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Contact angle hysteresis on nonwetting microstructured surfaces:
Effect of randomly distributed pillars or holes
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We present a numerical study of the advancing and receding apparent contact angles for a liquid meniscus in
contact with an ultrahydrophobic surface with randomly distributed microsized pillars or holes in the Cassie’s
wetting regime. We study the Wilhelmy plate system in the framework of the full capillary model to obtain
these angles using the heterogeneous surface approximation model for a broad interval of values of pillar or
hole concentration and for both square and circular shapes of the pillars or holes cross-section. Three types
of random placing of defects on the plate are investigated, i.e., two with restrictions: (1) with maximum and
(2) with minimum distance between the defects (in these cases the defects are isolated), and (3) without
restrictions (the defects can overlap). The results show that the type of defect distribution and also the type
of the defects shape (circular or square) does not affect the magnitude of the two angles. The results of the
numerical simulations showed that the retention force for a plate with randomly located defects is not greater,
and for larger concentrations of pillars or holes, it is smaller than that for periodically spaced ones. Comparisons
with experimental results for the receding contact angle on surfaces with pillars and with the advancing contact
angle on surfaces with periodically arranged holes is carried out.
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I. INTRODUCTION

At the forefront of wetting phenomena research lies the
investigation into the characteristics of a liquid interacting
with microstructured surfaces, comprising arrays of pillars
or holes [1]. These type of surfaces, having physical defects,
are termed rough. Let us shortly recall that on ideal (flat and
chemically homogeneous) surfaces the contact of the liquid
with such surface in partial wetting regime is characterized by
a unique equilibrium contact angle (CA) θeq, given by Young’s
equation (in the framework of the full capillary theory) [2].
However, most real surfaces are by far not ideal, they have dif-
ferent defects physical and/or chemical (in the later case, i.e.,
only chemical defects, the surface is called chemically het-
erogeneous). On such nonideal surfaces the equilibrium CA
is not any longer unique. At macroscopic level one observes a
whole interval [θ r, θa] of macroscopic equilibrium CAs and
this phenomenon is called contact angle hysteresis (CAH).
The lower limit θ r of the CAH interval is termed receding
contact angle (RCA) and the upper limit θa is called advancing
contact angle (ACA) [3]. When studying the Wilhelmy plate
system (a vertical solid plate, immersed in a tank of liquid) the
RCA is measured when the plate withdraws from the liquid
and the ACA is determined when the plate immerses in the
liquid. For the other often studied system, that of a liquid
drop on a solid surface, the RCA and the ACA, are uniquely
determined at the moment when the drop on inclined surface
loses stability and starts to slide down.
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Recently, the research interest on wetting phenomena was
drawn to a specific realizations of rough solid surfaces—
surfaces on which pillars of micrometer size are distributed.
On such surfaces (known as microstructured surfaces), when
in contact with a liquid, gas bubbles (or air pockets) are
formed on some parts of the liquid and solid contact. A
similar effect is observed when instead of pillars there are
arrays of holes on the surface. This type of regime of liq-
uid and solid contact is termed Cassie’s wetting regime and
it leads to a sharp decrease of the CAH. This in turn is
the reason for heightened interest in studying such type of
surfaces. A minimal CAH proves highly beneficial for nu-
merous technological processes, motivating an interest in
exploring and understanding better this problem. In numerous
experimental works, artificially formed surfaces with physi-
cal defects of the same shape and size (pillars or holes) are
used. The cross-sections of these defects are most commonly
square or circular, but there are also rhomboid, star-shaped,
or other shapes [4–7]. When investigating how the concentra-
tion, size, shape, and arrangement of defects affect the CAH,
surfaces with periodically arranged defects are most com-
monly used with a square, rectangular, as well as hexagonal
distribution.

A. CAH on microstructured surfaces

For these types of surfaces, it is established that there is a
certain asymmetry in the behavior of the CAH for the two
types of microstructured surfaces (i.e., covered with pillars
and, respectively, with holes). It has been established [8] that
the ACA for pillars θa(p) and the RCA for holes θ r(h) are
constants that do not depend on the type and concentration
of defects, while the RCA for pillars θ r(p) and the ACA for
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FIG. 1. Schematic drawing of a CL kink depinning mechanism in the CL receding regime: (a) at periodic defects (replica of Fig. 9(b) in
Ref. [11]), and (b) at random defects.

holes θa(h) depend on the defect concentration. Due to that
property, the problem of finding the CAH on such surfaces is
reduced to the determination of the θ r(p), respectively, θa(h),
depending on the type of surface roughness (surface with
pillars or, respectively, with holes). These angles (θ r(p) and
θa(h)) depend on the parameters, characterizing the surface
roughness, i.e., the distribution (including the type of arrange-
ment of defects and concentration), the size of the physical
defects, and the equilibrium CA, which the liquid forms with
the solid phase. The experimental studies show, that even in
the case of surfaces with pillars or holes whose size is just
few micrometers, the solid phase cannot be treated as ideal,
i.e., the solid phase is rough and/or heterogeneous [9–11],
though at finer scale. The simplest possible way to account
for this fact is to consider the existence of an intrinsic CAH
[θ r

