude in Sec. VII.

II. FORMULATION OF THE PROBLEM

When two nonvolatile atomic species are present in a solid
that is irradiated with a noble gas ion beam, the surface
morphology and composition are coupled. It is therefore not
sufficient to simply keep track of the surface morphology. In-
stead, coupled partial differential equations that give the time
evolution of the surface height and composition are needed
[12–20]. For this reason, theoretical analysis of the problem
in which ion bombardment and impurity codeposition are
carried out concurrently is challenging. A theory has been
developed, but it applies only at early times when the surface
slopes are small and mature sputter cones have not yet formed
[15–20]. We therefore restrict our attention to the version of
the problem in which a thin film of material A is initially
present on the planar surface of the sample of material B and
focus on the dynamics that occur after material A has been
entirely removed by the ion bombardment. We also adopt the
customary assumption that the implantation of noble gas ions
is negligible [21]. Therefore, because we have assumed that
material B is elemental, in effect only one atomic species is
present in the target once all of the thin film of material A has
been sputtered away. The state of the surface at the point in
time when the last of material A has been eroded away will be
the initial condition for the problem we will consider.

We adopt a continuum description of the solid surface. The
z axis will be taken to be normal to the planar surface of
material B before the ion bombardment begins and to point
away from the bulk of material B. Let h = h(x, y, t ) denote the
height of the surface of material B above the point (x, y) in the
x-y plane at time t . The surface height of material B at the time
when the last of material A is removed, i.e., at time t = 0, is
h(x, y, 0). We assume that h(x, y, 0) is a single-valued, smooth
function of x and y. The partial derivative of h with respect to
x will be denoted by hx, and hy and ht are defined analogously.
Above the solid, the incident ion current is J = −J ẑ, where J
is a positive constant and ẑ is the unit vector that points along
the positive z axis.

Material B may be amorphous or crystalline. If it is crys-
talline initially, then there are two cases to be considered. If a
layer at the surface of the material is amorphized by the ion
bombardment, then, after a transient, the problem is essen-
tially the same as material B were amorphous in its entirety.
On the other hand, if material B remains crystalline, then

we assume that the crystal structure has fourfold rotational
symmetry about the z axis for the sake of simplicity.

Our goal is to develop a model that is as simple as possi-
ble but nevertheless contains the essential physics needed to
produce sputter cones. We will therefore make a number of
simplifying assumptions; these will be discussed later in this
section.

For the moment, we will only take into account the effect
of sputtering. The EOM for the surface is then simply

ht = −�JY, (1)

where Y is the sputter yield and � is the atomic volume for
material B. The sputter yield will be taken to depend only on
the local angle of incidence or, equivalently, to depend only
on hx and hy. Thus, Y = Y (hx, hy). If material B is amorphous
or is amorphized by the ion bombardment, then Y (hx, hy) is
invariant under all possible rotations about the z axis and so
it only depends on |∇h|. If the material is crystalline, on
the other hand, then Y (hx, hy) is only fourfold rotationally
invariant. In this case, Y (hx, hy) is invariant under the trans-
formations hx → −hx and hy → −hy and is unchanged if hx

and hy are interchanged.
Consider the flat surface of an amorphous material and

suppose that an ion beam with the angle of incidence θ is
incident on it. (θ is defined to be the angle between the surface
normal and the direction of ion incidence, and so θ = 0 for a
normally incident beam.) The sputter yield increases at first as
θ is increased from zero but then passes through a maximum
and begins to decrease. Therefore, if an ion beam is normally
incident on a planar surface with a constant height gradient
∇h, then the sputter yield Y is an increasing function of |∇h|
for small |∇h|, but as |∇h| is increased further, Y passes
through a maximum and then starts to decrease. We will adopt
a particularly simple form for Y = Y (hx, hy) that has these
attributes: We set

Y = Y0 + a(∇h)2 − c(∇h)4, (2)

where Y0 ≡ Y (0, 0) and a and c are positive constants. As we
shall see, this form for Y has the virtue that analytical results
can be obtained in certain cases.

If the material remains crystalline during the ion bombard-
ment, then Y (hx, hy) is only fourfold rotationally invariant. We
can generalize our simple choice of Y so that this is also a
possibility: We set

Y = Y0 + a(∇h)2 − c(∇h)4 − c′h2
xh2

y , (3)

where c′ is a constant. When c′ is nonzero, the sputter yield
is only fourfold rotationally invariant. Complete rotational
invariance is recovered for c′ = 0.

We now insert the sputter yield Y given by Eq. (3) into
Eq. (1). We can simplify the resulting equation by setting
h(x, y, t ) = −v0t + u(x, y, t ), where v0 ≡ �JY0 is the rate
that a flat surface of material B would recede if it were
bombarded with the ion beam; u(x, y, t ) therefore gives the
extent to which the surface deviates from the flat steady-state
solution h(x, y, t ) = −v0t . Equation (1) becomes

ut = −A(∇u)2 + C(∇u)4 + C′u2
xu2

y, (4)

where A ≡ �Ja and C ≡ �Jc are positive and C′ ≡ �Jc′.
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If we only take sputtering into account, then the surface
will in general develop points where the slope changes dis-
continuously as a function of position and then it will become
multiple valued, i.e., overhangs will form. To eliminate this
unphysical possibility for the case in which material B re-
mains crystalline, we include the effect of thermally activated
surface diffusion in the EOM (4). We will adopt the form of
the surface diffusion term that is valid for small slopes for the
sake of simplicity. Equation (4) then becomes

ut = −A(∇u)2 + C(∇u)4 + C′u2
xu2

y − B∇2∇2u − B′uxxyy,

(5)

where B and B′ are constants and B > 0. If material B is
amorphous, then Eq. (5) still applies but the term −B∇2∇2u
comes from viscous flow near the surface of the solid rather
than from surface diffusion [22]. Because there is complete ro-
tational invariance in this case, B′ = 0. In contrast, if material
B is a crystalline material with fourfold rotational symmetry,
then B′ could be nonzero.

In keeping with our stated goal of constructing a minimal
model that produces sputter cones, Eq. (5) omits a number
of physical effects that could influence the dynamics but,
as we shall see, these are not essential to the formation of
sputter cones. Equation (5) does not include the effects of
curvature-dependent sputtering [23,24] and ion-induced mass
redistribution [25–27], for example. The effects of nonlocal
phenomena like redeposition of sputtered material and sput-
tering by reflected ions have also been omitted.

Our choice of sputter yield (3) is not meant to accurately
describe the yield for any particular choice of target material
and ion beam. Instead, we have adopted it in the interest
of constructing a model that is as simple and tractable as
possible. Our Y (ux, uy) has a maximum as |∇u| is increased
in the rotationally invariant case, as required. We will also
see that the conclusions we will arrive at are to some extent
robust: We will show that another form of the sputter yield
leads to comparable results, although, in that case, we were
unable to obtain any results analytically and so only carried
out simulations.