s , θa
s ] (s—solid) of the solid phase and, respectively, to

consider how it affects the values of the θ r(p) and θa(h). In
the present work, we will adopt this simplified approach as
in other research on CAH, see, e.g., Refs. [10,12–15]. Thus,
following this approach, simple theoretical reasoning shows
that θa(p) = 180◦ and θ r(h) = θ r

s . This behavior contrasts with
that of the θ r(p) and the θa(h). The prevailing understanding
is that the θ r(p) and θa(h) are unique functions of the defect
surface fraction p [8,16] (i.e., the ratio between the total
contact area on the tops of the pillars or holes and the total
projected solid area) and of the defect line fraction φ [17,18]
(the ratio between the length of the part of the equilibrium
contact line (CL) that passes through pillars or holes and the
length of the entire CL; usually, φ is estimated as the ratio of
the pillar or hole size to the cell size along the line connecting
the centers of the pillars or holes). When studying the effect of
the defect line fraction, then the CL refers to the three-phase
CL of the reduced problem (or else the heterogeneous surface
approximation model), in which the physical defects, such
as pillars or holes are replaced with chemical defects on a
smooth surface, where the liquid forms a continuous CL with
the heterogeneous surface [19].

B. Role of depinning mechanism on CAH

In the heterogeneous surface approximation of the initial
problem (liquid contact with a rough surface) on the segments
of the CL that are not in contact with the solid phase, the
contact angle θv = 180◦ (v—vapor) is assumed. Numerical
simulations show that studying the reduced problem (instead
of the original) does not affect the magnitude of the CAH
[20]. Under the assumption that the three-phase contact line
is located on one row of pillars or holes, it is theoretically
justified [18] and numerically confirmed [21] that the θ r(p) and
θa(h) are unique functions of the defect line fraction φ, where

the θ r(p) and θa(h) are equal to the modified Cassie angle, in
which the area fraction p is replaced by the line fraction φ,
i.e., one has

cos θ r(p) = φ cos θ r
s + (1 − φ) cos θv, (1)

cos θa(h) = (1 − φ) cos θa
s + φ cos θv. (2)

The provided formulas in Eqs. (1) and (2) have a limited
validity since the assumptions made for their derivation are
not always fulfilled. In reality, the CL is not always located
on a single row of pillars or holes. For a liquid droplet on
a surface with pillars, Dorrer and Rühe [11] have indicated
that it is improbable that the CL may dewet over its entire
length at once (block depinning regime). According to them,
receding motion would be split into a series of jumping events
(kink depinning regime), resulting in a step function running
along the contact line, as it is illustrated in Fig. 1(a) (which
is a replica of Fig. 9(b) in Ref. [11]). Figure 1(a) shows
a schematic illustration of a CL kink depinning mechanism
in the receding regime, appearing on a rough surface with
pillars arranged in a square lattice, when looking from above
(i.e., from a direction, perpendicular to the solid plate). The
initial CL is denoted by a thick solid line, and the gas and
the liquid phases are above and below the CL, respectively.
The direction of the CL depinning is shown by an arrow.
The dashed line denotes the part of the CL which has moved
in the depinning process. Each of these movements of the
CL line occurs at the places between two adjacent rows of
pillars, i.e., in the receding regime, the CL loses stability at
the areas, where it switches between two adjacent rows of
pillars.

This assumption has been experimentally confirmed
[16,22] and supported also by numerical simulations [24]. The
obtained experimental results for the θ r(p) indicate that it is
significantly larger than the predicted by Eq. (1), i.e., consid-
ering the appearing of a kink depinning leads to a decrease of
the CAH. The experimental results for the θ r(p) are consistent
with the numerical simulations for the θ r(p) in Refs. [22]
and [20], using different software implementation, i.e., SUR-
FACE EVOLVER [23] and the Local variations method,
respectively. Studies on the θ r(p) with different designs of the
periodic arrangement of pillars, i.e., square, rectangular, and
hexagonal lattices, and at various concentrations of pillars,
have shown that the θ r(p) depends uniquely on the defect
surface fraction but not on the defect line fraction. For period-
ically arranged pillars, the mentioned scenario occurs during
the receding motion of the CL but not during the advancement
of the CL [24].

024801-2



CONTACT ANGLE HYSTERESIS ON NONWETTING … PHYSICAL REVIEW E 110, 024801 (2024)

C. How do the values of the CAH compare on surfaces
with periodically and randomly distributed pillars or holes?

The existence of two types of CL depinning for periodi-
cally arranged defects leads to asymmetric wetting hysteresis.
However, whether the periodic arrangement is indeed one of
the reasons for a small CAH is an interesting question. The
consistency of the θ r(p) values for different arrangements of
periodic defects shows that the depinning moment depends
weakly on the mutual arrangement of pillars located in the re-
gion where the CL passes from one row of pillars to another. A
similar situation occurs when the pillars are randomly placed
and not arranged in rows of periodic defects, as illustrated in
Fig. 1(b). In this case, every movement of the CL is of the kink
type, occurring both during the receding and the advancement
of the CL.

In view of the above discussion the following question
arises: How do the values of the CAH compare on surfaces
with periodically and randomly distributed pillars or holes,
given equal all remaining parameters (defect shape, concen-
tration, θ r

s , θa
s )? The answer to this still largely unexplored

question is the main subject of the present study. Its rele-
vance is determined by the fact that manifestations of the
lotus effect in nature occur on surfaces with randomly ar-
ranged localized pillars (this is how they are arranged on
lotus leaves [25,26]; examples of randomly arranged physical
defects can be found in Refs. [6,27–31]). For this purpose,
numerical calculations of the ACA and the RCA will be
obtained for surfaces with pillars or holes and a comparison
will be made with the case where the pillars or holes form
a doubly periodic structure where kink CL depinning occurs.
For simplicity, we will consider the reduced problem where
the solid surface is considered flat but covered with chemical
defects.

II. PROBLEM FORMULATION

A. Wilhelmy plate with heterogeneous surface

The Wilhelmy balance geometry is used in this study,
conventionally employed for CA determination. It is as-
sumed that the square plate � (dipped in a tank of liquid)
with a side length a, is vertical. In Cartesian coordinates
(x, y, z), where the z-axis is oriented opposite to the
gravitation force the vertical plate � is defined as � ≡
{x = 0, 0 � y � a,−a/2 � z � a/2}. We consider that the
square plate has a heterogeneous but smooth solid surface
consisting of a homogeneous base (on which the liquid forms
an equilibrium CA in the range [θ r

B, θa
B] (B—base), on which

defects are placed. These defects are characterized by the
equilibrium CA which the liquid forms on them, taking values
in the range [θ r

D, θa
D] (D—defect). Heterogeneous surfaces,

for which one has θ r
B > θa

D, will be referred as “pillar”-type
surfaces and when θ r

D > θa
B as “hole”-type surfaces. For the

purpose of comparing the obtained results conveniently with
the available experimental data, we assume that the liquid in
consideration is water as in Ref. [16]. We investigate the effect
of two different defect shapes: circular defects with a radius
r = 5 µm (similarly to Ref. [16]) and square defects with a
side b = r

√
π (the sizes of the two types of defects are chosen

in such way so that the areas of the cross-sections of the two

types of defects are equal), with the sides of the square defects
parallel to the edges of the plate.

B. Types of defect distributions

We will consider three methods for generation of defects
on the solid surface. To gradually differentiate from the case
of periodic defects, where defects are isolated, (i.e., the dis-
tance between the defect centers is bigger than the diameter
2r = 10 µm in the case of circular defects and bigger than
the square diagonal r

√
2π ≈ 12.53 µm in the case of square

defects) and spaced at a large distance, we will create the
following distributions:

Distribution Type I, where N = a2/(πr2) defect centers
are placed sequentially on the square domain using a random
number generator, ensuring that the minimum distance
between the defects is as large as possible. This is achieved in
the following way. We first define a new variable λ, initialized
with λ = 2r for defects of circular shape and λ = b for
defects of square shape. Next, we generate successively N
defect centers with the condition that the distance between
each pair of centers is � λ. This procedure is repeated several
times with increasing λ, until it is no longer possible to place
all N centers within the square with size a with the prescribed
constraints. The largest value of λ for which the procedure was
successful is used for the realization of the defect structure
approximating the randomly distributed defects. The obtained
value of λ as a result of this procedure is a function of the
defect surface fraction p, and it decreases with p. For example,
for defect size r = 5 µm (or b = r

√
π ), one has λ = 33.6 µm

at p = 0.05, λ = 19.1 µm at p = 0.15, λ = 13.4 µm at p =
0.30 (for a circular and square shaped defects), and λ = 11 µm
at p = 0.45 (only in the case of circular defects). A possible
realization of this defect distribution is shown in Figs. 7(a)
and 8(a) in the Appendix in the case of circular defects at
concentration p = 0.1 and p = 0.4, correspondingly.

Distribution Type II is similar to type I, where the N de-
fects are placed sequentially, but the only condition in this
case is that the centers are spaced at a fixed minimum dis-
tance λ = 11 µm for circular defects and λ = 12.6 µm for
square defects. These distances ensure that the defects are
isolated. An example of this distribution is shown in Figs. 7(b)
and 8(b) in the Appendix, at concentration p = 0.1 and
p = 0.4, correspondingly, where the defects are also of cir-
cular shape.

These two types (I and II) of placing randomly isolated
identical defects allow for the investigation of concentrations
up to p = 0.45 for circular defects, and p = 0.34 for square
defects. In the case of circular defects at p = 0.45, one gets
that in distributions type I and type II the distance parameter λ

between defects is one and the same, i.e., one gets λ = 11 µm.
The same is observed also for square defects, however at
p = 0.34, one gets that in both types (I and II) of defect
distributions. The difference in the maximal considered con-
centrations for circular defects and square defects comes from
their different shapes and the imposed requirement that the
defects are isolated. For circular defects, the requirement that
the defects are isolated means that the defect centers should
be at a distance, bigger than their diameter 2r = 10 µm. In
the case of square defects (whose size is b = 8.86 µm) the
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requirement that the defects are isolated means that the defect
centers should be at a distance >12.54 µm (which is the size
of the square diagonal). This requirement results in maxi-
mal considered concentration of p = 0.34 for square defects,
while for circular defects it is p = 0.45.

Distribution Type III involves generating randomly ar-
ranged defects where overlapping between the defects is
allowed. The total number of defects is increased compared
to the previous two types, while maintaining the same con-
centration as in the above two cases. An illustration of this
distribution is shown in Figs. 7(c) and 8(c) in the Appendix at
concentration p = 0.1 and p = 0.4, respectively, for circular
defects.