We can reduce the number of parameters in the EOM by
rescaling. We introduce the dimensionless variables

x̃ ≡
(

A3

B2C

)1/6

x, ỹ ≡
(

A3

B2C

)1/6

y, t̃ =
(

A6

BC2

)1/3

t,

and ũ ≡
(

C

B

)1/3

u, (6)

and drop the tildes. Equation (5) becomes

ut = −(∇u)2 + (∇u)4 + γ u2
xu2

y − ∇2∇2u − 4βuxxyy, (7)

where β ≡ B′/(4B) and γ ≡ C′/C are dimensionless. There
are two dimensionless parameters in Eq. (7). In the isotropic
case, β = γ = 0 and the EOM (7) is parameter free; this is
yet another virtue of the choice of Y given by Eq. (3).

Consider a surface disturbance u that depends only on the
time t and ξ ≡ ê · x, where x ≡ xx̂ + yŷ and the unit vector
ê ≡ x̂ cos φ + ŷ sin φ lies in the x-y plane and makes the angle

φ with the x axis. For such a disturbance, Eq. (7) reduces to

ut = − u2
ξ + (1 + γ cos2 φ sin2 φ)u4

ξ

− (1 + 4β cos2 φ sin2 φ)uξξξξ . (8)

We require that the sputter yield have a maximum as uξ is
increased for all values of φ. This leads to the requirement
that γ > −4. Similarly, we insist that the final term on the
right-hand side of Eq. (8) have a negative coefficient so that
short wavelength disturbances are smoothed away. This leads
to the requirement that β > −1. Both of these conditions are
satisfied in the isotropic case in which β = γ = 0.

III. ANALYSIS OF THE EQUATION OF MOTION

A. One dimension

For the 1D case in which u depends only on x and t , Eq. (7)
reduces to

ut = −u2
x + u4

x − uxxxx, (9)

which is parameter free. Setting b ≡ ux and differentiating
Eq. (9) with respect to x, we obtain

bt + ∂xY (b) = −bxxxx, (10)

where

Y (b) ≡ b2 − b4 (11)

is the rescaled sputter yield.
Equation (10) has been studied in detail by Chen et al.

[28] and by Holmes-Cerfon et al. [29,30] for general choices
of the function Y (b). For the sake of completeness, we will
summarize the results of their analysis before specializing to
the yield given by Eq. (11). (To be perfectly precise, the term
on the right-hand side of the equation analogous to Eq. (10)
found in Refs. [28–30] has a more complex form that reduces
to ours for small slopes b. This, however, does not affect the
analysis.)

If the right-hand side of Eq. (10) were zero, then we would
have

bt + ∂xY (b) = 0. (12)

This can be thought of as the continuity equation for the
conserved quantity b; the “flux” of b is Y (b). Equation (12)
can also be written bt + Y ′(b)bx = 0, which shows that Y ′(b)
is the advection velocity. A small disturbance to a surface of
slope b0 propagates with velocity Y ′(b0).

Shock waves can form if Y ′(b) depends on b (and it does in
our problem). If Eq. (12) were the EOM, then a shock could
steepen without limit and, past a certain time, the height of the
surface would no longer be single valued. The presence of the
smoothing term −bxxxx in Eq. (10) prevents bx from growing
without bound and the surface height remains single valued.

To find shock-wave solutions to Eq. (10), one seeks
traveling-wave solutions of the form b = b(ξ ), where ξ ≡
x − ct and c is the propagation velocity of the shock [29,30].
We require that b(ξ ) → bl for ξ → −∞ and b(ξ ) → br for
ξ → ∞, where the asymptotic values bl and br are constants.
c is given by the Rankine-Hugoniot condition [31]

c = Y (bl ) − Y (br )

bl − br
, (13)
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and so the shock’s velocity is determined if bl and br are given.
Classical (compressive) shocks satisfy the Lax entropy

condition

cr < c < cl , (14)

where cl ≡ Y ′(bl ) and cr ≡ Y ′(br ) are the advection velocities
to the left and right of the shock, respectively. Surface distur-
bances on either side of the shock propagate toward the shock
in this case, i.e., the shock is “compressed.” By definition,
(singly) undercompressive shocks violate one of the inequali-
ties (14), while doubly undercompressive shocks violate both.
In the case of classical shocks, the permissible pairs of values
(bl , br ) form a two-dimensional region (or regions) in the
parameter space with coordinates bl and br . In contrast, for
singly undercompressive shocks, once bl has been specified,
the value of br is either determined or does not exist. These
solutions make a curve in the parameter space. Finally, doubly
undercompressive shocks exist only for certain choices of bl

and br if they exist at all. The permissible pairs of values
(bl , br ) are isolated points in the parameter space.

In our problem, Y (b) is given by Eq. (11). We wish to
find a shock-wave solution that is a one-dimensional analog
of a sputter cone, and so we want bl > 0 and br = −bl .
Equation (13) shows that the propagation velocity c of such
a shock is zero, since Y (b) is an even function of b. In fact,
because the height of the cone should be an even function of
x, it follows that c = 0 by symmetry.

We seek solutions to Eq. (9) of the form u(x, t ) = f (x) −
v0t , where f (x) gives the shape of the cone and v0 is the rate
it moves downward as a result of erosion. Setting g ≡ fx, we
find that g must satisfy

−g2 + g4 − gxxx = −v0, (15)

where g(0) = 0. We seek solutions to Eq. (15) of the form

g(x) = A tanh(κx), (16)

where A and κ are constants. Inserting our solution ansatz
(16) into Eq. (15) and equating the coefficients of like powers
of tanh(κx), we get three algebraic equations that relate A,
κ and v0. These equations have only one solution, which is
given by A = −√

3/2, κ = 31/6/24/3 and v0 = 3/16. Thus,
we have

b(x, t ) = g(x) = −
√

3

2
tanh

(
31/6

24/3
x

)
. (17)

Note that g(0) = 0, as required, and that b → ∓√
3/2 for x →

±∞. There is a sputter cone solution only for the asymptotic
values of the slope bl = √

3/2 and br = −√
3/2; we will refer

to these as the selected slopes.
We find f by integrating Eq. (17) with respect to x. This

leads to our final result,

u(x, t ) = −61/3 ln

[
cosh

(
31/6

24/3
x

)]
− 3

16
t + K, (18)

where K is a constant of integration. As we shall see in Sec. V,
for a wide variety of initial conditions, the surface height tends
toward the solution given by Eq. (18).

For the shock solution given by Eqs. (17) and (18),
c = 0, bl = √

3/2 and br = −√
3/2. Therefore

cl = Y ′(bl ) = −√
3/2 and cr = Y ′(br ) = √

3/2. It follows
that

cl < c < cr, (19)

i.e., both of the inequalities in the Lax entropy condition (14)
are violated. The shock we have found is therefore doubly
undercompressive. This means that a small disturbance on the
side of the cone will propagate away from the cone’s tip.

It is important to note that the sputter cone solution we have
found has sides with fixed slope

√
3/2. The apex angle of the

cone therefore has only one possible value. This is a conse-
quence of the fact that the shock is doubly undercompressive.

Far from the cone’s apex, its sides have a dimensionless
slope of magnitude

√
3/2. In the original units, this slope

is (3A/4C)1/2. The radius of curvature of the cone’s apex is
4(2BC2/9A3)1/3 in the original units. This decreases if B is
reduced. In the limit that B tends to zero, the slope changes
discontinuously at the tip of the cone. A slope discontinuity
in the limit that the coefficient of the smoothing term tends to
zero is a key property of a shock wave [31].