The studies for circular shaped defects show that the cor-
relation between defects at distances bigger than the defect
diameter 2r is small for all types I–III (see the Appendix for
more details).

To compare the CAH on surfaces having randomly dis-
tributed defects (distributions types I–III) with periodically
structured surfaces, we calculate the CAH also on surfaces
with the following distribution:

Distribution Type IV has periodically distributed defects
with centers arranged in a square lattice.

C. ACA and RCA determination

The ACA and the RCA are calculated based on the
equilibrium states of the liquid meniscus in contact with a
heterogeneous square plate. The relation between the aver-
aged macroscopic CA θ and the averaged contact line (CL)
height 〈h(y)〉y of the liquid meniscus is used [21,32,33] for
the determination of the CA:

θ = arcsin
(
1 − 〈h〉2

/
2l2

c

)
, (3)

where lc = √
γ /ρg is the capillary length, γ is liquid-gas sur-

face tension, ρ is the difference of the densities of the liquid in
the tank and the ambient gas, and g is the gravity acceleration
(in a study of capillary rise the effect of gravitation cannot be
ignored). This definition of the angle θ is deduced from the
CL height h via a well known relation between the contact
angle θ and the CL height h on an ideally homogeneous flat
wall [34],

h = lc
√

2(1 − sin θ ). (4)

The ACA θa measurement in such a system may be per-
formed by fixing the vertical position of the three-phase CL
with respect to the liquid level far from the plate, after having
moved the plate downwards into the liquid pool. Similarly, the
RCA θ r may be obtained from the determination of the three-
phase CL after the upward motion. In the case of a random
distribution of defects, the CL h is a random function of the
plate’s position. Therefore, the ACA and the RCA are deter-
mined from the averaged CL height 〈〈hi(y)〉y〉i by averaging
〈h(y)〉y over multiple equilibrium CLs ≡ (y, zi = hi(y)), i =
1, . . . , M, obtained during consecutive small movements of
the plate, in the present results—with M = 100 movements
each at a step of 2.5 µm corresponding to its immersion in

and withdrawal from the liquid container. The procedure for
obtaining these angles is detailed and utilized by our team in
Ref. [35] for obtaining the CAH on random self-affine rough
surfaces.

D. Metastable equilibrium states

According to capillary theory, the metastable meniscus
states are determined through minimization of the free en-
ergy U of the system, taking into account the capillary and
gravitation forces acting in the system. The existence of intrin-
sic CAH means that roughness (and/or heterogeneity) at two
or more length scales (smaller than defects scale) is involved
when defining the properties of the solid surface and, respec-
tively, the free energy U of the system. Taking into account the
combined effect of the different roughness and/or heterogene-
ity scales on U is very difficult task, due to the complicated
character of the forces, acting at different distances from the
CL [36,37]. Young’s equation is valid at distances far from
the CL, while the effect of van der Walls forces, a charged
solid surface, the effect of finite deformability of the solid etc.
[2] play role in determining a CA at short distance from the
CL, which is different from the CA determined by Young’s
equation. Even when staying within the phenomenological
description of system equilibrium, when taking into account
the forces at small distances from the CL, the free energy
of the three-phase liquid-gas-solid system from the classi-
cal capillary theory needs to be modified (for example, by
including the CL tension energy [38]). Along with this, a
detailed information on the nature of the roughness and the
heterogeneities on scales smaller than the characteristic size
of the pillars or holes is needed. In the present work, we
adhere to a modification of the capillary theory model to take
into account the effect of the intrinsic CAH. According to
the capillary model, when the three-phase CL is advancing
or withdrawing on a solid surface that is smooth and homo-
geneous, the macroscopic CA is given by Young’s equation.
When the solid surface has intrinsic hysteresis, the observable
CA is θa

s when the CL advances and θ r
s when the CL recedes

on the solid surface. This behavior is similar to having a CL
advancing or receding on a smooth and homogeneous solid
surface, however, the “Young” CA is considered equal to θa

s
for advancing CL and to θ r

s for receding CL, respectively. This
simple model allows, in a first approximation, to investigate
the influence of the pillars or holes on the CAH, however, it
also eliminates some of the important effects that may appear
in a more detailed account of roughness and heterogeneity at
smaller lengths associated with the change of the transition
energy between the possible metastable states [39].

Given the assumptions made, the metastable equilibrium
state of the liquid meniscus is determined by minimizing the
functional F (	), dependent on the shape of the liquid and va-
por interface 	, where F is the normalized energy F = U/γ ,
defined as

F (	) =
∫

	

d 	 − cos θ r
B

∫
SB

d SB

− cos θ r
D

∫
SD

d SD + 1

l2
c

∫
V

z d V (5)

024801-4



CONTACT ANGLE HYSTERESIS ON NONWETTING … PHYSICAL REVIEW E 110, 024801 (2024)

for withdrawing plate, and

F (	) =
∫

	

d 	 − cos θa
B

∫
SB

d SB

− cos θa
D

∫
SD

d SD + 1

l2
c

∫
V

z d V (6)

for immersing plate.
In Eqs. (5) and (6) V is the liquid volume, SB and SD are the

parts of the plate surface � that belong to the base material
and the defect material, respectively, the superscripts r and a
refer to the respective receding and advancing contact angles
when investigating the case of a withdrawing or immersing
plate (for determination of the global RCA/ACA on the mi-
crostructured surfaces).

The local minima of Eqs. (5) and (6) are determined nu-
merically using the same step-wise minimization algorithm
from our previous studies on the structure of the contact line
of the liquid meniscus in contact with a surface featuring
periodic [20,21] as well as random [40] defects. In the latter
publication, a sequence of equilibrium CLs in the withdrawing
mode of the plate was obtained with randomly distributed de-
fects without distance limitations between them (surface with
defect distribution type III). We apply the same numerical
algorithm here in the current study. We obtain a surface 	 =
(x, y, z(x, y)), x � 0, which minimizes the energy functional
(5) or (6), and which is enclosed between the vertical planes
y = 0 and y = a for two types of boundary conditions (BCs)
for the contact of the interface 	 with the enclosing planes
y = 0 and y = a:

— Periodic BCs: z(x, 0) = z(x, a) for every x � 0, and
— Orthogonal BCs: ∂z(x, y)/∂y|y=0 = ∂z(x, y)/∂y|y=a =

0 for every x � 0.
When studying the system with periodic BCs the choice of

the defects is made in such a way so that θ (0, z) = θ (a, z) for
every z. Far away from the heterogeneous plate � (i.e., x →
∞) we impose on the surface 	 = (x, y, z(x, y)) the condition
z(∞, y) = 0.

The periodic surfaces with distribution type IV are investi-
gated using the same algorithm [20] as the one for the surfaces
with random defects, but the plate � is periodic with a side
length consisting of 30 rows of defects. The initial equilib-
rium contact line is positioned on two consecutive horizontal
rows of defects (15 consecutive defects each). Following the
methodology described in Ref. [22], The RCA for pillar-type
surfaces and the ACA for hole-type surfaces are determined
from the system state where the contact line loses stability,
and the entire contact line transitions to a single horizontal
row of defects.

III. RESULTS AND DISCUSSION

A. θa
B = 150◦ for pillar-type surfaces and θa

D = 150◦

for hole-type surfaces

First, we start with the case when one of the materials is
characterized by its unique equilibrium CA of 150◦, which is
bigger than the ACA on the other material, i.e., θ r

B = θa
B =

150◦ for pillar-type surfaces; θ r
D = θa

D = 150◦ for hole-type
surfaces. Note, that the effect on the CAH when θ r

B = θa
B =

150◦ is similar to that when the above angles are 180◦, i.e., the

angle of the regions between the liquid and the air gaps. The
choice of the 150◦ value for the CA of one of the materials
was made for numerical reasons. This is because a CA of
180◦ between the free surface and the plate creates difficulties
in the precise modeling of the virtual displacements of the
free surface (note that there are also considerable challenges
for the case of CAs close to 180◦ in experimental studies as
well [9,11]). The second material describes a solid surface
with which the liquid is in contact. This surface has intrinsic
hysteresis, however, with the aim to analyze how the same
value of the differences |θa

B − θa
D| and |θ r

B − θ r
D| affects the

ACA and the RCA, correspondingly, we will assume that the
CA in Eqs. (5) and (6) for the other material is equal to 100◦
for all cases. This angle, depending on the direction of the
plate displacement (immersing or withdrawing) is interpreted
as ACA or RCA, the angles defining the limits of its internal
hysteresis interval. Under the above conventions, the Cassie
angle θC for advancing and receding CL [15] is

θC = arccos(p cos 100◦ + (1 − p) cos 150◦) (7)

on pillar-type surfaces,

θC = arccos(p cos 150◦ + (1 − p) cos 100◦) (8)

on hole-type surfaces.
We obtained numerically the ACA and the RCA at defect

concentrations ranging from p = 0.05 to p = 0.45 for circular
defects, and p = 0.34 for square defects on surfaces with
randomly placed defects of distributions types I–III. Also the
ACA θa(h) (for hole-type surface) and the RCA θ r(p) (for
pillar-type surface) are obtained for periodically distributed
defects (distribution type IV). This allows us to obtain the
typical features of CAH on surfaces with randomly distributed
defects and to compare it to the CAH on surfaces with period-
ically distributed defects.

1. Independence of the RCA/ACA of the defect
shape and defect distribution

Our numerical analysis shows that for all three investi-
gated placements of random defects (distributions type I–III),
and for both types of defect shapes—circular and square,
the results for the magnitudes of the RCA and ACA are
practically the same. This statement is valid for all studied
defect concentrations and for both types of heterogeneous
surfaces—pillar-type and hole-type. An example in support
of this statement is given in Fig. 2, showing the RCA on a
pillar-type heterogeneous plate at concentration p = 0.1. It
shows the dependence of the macroscopic contact angles θ

[according to Eq. (3)], for a withdrawing from the liquid pool
plate, as functions of the plate displacement number i during
100 plate displacements, each at a step of 2.5 µm (recall that
averaging over the magnitudes of θ for many displacements
i determines the θ r(p)). In Fig. 2 the results for three types
of distributions of circular (shown by bold lines) and square
(shown by thin lines) shaped defects are displayed: Type I
[solid (black) lines], Type II [dashed (red) lines], and Type III
[dotted (blue) lines]. The places where the lines θ (i) abruptly
change their height correspond to instances when the CL has
lost stability and transitions to a new location on the plate as
a result of a cascade of CL kink depinnings (CL slip mode).
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FIG. 2. Macroscopic receding contact angles θ [Eq. (3)] as
functions of the displacement number i of the plate discretized up-
ward motion (i.e., receding CLs) for different types of distributions
(I–III) and defect shapes (circular and square) on pillar-type surfaces
at p = 0.1.