B. Two dimensions

In the 2D case, u depends on x, y, and t . There is a partic-
ularly interesting special case in which γ = −2 and Eq. (7)
becomes

ut = −u2
x + u4

x − uxxxx − u2
y + u4

y − uyyyy − (2 + 4β )uxxyy.

(20)

Suppose that u1(x, t ) and u2(x, t ) are both solutions to the 1D
EOM (9). It is easy to see that

u(x, y, t ) = u1(x, t ) + u2(y, t ) (21)

is then a solution to the 2D EOM (20), no matter what the
value of β is. Thus, for the case γ = −2, we can find solutions
to the 2D problem by solving the 1D problem. In particular,
we have the solution constructed by taking u1 and u2 to be
doubly undercompressive shocks:

u(x, y, t ) = −61/3{ln[cosh(κx)] + ln[cosh(κy)]} − 3
8 t + 2K,

(22)

where K is an arbitrary constant and we remind the reader that
κ = 31/6/24/3. Equation (22) describes a four-sided pyramid
with a rounded tip and edges, as shown in Fig. 1. The pyramid
is fourfold rotationally symmetric. If it were not for the round-
ing of the pyramid’s tip and edges, then its four faces would
all have slope

√
3/2. In addition, if the pyramid’s edges were

projected onto the x-y plane, then they would coincide with
the lines x = 0 and y = 0.

Equation (7) can also be decoupled into two 1D problems
for γ = 4. In this case, we introduce coordinate axes ξ and
η that are obtained by rotating the x and y axes by 45◦,
i.e., we introduce the new coordinates ξ ≡ (x + y)/

√
2 and
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FIG. 1. A contour plot of the 2D analytical solution (22) for the
surface height u. The highest (lowest) contours are shown in light
green (violet).

η ≡ (−x + y)/
√

2. Equation (7) becomes

ut = − u2
ξ + 2u4

ξ − (1 + β )uξξξξ − u2
η + 2u4

η − (1 + β )uηηηη

− 2(1 − β )uξξηη. (23)

We now set ξ̃ ≡ 2−1/6(1 + β )−1/3ξ , η̃ ≡ 2−1/6(1 + β )−1/3η,
t̃ = 2−2/3(1 + β )−1/3t , and ũ ≡ 21/3(1 + β )−1/3u. Equa-
tion (23) is then

ũt̃ = − ũ2
ξ̃
+ ũ4

ξ̃
− ũξ̃ ξ̃ ξ̃ ξ̃ − ũ2

η̃ + ũ4
η̃

− ũη̃η̃η̃η̃ − 2(1 − β )(1 + β )−1ũξ̃ ξ̃ η̃η̃. (24)

Note the close analogy between Eqs. (20) and (24); we see
that Eq. (24) has solutions of the form ũ = u1(ξ̃ , t̃ ) + u2(η̃, t̃ ),
where u1 and u2 are solutions to the 1D EOM. In particular,
we have the solution

ũ(ξ̃ , η̃, t̃ ) = −61/3{ln[cosh(κξ̃ )] + ln[cosh(κη̃)]} − 3
8 t̃ + 2K̃,

(25)

where K̃ is an arbitrary constant. This solution is a a four-
sided pyramid with a rounded tip and edges, but it is rotated
by 45◦ about the z axis relative to the pyramid we found for the
case γ = −2. When written in terms of the original variables,
Eq. (25) is

u(x, y, t ) = − 31/3(1 + β )1/3

×
(

ln

{
cosh

[
31/6

4(1 + β )1/3
(x + y)

]}

+ ln

{
cosh

[
31/6

4(1 + β )1/3
(−x + y)

]})
− 3

16
t,

(26)

where we have set K̃ = 0. We can rewrite Eq. (26) in a
form that does not depend on the parameter β by setting x̄ =
(1 + β )−1/3x, ȳ = (1 + β )−1/3y and ū = (1 + β )−1/3u. This

yields

ū(x̄, ȳ, t ) = − 31/3

(
ln

{
cosh

[
31/6

4
(x̄ + ȳ)

]}

+ ln

{
cosh

[
31/6

4
(−x̄ + ȳ)

]})
− 3

16
t . (27)

Equations (20) and (24) show that the problems with γ =
−2 and γ = 4 are in fact formally identical: One problem is
obtained from the other by carrying out a 45◦ rotation and
rescaling. It is therefore sufficient to consider one of these
two problems. We will restrict our attention to the case γ = 4
because in that case the sputter cone fits neatly into the domain
we used in our simulations, {(x, y)| − L � x � L and − L �
y � L}.

We will also be interested in the isotropic case in which
β = γ = 0 and the EOM (7) reduces to

ut = −(∇u)2 + (∇u)4 − ∇2∇2u. (28)

The 2D problem cannot be separated into two 1D problems in
this case. Some simplification is possible, though, if the initial
surface configuration is rotationally symmetric. In this case,
u only depends on t and the radial distance r ≡

√
x2 + y2 for

t � 0. Equation (28) is then

ut = −u2
r + u4

r −
[

1

r

∂

∂r

(
r

∂

∂r

)]2

u. (29)

We seek solutions to Eq. (29) of the form u(r, t ) = −v0t +
F (r) and set G = Fr . The function G(r) must satisfy

−v0 = −G2 + G4 −
[

1

r

d

dr

(
r

d

dr

)][
1

r

d

dr
(rG)

]
. (30)

A sputter cone is a solution to this third-order ordinary dif-
ferential equation with G = ur = 0 for r = 0 and with G =
ur → −s and Gr = urr → 0 for r → ∞, where the positive
constant s is the slope of the cone far from its apex. Taking
the r → ∞ limit of Eq. (30) gives

−v0 = −s2 + s4. (31)

Equation (30) is analogous to the equation we obtained in
1D, Eq. (15). In contrast to the situation in 1D, however, we
have been unable to find an analytical solution to Eq. (30).
Our study of the isotropic case in 2D will therefore be entirely
numerical.

IV. A GENERALIZATION OF THE MODEL

To this point, we have not included terms in the EOM
that are proportional to second-order spatial derivatives of the
surface height. In the case of an amorphous or amorphized
target material, terms of this kind can come from curvature-
dependent sputtering [24] and mass redistribution [25–27]. In
the case of a target material that remains crystalline during the
ion irradiation, on the other hand, the Ehrlich-Schwoebel (ES)
effect can produce such a term [32–35].

For the sake of simplicity, in this section we will restrict
ourselves to the 1D case in which the surface height u is
independent of y. Including a second-order term, the 1D EOM

024802-5



NICHOLAS L. LEHNERZ AND R. MARK BRADLEY PHYSICAL REVIEW E 110, 024802 (2024)

FIG. 2. Simulations of the 1D EOM (9) for three initial conditions: (a) a Gaussian, (a′) a Lorentzian, and (a′′) a half wavelength of a sine
wave. The graphs (b)–(b′′) show the respective surfaces at later times when the cones are beginning to emerge, while the graphs (c)–(c′′) show
the surfaces at still later times when the cones are nearly fully formed. The respective times are shown above each panel.