In the rest of the places, the θ (i) lines have a constant slope,
which is related to the CL sticking to the plate surface (CL
stick mode) when moving the plate. In the case of a withdraw-
ing hydrophilic plate, the sequence of the equilibrium CLs in
the stick-slip regime is shown in a previous publication by our
team—see Figs. 2 and 5 in Ref. [40].

We point out that distribution type III actually presents not
only circular or square defects, but also defects of complex
shape [see Fig. 7(c), where a realization of distribution type
III is presented for circular shaped defects]. From the fact that
RCA and ACA are the same for the three types of random
defect distributions and for both shapes (circular and square)
of the defects, it can be concluded that these angles at a given
concentration do not depend on the shape of the defects. When
investigating how θ r(p) and θa(h) depend on defect concentra-
tion, it is more appropriate to study them as functions of defect
surface concentration p rather than defect linear concentration
φ. This is determined by the fact that for placements of circu-
lar and square defects having the same total area, i.e., the same
defect surface fraction, their linear density will be different.
However, in terms of the defect linear density, θ r(p) and θa(h)

will have different functional dependencies (while in terms of
the defect surface concentration, the dependencies coincide).

2. RCA and ACA as functions of p

In Figs. 3 and 4 we show the obtained results for the
cosines of the ACA θa [empty squares-(black) solid line],
and the RCA θ r [solid squares-(black) solid line] on pillar-
type and hole-type plates, having circular defects placed with
distribution type I (i.e., with the maximum distance between
the defects), as a function of the defect surface concentra-
tion p. The horizontal and vertical axes of both figures have
the same scales (for easier comparison of the results). The
open (red) circles-solid (red) line and the (red) solid circles-
solid (red) line functions show the results for the RCA and
the ACA, respectively, for the case where the defects are

FIG. 3. cos θ r (solid symbols-solid lines) and cos θa (empty
symbols-solid lines) as functions of defect surface concentration p
on pillar-type surfaces with randomly distributed (solid and empty
squares) and periodically distributed (solid and empty circles) de-
fects. The dashed line is the cosine of Cassie’s angle θC .

located on a square grid of horizontal and vertical lines (peri-
odic distribution) (distribution type IV). For this distribution
the results for the RCA in Fig. 3 and the ACA in Fig. 4
were obtained numerically by the procedure described above,
identifying the moment of kink depinning, and the ACA in
Fig. 3 and the RCA in Fig. 4 are represented by the theo-
retical results, which show that they are equal to 150◦ and
100◦, respectively. The bold dashed (green) lines in Figs. 3
and 4 display the results of the cosine of the Cassie angle
θC , the thin (blue) line is the half sum of the cosines of
the ACA and the RCA in the case of randomly distributed
defects.

FIG. 4. Same as described in the caption of Fig. 3, except for
hole-type surfaces.
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FIG. 5. Cosines of the (a) receding CAs for pillar-type surfaces and (b) advancing CAs for hole-type surfaces as functions of defect surface
concentration p on periodic [empty (black) squares] and random [empty (red) circles].

We determine which distribution of defects, random or
periodic, has better hydrophobic properties by comparing the
magnitudes of the respective differences of the cosines of
the CAs: cos θ r − cos θa. This choice is dictated by the fact
that not the CAH itself, but the difference cos θ r − cos θa

is proportional to the retention force along the CL and to
the critical surface inclination at which the drop with fixed
volume begins to slide [41,42]. It is typically desirable to have
this difference as small as possible. Our simulation results
obtained for cos θ r − cos θa are displayed in Figs. 3 and 4
for random defect distributions [(black) empty triangles-solid
black line] and periodic distribution [(red) solid triangles–
solid (red) line].

3. Pillar-type surfaces

The main focus has traditionally been on the RCA when
studying a surface with pillars. From Fig. 3 it can be seen
that the RCA on a surface with randomly distributed defects
is smaller than that on a surface with periodically distributed
ones, and the difference between the cosines of these angles
is small and almost constant independent of the defect con-
centration. For the ACA, the results show that while in the
case of periodic defects the angle is constant and independent
of concentration, in the case of random defects it decreases
with concentration. The comparison of the difference cos θ r −
cos θa, for randomly and periodically distributed defects, pre-
sented in Fig. 3, shows that for concentrations up to p = 0.25
the cos θ r − cos θa is the same for both types of distributions,
and at higher concentrations the random arrangement of de-
fects leads to a slightly smaller cos θ r − cos θa than that for
periodically spaced defects. For both types of defect arrange-
ments, Cassie’s angle θC differs from the half sum of θa and
θ r . For randomly distributed defects the maximal difference
between the dashed and the solid lines in Fig. 3, however,
expressed in degrees is about 5◦, and for the case of periodic
defects it is about 11◦.

4. Hole-type surfaces

One can observe that Fig. 4 exhibits qualitatively the in-
verse behavior relative to Fig. 3 with respect to the behavior
of the dependencies of the cosines of the RCAs and ACAs
on concentration p. In essence, the main features of the

ACA/RCA in Fig. 3 (pillar-type surface) are similar to those
of RCA/ACA in Fig. 4 (hole-type surface). Therefore, in the
present case, as can be seen in Fig. 4, even at concentration
of p = 0.15 the difference of the cosines cos θ r − cos θa for
random defects is smaller than that for periodic ones, and
at greater concentrations it is very large. Also, for random
defects the Cassie angle θC is close to (θa + θ r )/2 and, as
seen in Fig. 4, the same holds true also for the cosines, cos θC

and (cos θa + cos θ r )/2. Up to concentration p = 0.25 one
has (θa + θ r )/2 ≈ θC and with increasing the concentration p
the difference slowly increases up to 1.2◦ (i.e., the difference
between the dashed and the solid lines in Fig. 4, however,
expressed in degrees).

B. Comparison with the experimental results (θa
B = 180◦

for pillar-type surfaces and θa
D = 180◦ for hole-type surfaces)

In the experimental studies of the CL, which a liquid
meniscus forms with microstructured surfaces with random
controlled disorder—stumps, pores, or chemical defects
[43–48] the necessary information for the numerical calcu-
lation of the ACA or the RCA in Cassie’s regime is not given
and a precise comparison with their data for the ACA and
the RCA is not possible. However, we will demonstrate that
numerical simulations for surfaces with randomly distributed
pillars or holes yield results close to the obtained RCAs for
pillars and ACAs for holes arranged on periodic lattices in the
experimental studies.

In Ref. [8] results are obtained for these angles as functions
of the concentration p of the pillars and the holes with a square
cross-section of size 20 µm, and when the solid surface has
intrinsic hysteresis [95◦ ± 3◦, 116◦ ± 3◦]. The experimental
results from this study for the RCA for pillars and the ACA for
holes as functions of the defect concentration are reproduced
(the solid squares, the error bar corresponds to 3◦ uncertainty
in the CA value) in Figs. 5(a) (Fig. 3(a) in Ref. [8]), and 5(b)
(Fig. 4(a) in Ref. [8]), respectively. For easier comparison
the vertical axes of Figs. 5(a) and 5(b) have the same scales
as the ones in Figs. 3 and 4. The dashed (blue) line is a
linear fit (using Origin-software) to the experimental results
as function of the concentration p. The results obtained from
the numerical simulations for a surface with random defects in
these figures are shown by empty circles-solid lines, and when
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FIG. 6. Cosines of the RCAs as functions of surface concentra-
tion p of pillar defects on randomly heterogeneous surface—empty
(red) circles, compared to periodically distributed pillars on surfaces
with square, rectangular and hexagonal arrangement of pillars.

studying the RCA in the energy functional Eq. (5) the contact
angles θ r

D = 95◦, θ r
B = 180◦ are used, and for the study of

ACA θa
D = 180◦, θa

B = 116◦ in Eq. (6). One can see that there
is a close agreement between the numerical results for the CAs
for randomly distributed defects and the linear fit for periodic
defects (experimental results) for both types of surfaces, i.e.,
surfaces with pillars and surfaces with holes.

Most experimental studies are limited to studies of surfaces
with pillars. In Refs. [22] and [16], as was mentioned in the
Introduction, it is demonstrated experimentally, that for differ-
ent periodic pillar arrangement patterns—square, rectangular
and hexagonal lattices (in the case of circular defects, with
10 µm diameter) one arrives at the same dependence of the
RCA as function of the surface concentration. These results
(with error bars) for surfaces with pillars made of material
with intrinsic hysteresis whose RCA is 89◦, are shown in
Fig. 6 (see Fig. 3 in Ref. [16]) [(blue) squares for square

lattice, (cyan) and (green) triangles for rectangular lattices,
and (black) hexagons in the case of hexagonal lattices]. Close
to a RCA of 91◦ ± 2◦ for the intrinsic hysteresis of the pillars
material, the surface with the hexagonally arrayed circular
(diameter from 20 to 40 µm) micropillars, for which exper-
imentally is obtained the RCA at different pillar (surface)
concentrations [49]. These results (from Fig. 5 in Ref. [49])
are presented in Fig. 6 with five-pointed solid (magenta) stars.
The vertical axes of Fig. 6 have the same scale as the ones
in Figs. 3–5. The dashed (blue) line is a linear fit (using
Origin software) to the experimental results as function of the
surface concentration p. Since, as we illustrated in Fig. 3, the
RCAs on surfaces with randomly spaced pillars and period-
ically spaced ones, are close, it should be expected that the
numerical simulations for the RCA on surfaces with random
defects will also be close to the above experimental data.
Indeed, the numerical simulations results obtained for θ r

D =
89◦, θ r

B = 180◦ in the case of randomly distributed defects,
shown in Fig. 6 by empty (red) circles-solid lines confirms this
assumption.