FIG. 3. Plots of the slopes of the cones shown in Figs. 2(c)–2(c′′), corresponding to (a) the Gaussian initial condition, (b) the Lorentzian
initial condition, and (c) the half-wavelength sine initial condition. The red dashed curves are plots of the analytical solution for ux given by
Eq. (17).
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FIG. 4. The slope distribution for the surface shown in Fig. 2(c).
The red dashed lines are located at ux = ±√

3/2.

(5) becomes

ut = −Au2
x + Cu4

x − Buxxxx + δuxx, (32)

where δ is a constant. After rescaling as before, Eq. (32) is
recast as

ut = −u2
x + u4

x − uxxxx + Duxx, (33)

where D ≡ (C/B)1/3δ/A is dimensionless. The new term that
has been appended to the right-hand side of Eq. (9) has a
stabilizing (destabilizing) effect for positive (negative) values
of the parameter D. If D is negative, then a flat surface with
zero slope is linearly unstable. Typically, if the target material
is amorphized by the ion bombardment, then the stabilizing
effect of mass redistribution is stronger than the destabilizing
effect of curvature-dependent sputtering for normal incidence
bombardment and so D is positive. In any event, because we
wish to study sputter cone formation that is seeded by the pres-
ence of a second atomic species rather than the spontaneous
formation of cones, we will restrict our attention to the case
D � 0. The constant D is then a dimensionless measure of the
net strength of the second-order smoothing term.

For D > 0, we again seek solutions to the EOM of the form
u(x, t ) = f (x) − v0t . Equation (33) shows that the function
g ≡ fx must satisfy

−g2 + g4 − gxxx + Dgx = −v0. (34)

FIG. 5. The (a) height u(0, t ) and (b) recession velocity ut (0, t )
of the cone’s tip at x = 0 versus time, beginning with the initial
condition shown in Fig. 2(a). The red dashed line on the velocity
graph is located at the predicted tip velocity, −v0 = −3/16.

FIG. 6. The simulation with the Gaussian initial condition shown
in Fig. 2(a) at later times.

We seek solutions to Eq. (34) of the form given by Eq. (16).
We find that

A = −
√

3

2

(
1 − D

Dc

)1/2

, (35)

κ = 31/6

24/3

(
1 − D

Dc

)1/2

, (36)

and

v0 = 3

16

(
1 − D

Dc

)(
1 + 3

D

Dc

)
, (37)

where Dc ≡ 61/3. The surface height is given by

u(x, t ) = A
κ

ln[cosh(κx)] − v0t + u0, (38)

where u0 is an arbitrary constant. Thus, we have a sputter
cone solution for values of D less than the critical value Dc;
no such solution exists for D > Dc because A and κ are
imaginary in this case. For 0 � D � Dc, the slope of the flanks
of the cone |A| decreases as D is increased. From a physical
standpoint, this is because the strength of the second-order
smoothing term increases with D. Naturally, the solution given
by Eqs. (35)–(38) reduces to the one we obtained earlier
[Eq. (18)] if we set D to zero.

There is no sputter cone solution for B → 0 since D ≡
(C/B)1/3δ/A exceeds Dc = 61/3 in that limit. This shows that
the fourth-order smoothing term is essential to the formation
of an undercompressive shock. In fact, this was already noted
in work on the undercompressive shocks that develop when a
fluid thin film flows down an inclined plane in the presence
of a thermal gradient [36,37]. The importance of a nonconvex
flux was also emphasized in that context, and, indeed, the flux
Y (b) = b2 − b4 is not a convex function of b in our model of
sputter cone formation.
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FIG. 7. A simulation of the 1D EOM (9) with L = 512. The initial condition, which is shown in (a), was the sputter cone solution (18) with
a Gaussian perturbation placed on its side. The perturbation is at the center of the blue circle. The slope of the surface is shown at (b) t = 0,
(c) t = 75, (d) t = 150, and (e) t = 225. The analytical solution for the cone’s slope is shown with the red dashed line in (e). As time passes,
the perturbation moves down the side of the cone, away from its tip. The perturbation also broadens as its amplitude decreases.

To further illustrate these ideas, consider the behavior if
both the fourth-order smoothing term −uxxxx and the quartic
nonlinearity u4

x are omitted from Eq. (33) and D is positive.
The resulting equation is

ut + u2
x = Duxx. (39)

Differentiating Eq. (39) with respect to x, setting b̃ = 2b =
2ux, and then dropping the tildes, we obtain Burgers’s equa-
tion [31]

bt + bbx = Dbxx. (40)

In this approximation, the flux is b2/2, which is convex,
and of course the fourth-order smoothing term is absent.

FIG. 8. A simulation with a Gaussian initial condition with
u0 = 10 and σ 2 = 500. The surface is shown at (a) t = 0, (b) t =
100, and (c) t = 400. A plot of uxx for the surface in (c) is shown in
(d). The red dashed line is located at uxx = 1/2t .

Equation (40) has the shock-wave solution

b(x, t ) = 1

2
(bl + br ) − 1

2
(bl − br ) tanh

[
bl − br

4D
(x − ct )

]
,

(41)

where b → br for x → ∞, b → bl for x → −∞, and c ≡
(bl + br )/2 the velocity of the shock [31]. Equation (41) is a
classical (compressive) shock. It is a valid solution to Eq. (40)
for any bl > br . Thus, there are no selected slopes in this
simple approximation. Both the fourth-order smoothing term
and the term u4

x that appear in Eq. (33) are needed if sputter
cones with selected slopes are to form.

For a sputter cone with selected slopes to develop from
a surface protrusion that is present initially, the protrusion
must be sufficiently high and narrow. To see this, suppose that
D > 0 and u(x, 0) = U (X, 0), where X ≡ εx and ε is small.
u(x, 0) is then a slowly varying function of x, and the surface
slope ux(x, 0) = εUX (X, 0) is small. We seek solutions to
our generalized EOM (33) of the form u(x, t ) = U (X, T ),
where T ≡ ε2t . In the language of the method of multiple
scales, x and t are the “fast” position and time, whereas X
and T are the corresponding “slow” variables. Equation (33)
becomes

ε2UT = ε2
(−U 2

X + DUXX
) + ε4

(
U 4

X − UXXXX
)
. (42)

Retaining only terms up to second order in ε, we obtain

UT + U 2
X = DUXX . (43)

As we saw in the preceding paragraph, Eq. (43) has no sputter
cone solutions with selected slopes. We conclude that for a
sputter cone with selected slopes to develop, the initial surface
protrusion must be sufficiently high and narrow, as claimed.

V. SIMULATIONS

A. Simulations in 1D

The 1D EOM (9), as well as the generalized 1D
EOM (33), were integrated numerically using the
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FIG. 9. Plots of ux for sputter cones formed from the Gaussian initial condition in Fig. 2(a) at time t = 100 for various values of D. The
red dashed plots of ux were obtained from Eq. (38) with parameter values given by Eqs. (35)–(37).

fourth-order Runge-Kutta exponential time-differencing
(ETD4RK) method described by Cox and Matthews [38] on
the domain −L � x � L. We set L = 128 and used N = 1024
grid points unless otherwise stated. Periodic boundary
conditions were applied. The linear terms were calculated
in Fourier space while the nonlinear terms were computed
in real space using a central differencing scheme accurate
to fourth order in the grid spacing. Simulations were carried
out for initial conditions with surface protrusions of various
kinds.

Figure 2 shows the results of simulations carried out with
D = 0 for three different initial conditions that have surface
protrusions. The protrusions evolved into sputter cones in all
three cases. While the evolution of the surfaces and the times
required for the sputter cones to form differed, the resulting
cones are nearly identical. Figure 3 shows plots of the surface
slope for the surfaces shown in Figs. 2(c)–2(c′′). There are
regions of appreciable width in which the slope is close to
one of the two predicted values, ux = ±√

3/2; these regions
are the sides of the cones. Also shown in Figs. 3(a)–3(c) is the
analytical solution for ux given by Eq. (17). For all three initial
conditions, the slope of the cone is in very good agreement
with the predicted form both on the sides of the cone and
in the vicinity of its tip. Figure 4 gives the distribution of
slopes for the cone formed from the Gaussian initial condition.
The two peaks in the wings of the distribution come from the

sides of the cone and are centered on the predicted slopes,
ux = ±√

3/2. The large number of occurrences of slopes near
zero, on the other hand, is due to the two regions that flank
the cone in which the slope is relatively small. Note, too,
that the slope distribution is symmetric about ux = 0, as it
should be. Figure 5 shows that, after a brief transient, the
cone recedes into the surface at the predicted constant velocity
−v0 = −3/16 for the initial condition in Fig. 2(a), showing
further agreement with Eq. (18). The time interval in which a
cone persists is dependent on the form of the initial protrusion,
but after some time has passed, any cone will completely
recede into the ambient surface because the erosion rate is
higher on the sides of the cone than on the relatively flat
regions beside it. This kind of time evolution—which is illus-
trated by Fig. 6—is analogous to what is seen in experiments:
All sputter cones have a finite lifetime.

As noted earlier, a sputter cone is a doubly undercompres-
sive shock, and a small disturbance on the side of a cone will
propagate away from the cone’s apex. This is illustrated by the
simulation shown in Fig. 7.

The Gaussian initial condition shown in Fig. 2(a) is given
by

u(x, 0) = u0e−x2/2σ 2
, (44)

where u0 = 50 and σ 2 = 500. If the value of u0 is reduced
below a threshold value, then the time evolution of the

FIG. 10. Plots of |A|, v0, and the value of uxx at x = 0 versus D. The black curves show the predictions of Eqs. (35)–(38), while the red
dots show the values obtained from the simulations for the five selected positive values of D.
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FIG. 11. A simulation with D = 0.6 starting with the Gaussian
initial condition shown in Fig. 2(a). While the surface seems to be
tending towards the analytical steady-state solution shown with the
red dashed curves, the protrusion recedes into the ambient surface
before the cone has fully formed.

FIG. 12. Plots of ux versus x for simulations of the generalized
1D EOM (33) with D = 0.1 and L = 512 at t = 110 for the Gaussian
initial condition (44) with u0 = 50 and four values of σ 2. The σ 2

values are as follows: (a) σ 2 = 500, (b) σ 2 = 1250, (c) σ 2 = 2000,
and (d) σ 2 = 2750. The red dashed curves show the analytical
steady-state solution for ux . Note that while the simulations were
carried out on the domain with −512 � x � 512, only the region
with −128 � x � 128 is shown in the plots.

FIG. 13. A simulation of Eq. (7) with β = 0 and γ = 4. Panel
(a) shows the initial Gaussian protrusion, panel (b) shows the surface
at time t = 100, and panel (c) shows the surface at time t = 550. The
false color rulers indicate the surface height u. (d) A contour plot of
the surface shown in (c).

protrusion is quite different and a sputter cone does not
emerge. This is illustrated by Fig. 8, in which σ 2 is once
again equal to 500 but the value of u0 has been reduced to
10. In this case, regions in which the surface slope is nearly
constant do not form; instead, the flanks of the protrusion
become approximately parabolic. This is seen most clearly in
Fig. 8(d), which shows uxx as a function of x at time t = 400.
Away from the tip of the protrusion, uxx is nearly independent
of x.

FIG. 14. Cross sections of the surface shown in Fig. 13(b) along
the x and y axes together with their respective slopes, ux and uy. The
red dashed plots show the the analytical solution for the slopes.
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FIG. 15. The gradient distribution for the surface shown in
Fig. 13(c). The false color ruler shows the number of counts for a
given gradient. The red dashed lines are located at ux = ±√

3/2 and
uy = ±√

3/2. Slope values near zero were excluded, which removes
a bright peak centered on (ux, uy ) = (0, 0) that comes from the flatter
regions flanking the sputter cone.

For small slopes, Eq. (9) can be approximated by

ut = −u2
x − uxxxx, (45)

which has the solution

u(x, t ) = (x − x0)2

4t
+ C, (46)

where C and x0 are constants. For this solution, uxx = (2t )−1.
As seen in Fig. 8(d), on the sides of the protrusion, uxx is very
close to this value for large-enough times t .

If u(x, t ) is given by Eq. (46), then ux = (x − x0)/2t . The
point where the slope ux has the value s moves away from
the point x = x0 with constant speed 2s for all values of s.
For this reason, the solution given by Eq. (46) is known as an
expansion wave or rarefaction. Thus, when u0 is sufficiently
small, a sputter cone with sides of approximately constant
slope does not develop; instead, the flanks of the protrusion
evolve into rarefactions.

For positive values of D up to 0.5, we found good agree-
ment between the steady-state analytical solution given by
Eqs. (35)–(38) and simulations carried out with the Gaussian
initial condition given by Eq. (44) with u0 = 50 and σ 2 =
500. In Fig. 9, for example, ux at time t = 100 is plotted

FIG. 16. The recession velocity ut (0, 0, t ) of the sputter cone’s
tip at x = y = 0 versus time for the simulation shown in Fig. 13. The
red dashed line is located at the predicted tip velocity, −v0 = −3/16.

versus x for five different values of D � 0.5. Also shown in
Fig. 9 is the surface slope obtained from Eqs. (35)–(38) for
the five selected positive values of D; the agreement with the
simulations is excellent in all cases. The magnitude of the
selected slope |A|, the recession speed v0, and the value of
uxx at x = 0 as given by Eqs. (35)–(38) are plotted versus
D in Fig. 10. Estimates of |A| and the value of uxx at x = 0
were obtained from the simulated surfaces at time t = 100.
To obtain an estimate of v0 from the simulations, we found the
average speed that the cone tip receded between the time when
cone formed and when it receded into the ambient surface.
These estimates are also shown in Fig. 10 for the five selected
positive values of D. Once again, the agreement between
the steady-state solution for the cone and the simulations is
impressive.

As D is increased, the time that it takes for the surface to
approach the predicted conical steady state increases. For D
greater than 0.5, we do not observe the formation of extended
regions in which the slope closely matches the predicted value
before the incipient cone recedes into the ambient surface, as
is seen for D = 0.6 in Fig. 11. However, if we choose the
initial surface to be given by the analytical solution (38), then
we find that the cone retains its shape until it is eventually
sputtered away for D up to Dc = 61/3.

At the end of Sec. IV, we demonstrated that for positive
values of D, sputter cones with selected slopes do not form
if the initial surface protrusion is not sufficiently high and
narrow. To illustrate this, we performed simulations of the
generalized 1D EOM (33) with Gaussian initial conditions of
the same height u0 but with four different widths σ . Results
from these simulations—which are shown in Fig. 12—reveal
that selected slopes develop for the two smaller σ values but
not for the larger two.

As is the case for D = 0, for positive values of D, a per-
turbation placed on the side of a cone moves away from the
cone’s tip and decreases in amplitude. If D is sufficiently large,
then the perturbation smooths out almost entirely before it has
moved down the side of the cone to an appreciable extent.

B. Simulations in 2D

The 2D EOM (7) was integrated numerically on the do-
main with −L � x � L and −L � y � L using the same
method as we employed in 1D. Once again, periodic boundary
conditions were applied. We set L = 128 and used an evenly
spaced N × N grid with N = 1024 unless otherwise stated.

We begin by looking at the EOM (7) with γ = 4. In
this case, we have the exact steady-state pyramidal solution
given by Eq. (26) that is valid for all β > −1. Unless oth-
erwise stated, simulations were carried out for β = 0. The
initial condition used in these simulations was u(x, y, 0) =
u0 exp(−x2/2σ 2

x − y2/2σ 2
y ) with u0 = 420 and σ 2

x = σ 2
y =

1875. Figure 13 shows that the surface evolves from the rota-
tionally invariant Gaussian initial condition into a four-sided
pyramid with rounded edges and a reduced height. The nearly
pyramidal shape in Fig. 13(c) can be seen more clearly by
looking at the surface contours shown in Fig. 13(d). Cross
sections of the solid surface taken along the x and y axes
(Fig. 14) along with the distribution of gradients for the entire
surface (Fig. 15) agree very well with the analytical solution
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FIG. 17. A simulation of the EOM (7) with γ = −2 and β = 0. The initial condition was the exact pyramidal solution (22) with a Gaussian
perturbation placed on the face located in the upper right quadrant of the x-y plane. The color scale represents the value of uxy(x, y, t ) at
(a) t = 15, (b) t = 65, (c) t = 115, and (d) t = 165. Only the region with 0 � x � L and 0 � y � L is shown in the figure. The black line
segments intersect at the approximate center of the perturbation and are included to show that the disturbance is moving away from the cone’s
tip. As was the case in 1D, the perturbation broadens and decreases in amplitude as time passes.

(26) once the sputter cone has developed fully. In addition,
Fig. 16 shows that, once the cone has formed, the results
of the simulation agree closely with the constant recession
velocity of the sputter cone that is predicted by Eq. (26).
Finally, additional simulations showed that increasing β led
to the formation of a pyramid with a more rounded tip and
edges, with no change in the selected slopes, in accord with
Eq. (26).

As was the case in 1D, starting the simulation with a
different initial protrusion leads to the formation of a nearly
identical cone provided that the initial protrusion’s height is
large enough compared to its width. If the initial protrusion
does not satisfy this requirement, then four approximately
parabolic regions form around the protrusion’s tip. In this
case, surface cuts taken along the x and y axes look very
similar to those in the 1D simulations shown in Fig. 8.

In 2D, a small disturbance placed on one of the sides of
the sputter cone propagates away from its apex, just as in 1D.
To illustrate this, it is simplest to look at the case in which
γ = −2 because the corresponding steady-state solution (22)
has uxy = 0 for all x, y, and t . Figure 17 shows the results of
a simulation in which a Gaussian perturbation was placed on
one face of the pyramidal sputter cone. uxy(x, y, t ) has been
plotted since it is small everywhere except in the immedi-
ate vicinity of the perturbation. As in 1D, the disturbance

broadens and decreases in amplitude as it propagates away
from the sputter cone’s tip.

Simulations of the rotationally invariant 2D EOM (7) with
γ = β = 0 show that the surface tends towards a rotationally
invariant cone regardless of the form of the initial protrusion,
so long as the protrusion is sufficiently high and narrow. The
results of two simulations with Gaussian initial conditions
given by u(x, y, 0) = u0 exp(−x2/2σ 2

x − y2/2σ 2
y ) are shown

in Fig. 18. For the isotropic initial surface shown in Fig. 18(a),
σ 2

x = σ 2
y = 1875, whereas σ 2

x = 2500 and σ 2
y = 937.5 for the

anisotropic initial surface in Fig. 18(a′). In both cases, u0 =
500. The corresponding surfaces at time t = 1250, which are
shown in Figs. 18(b) and 18(b′), are close to being rotationally
invariant, even though the initial condition in Fig. 18(a′) is
not. Cross sections of the solid surface taken along the x and
y axes and the corresponding plots of the surface slope for the
surface in Fig. 18(b) are shown in Fig. 19. The plots of ux and
uy have regions of appreciable width on either side of the cone
in which the slope is nearly constant. Additional evidence that
the protrusion is close to being a rotationally invariant cone at
sufficiently long times comes from the gradient distributions
shown in Fig. 20. At any point on an idealized rotationally

invariant cone except its apex, the slope |∇u| =
√

u2
x + u2

y has

the same value. Thus, if we look at the gradient distribution
in (ux, uy) space, then the highest slope counts should form
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FIG. 18. Two simulations of Eq. (7) with β = γ = 0. The initial conditions are (a) a rotationally invariant Gaussian and (a′) a Gaussian
protrusion with differing widths σx and σy. The corresponding surfaces at time t = 1250 are shown in (b) and (b′), respectively. The false color
ruler indicates the surface height u(x, y, t ).

a circle centered on the origin if the surface protrusion is
nearly conical. Figure 20 shows that this indeed the case for

FIG. 19. Cross sections of the surface shown in Fig. 18(b) along
the x-z and y-z planes together with the corresponding plots of the
slopes ux and uy. The red dashed lines are located at ux = ±0.780
and uy = ±0.780, respectively.

the surfaces shown in Figs. 18(b) and 18(b′), and so these
protrusions have a nearly constant slope |∇u| everywhere and
not just along the Cartesian axes.

Let r and φ be polar coordinates for the x-y plane. If the
surface protrusion is rotationally invariant, then uφ is zero
everywhere on it. To obtain more evidence that the surface
tends toward being rotationally invariant regardless of the
form of the initial protrusion, we computed the value of Q ≡∫∫ |uφ|2dxdy for a range of times for the simulation with the
anisotropic initial condition shown in Fig. 18(a′). This integral
was calculated for the domain within 256 grid points of the
origin to eliminate the effect of the domain boundaries. The

FIG. 20. The gradient distributions for the surfaces in
Figs. 18(b) and 18(b′) are shown in panels (a) and (b), respectively.
The color scale represents the number of counts. Once again, values
of the surface gradient near (ux, uy ) = (0, 0) were excluded since
these come from the relatively flat region surrounding the cone.
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FIG. 21. A plot of Q versus time for the initial condition shown
in Fig. 18(a′).

plot of Q versus time shown in Fig. 21 shows that Q rapidly
tends to zero as time passes, as expected.

Our simulations in 1D showed that the surface tends to
the exact steady-state sputter cone solution provided that the
initial protrusion is sufficiently high and narrow. We saw that
this is also true for the 2D problem with γ = 4. In contrast,
we were unable to find an exact sputter cone solution for the
rotationally invariant 2D EOM with γ = β = 0. However, our
simulations of this EOM do provide strong evidence that the
surface tends to a rotationally invariant steady-state sputter
cone regardless of the form of the initial protrusion, so long
as the protrusion is sufficiently high and narrow. This is il-
lustrated by Fig. 22. The near perfect agreement of the plots
in the vicinity of the cone’s tip show that a steady state was
reached. Moreover, as in the other cases we have considered,
the velocity of the cone’s tip ut (0, 0, t ) was found to be very
nearly constant after the cone had fully formed, as seen in
Fig. 23. The value of the steady-state recession velocity v0

∼=
0.238 was obtained by averaging many values of ut (0, 0, t )
within the time interval in which it is approximately constant.
A value for v0 can also be obtained by inserting the value of

FIG. 22. Six snapshots of ux (x, 0, t ) taken during the time pe-
riod in which the fully formed sputter cone is receding into the
surface. The blue and black curves were taken at times t = 1500 and
t = 1750, respectively, while the intervening snapshots were taken at
time intervals of �t = 50. The initial surface for this simulation was
given by u(x, y, 0) = u0 exp(−x2/2σ 2

x − y2/2σ 2
y ) with u0 = 500 and

σ 2
x = σ 2

y = 7500. The simulation domain was the region in which
−512 � x � 512 and −512 � y � 512.

FIG. 23. The recession velocity ut (0, 0, t ) of the cone’s tip versus
time for the initial condition shown in Fig. 18(a). The red dashed line
is located at the velocity −v0 = −0.238.

the cone’s slope s we found in Fig. 19 into Eq. (31). This
yields v0

∼= 0.238, in agreement with the value we obtained
directly.

To study the behavior of a small disturbance to the form
of the rotationally invariant cone, we started a simulation with
an initial condition of the form u(x, y, 0) = −sr, which repre-
sents a cone with a pointed tip. The value of s was chosen to
be the numerically determined approximate slope of our sim-
ulated cones, s = 0.780. The simulated surface evolved into
a steady-state cone with a rounded tip very quickly relative
to the simulations beginning with a Gaussian. Perturbations
placed on the sputter cone propagate away from the cone’s
tip, in analogy with the behavior of the sputter cones studied
earlier. This is illustrated by Fig. 24. In this simulation, a sinu-
soidal perturbation that depends only on r was superimposed
on the sputter cone. The ripples propagate radially outward,
away from the cone’s tip, until the constant slope regions are
restored. The ripples also attenuate with time.

VI. DISCUSSION

We began this paper by studying the surface dynamics
of the ion-bombarded surface for the 1D case in which the
surface height h does not depend on y. At this point in our
work, we only included the effects of sputtering and a fourth-
order smoothing term in our analysis. This problem has also
been studied by Holmes-Cerfon et al. [29,30] for an empirical
form of Y (b) with the values of two parameters chosen to
model 1-keV Ar+ bombardment of a silicon surface. Their
numerical work suggests that if a sufficiently high and narrow
ridge is initially present on the surface of the sample, then the
ridge will evolve into a so-called knife edge with sides of a
particular selected slope. This knife edge is analogous to the
1D sputter cone we found for our choice of yield function;
both are doubly undercompressive shocks.

Holmes-Cerfon et al. were forced to determine the form of
their knife edge numerically. In contrast, the 1D sputter cone
solution we found for the simple, generic yield function given
by Eq. (11) is exact. The yield function we elected to study
also leads to the parameter-free EOM (9) and so we did not
need to choose parameter values to model a particular ion-
target combination. Instead, the parameters in our model were
simply scaled away. The values of these parameters determine
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FIG. 24. A simulation of the EOM (7) with γ = β = 0 starting with the initial condition described in the text. The color scale represents
the value of |urr | at (a) t = 5, (b) t = 150, (c) t = 300, and (d) t = 450. Over time, the ripples that were superimposed on the sputter cone
move away from the cone’s tip, which is located at the origin. The labels (1)–(3) track the individual ripples as time passes. The ripples also
attenuate with the passage of time. Note that only the region with 6 � x � 64 and 6 � y � 64 is shown, but the simulation was carried out the
domain with −128 � x � 128 and −128 � y � 128.

the characteristic time scale and the characteristic horizontal
and vertical length scales.

Holmes-Cerfon et al. omitted terms proportional to second-
order spatial derivatives of the surface height from their EOM.
They did so even though the effects of curvature-dependent
sputtering and mass redistribution can be substantial if the tar-
get material is amorphized by the ion irradiation. Similarly, if
the material remains crystalline, then the Ehrlich-Schwoebel
effect can lead to the presence of a non-negligible term pro-
portional to uxx in the EOM. In our work, we studied the effect
of adding a term Duxx to the 1D EOM. We found that a sputter
cone solution exists for D smaller than the critical value Dc but
not for D > Dc.

The undercompressive shocks studied in this paper and by
Holmes-Cerfon et al. [29,30] are doubly undercompressive.
In an earlier study, Chen and coworkers [28] found that singly
undercompressive shocks can form when a pit in an otherwise
flat solid surface is irradiated with a broad, normally incident
ion beam. In addition, when a solid surface is bombarded with
a broad ion beam at an angle of ion incidence θ that exceeds a
critical value, surface ripples develop. If θ is sufficiently large,
then the surface often develops a terraced form at long times.
A theory for terrace formation has been advanced in which the
terraces are singly undercompressive shocks [39,40].

Undercompressive shocks appear in other contexts besides
ion bombardment of solid surfaces. They can occur, for ex-
ample, when a fluid thin film flows down an inclined plane

subject to the competing effects of gravity and a thermal
gradient. The EOM for that problem is

ht + ∂x(h2 − h3) = −∂x(h3hxxx ) + D∂x(h3hx ), (47)

where h = h(x, t ) is the film thickness and the non-negative,
dimensionless parameter D is a measure of the relative
strength of the gravitational, viscous, and surface tension
forces [41]. Equation (47) has a number of features in com-
mon with the generalized 1D EOM we studied in Sec. IV,
Eq. (33). Differentiating the latter with respect to x yields

bt + ∂x(b2 − b4) = −bxxxx + Dbxx, (48)

where, as before, b ≡ ux. Although Eqs. (47) and (48) have
different fluxes, both fluxes are nonconvex functions. Both
equations also have second-order and fourth-order smoothing
terms. Equation (48) is the simpler of the two, however, be-
cause the smoothing terms are linear in this case but not in the
case of Eq. (47).

In the thin film flow problem, Bertozzi and coworkers
were able to prove that an undercompressive shock exists for
sufficiently small, non-negative D and that one does not exist
when D is sufficiently large [41]. The proof was a mathemat-
ical tour de force. In contrast, for the model of sputter cone
formation given by Eq. (48), we were able to demonstrate
that an undercompressive shock exists for D < Dc = 61/3 by
explicitly and analytically finding the form of the shock. No
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such solution exists for D � Dc, and so we have found the
exact critical value of D for our problem.

In the 2D case, the surface height h has a nontrivial depen-
dence on both x and y. This is the case that is directly relevant
to experiments on sputter cone formation. In our theory, a
sputter cone is a generalization of a doubly undercompressive
shock to 2D. Our 2D EOM (7) can be separated into two
1D problems for γ = −2 and γ = 4. For these special cases,
a sputter cone is a square pyramid that is obtained by the
superposition of two orthogonal 1D doubly undercompressive
shocks. The isotropic 2D case in which β = γ = 0 cannot be
separated into two 1D problems. Nevertheless, our numerical
work showed that sputter cones form in this case as well.
These sputter cones are rotationally invariant steady-state so-
lutions to the EOM.

In early work on sputter cones, Stewart and Thompson
argued that the flanks of the cones have a slope that maxi-
mizes the rate that the surface recedes [42]. In the case of our
model, the sputter yield (11) takes on its greatest value for the
(dimensionless) slope 1/

√
2 ∼= 0.707. This is quite different

than the slope of the sides of the cone s = 0.780 that we found
for the isotropic case in 2D. The simple argument given by
Stewart and Thompson gives the incorrect result because the
effect of the fourth-order smoothing term was neglected. As
we have seen, this term comes from either surface diffusion
or ion-induced viscous flow in a surface layer and its effect
must be taken into account if sputter cones are to form. Others
have suggested that the redeposition of sputtered material is
essential to the formation of sputter cones, and that the cones
actually grow in the direction of the incident ions [43]. Our
work shows that sputter cones can develop in the absence of
redeposition. Our sputter cones also move downward, away
from the ion source.

In both 1D and 2D, a wide variety of initial conditions
evolve into sputter cones as time passes; our simulations sug-
gest that so long as an initial protrusion is sufficiently high
and narrow, it converges to a sputter cone with the passage
of time. Away from the apex, the slope of the sputter cone
takes on a single selected value. The cone opening angle can
therefore take on only one value, in accord with experiment
[1–8]. In our simulations, sputter cones appear to be stable
against perturbations—a disturbance to the form of a cone
propagates away from the cone apex, and decreases in am-
plitude as it does so. This is consistent with experiment, since
sputter cones would not be observed experimentally if they
were not stable.

Consider the isotropic case in which γ = β = 0. We set
h̃ = (C/B)1/3h and Ỹ0 = cY0/a2 and define x̃, ỹ and t̃ as previ-
ously. After dropping the tildes, our EOM (5) becomes

ht = −Y − ∇2∇2h, (49)

where the rescaled sputter yield Y is given by

Y = Y0 + (∇h)2 − (∇h)4. (50)

As we have already discussed, this sputter yield has a number
of desirable features. It becomes negative for sufficiently large
slopes |∇h|, however. To address this issue, we consider the

FIG. 25. A numerical integration of the EOM (49) with Y re-
placed by the modified sputter yield Ym and with Y0 set to 1. The
domain is the region with −512 � x � 512 and −512 � y � 512.
(a) The Gaussian initial condition u(x, y, 0) = u0 exp(−x2/2σ 2

x −
y2/2σ 2

y ) with u0 = 500 and σ 2
x = σ 2

y = 7500. (b) The surface at time
t = 1650. (c) The cross section of the surface shown in (b) along the
x-z plane. (d) The corresponding plot of the slope ux .

modified sputter yield

Ym = Y0 + (∇h)2

Y0 + (∇h)4
Y0. (51)

This modified yield, like the original yield given by Eq. (50),
at first increases with the slope |∇h| before reaching a maxi-
mum and then it decreases monotonically. Ym, however, does
not become negative for large slopes. Instead, it tends to zero
as |∇h| becomes large, as it should. In addition, for small
slopes |∇h|, Ym reduces to Y to order (∇h)4.

We carried out numerical integrations of the EOM (49)
with Y replaced by the modified sputter yield Ym. Figure 25
shows the results of a simulation with a rotationally invariant
Gaussian protrusion as the initial condition. Once again, the
initial protrusion evolves into a cone with a rounded tip. This
suggests that the main results we have obtained in this paper
do not depend on the detailed form of the sputter yield, i.e.,
that they are robust.

The reader might reasonably ask why we did not use the
modified yield Ym throughout our work. The answer to this
question is that by chosing the sputter yield given by Eq. (50)
we were able to obtain analytical results in 1D and in the
separable 2D problems.

VII. CONCLUSIONS

In this paper, we advanced a simple model that leads to
sputter cone formation. We showed that the model need only
include the angular dependence of the sputter yield and a
fourth-order smoothing effect like surface diffusion for sputter
cones to form. We began by studying our model in 1D. We
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found that a sputter cone is a particular kind of shock wave
that is known as a doubly undercompressive shock. Our simu-
lations showed that a sputter cone is formed provided that the
initial surface protrusion is sufficiently tall and narrow, and
that the opening angle of the cone does not depend on the
detailed form of the initial condition. A small disturbance on
the side of the sputter cone attenuates as it propagates away
from the cone’s apex, and hence the cone is stable against
perturbations.

We also studied a generalized version of the 1D model
that includes a term proportional to the second-order spatial
derivative of the surface height. Such a term could come from
curvature-dependent sputtering or ion-induced mass redistri-
bution, for example. This generalized model produces sputter
cones so long as the coefficient of the second-order term does
not exceed a critical value.

In 2D, a sputter cone is a higher-dimensional analog of a
doubly undercompressive shock. There are two particularly
simple special cases in which the crystal structure has four-
fold rotational symmetry. For these cases, a sputter cone is a
four-sided pyramid with rounded edges that is produced by
the superposition of two orthogonal, one-dimensional, doubly
undercompressive shocks. If the target material is amorphous,
then a sputter cone is a rotationally invariant cone with a
rounded tip. In this case, we were unable to find the form of
the sputter cone analytically, but our numerical work strongly
suggests that a steady-state form is approached that has a

form that is independent of the detailed form of the initial
protrusion, so long as the protrusion is sufficiently high and
narrow. In all cases, a small disturbance to the form of the
sputter cone attenuates in amplitude as it propagates away
from the cone’s tip. A sputter cone is eventually eroded away
in both one and two dimensions.

We adopted a particularly simple form for the sputter
yield’s dependence on the angle of ion incidence. This allowed
to find the form of the sputter cone analytically in 1D and
in the two simple special cases in 2D. However, simulations
carried out with a modified sputter yield strongly suggest that
our main conclusions are valid for any physically reasonable
choice of sputter yield.

For the sake of simplicity, in this paper we studied the
sputter cones that are formed by bombarding a target that
consists of a thin film of a low sputter yield material A that
has been deposited on the planar surface of a high sputter
yield bulk material B. Sputter cones are usually produced by
bombarding the initially planar surface of a solid composed of
the material B while concurrently depositing atoms of species
A, however. In future work, we plan to develop a theory for
this more challenging problem.
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