IV. CONCLUSIONS

The advancing and receding equilibrium contact angles
are investigated numerically for a liquid in contact with an
ultrahydrophobic surface with randomly distributed pillars or
pores in the Cassie’s wetting regime. The free surface of the
liquid meniscus was obtained in the framework of the het-
erogeneous surface approximation model for a broad interval
of values of the pillar or hole concentration for micropillars
or holes of both square and circular cross sections. The equi-
librium contact lines and the contact angles which the liquid
forms with them are investigated for three types of random
placing of the defects on the plate—two with restrictions
(1) with maximum and (2) with minimum distance between
the defects), in these cases the defects are isolated, and (3)
without restrictions (the defects can overlap). By simulating
the downward and upward motion of the plate, the advanc-
ing and receding contact angles for the three types of defect
placements were obtained. The results show that the type of

FIG. 7. Short range 2D defect autocorrelation function �(y, z) in a square domain 320 µm × 320 µm for circular defects at concentration
p = 0.1 is shown for defect distribution: (a) type I, (b) type II, (c) type III (without a distance condition imposed).
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FIG. 8. Same as described in the caption of Fig. 7, except at concentration p = 0.4.

defect distribution and also the shape of the defects (circular or
square cross-section) does not affect the magnitude of the two
angles. The obtained results are compared with the values for
ACA and RCA on surfaces with periodically spaced defects,
which are experimentally obtained and also through numerical
simulations.

The results of the numerical simulations showed that the
retention force for a plate with randomly located defects is
not greater, and for larger concentrations of defects, it is
smaller than that for periodically spaced ones. Thus, a liquid
drop on surface with random defects will start rolling at a
smaller angle of surface inclination than on a surface with
periodic defects. Comparisons with experimental results for
the receding contact angle on a surfaces with pillars and with
the advancing contact angle on surfaces with periodically
arranged holes showed that the corresponding contact angles
obtained with a random arrangement of physical defects are
close to those with periodically arranged ones. The same con-
clusion has recently been drawn experimentally for surfaces
with pillars, when the wetting is in the Wenzel’s wetting
regime [45].

New experimental studies for surfaces with randomly
located defects are needed to more accurately and compre-
hensively verify the results of the numerical simulations.
This can be done both, by extensions of the research in
Refs. [45,46,48], and by direct comparison of the angle at

which drops on an inclined plane with periodically spaced and
randomly spaced defects lose equilibrium.

APPENDIX: DEFECT CORRELATIONS

The autocorrelation functions of the obtained defect dis-
tributions (types I–III) are calculated using the method from
Ref. [50]. Typical results for the short-range 2D autocorrela-
tion functions �(y, z) on a square domain 320 µm × 320 µm
in coordinate system (y, z) are shown for circular defects
in Fig. 7 at concentration p = 0.1 and in Fig. 8 at con-
centration p = 0.4. In Figs. 7(a) and 8(a), 7(b) and 8(b),
and 7(c) and 8(c), example defect distributions and auto-
correlations for distributions type I–III, correspondingly, are
shown.

The analyzed realizations of the defect distributions are
shown in the inset of each corresponding figure. The results
show that the correlation at a distances bigger than the defect
diameter 2r is small (i.e., it is short range |�| < 0.2) for
all cases I–III), and moreover, � does not show any sign of
periodicity. The presence of a high peak (i.e., � ≈ 1) when
(y, z) → (0, 0) reflects the correlation of the defect with itself.
Therefore, no short-range periodic fluctuations in � can be
observed in any direction for all analyzed cases. When the
domain size is increased, i.e., for long-range correlations, the
amplitude of � decreases.

[1] D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008).
[2] P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
[3] A. Marmur, C. Della Volpe, S. Siboni, A. Amirfazli, and J.

Drelich, Surf. Innovations 5, 3 (2017).
[4] H. Y. Erbil, Surf. Sci. Rep. 69, 325 (2014).
[5] D. Öner, and T. J. McCarthy, Langmuir 16, 7777 (2000).
[6] F. Wang, Y. Wu, and B. Nestler, Adv. Mater. 35, 2210745

(2023).
[7] L. Barbieri, E. Wagner, and P. Hoffmann, Langmuir 23, 1723

(2007).
[8] C. Priest, T. W. J. Albrecht, R. Sedev, and J. Ralston, Langmuir

25, 5655 (2009).
[9] N. A. Patankar, Langmuir 26, 7498 (2010).

[10] N. N. Anantharaju, M. V. Panchagnula, and S. Vedantam,
Langmuir 25, 7410 (2009).

[11] C. Dorrer and J. Rühe, Langmuir 22, 7652 (2006).
[12] B. R. Prabhala, M. V. Panchagnula, and S. Vedantam,

Colloid Polym. Sci. 291, 279 (2013).
[13] P. Dimitrakopoulos and J. Higdon, J. Fluid Mech. 395, 181

(1999).
[14] M. J. Santos and J. A. White, Langmuir 27, 14868

(2011).
[15] C. W. Extrand, Langmuir 19, 3793 (2003).
[16] M. Rivetti, J. Teisseire, and E. Barthel, Phys. Rev. Lett. 115,

016101 (2015).
[17] C. Extrand, Langmuir 18, 7991 (2002).

024801-9

https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1103/RevModPhys.57.827
https://doi.org/10.1680/jsuin.17.00002
https://doi.org/10.1016/j.surfrep.2014.09.001
https://doi.org/10.1021/la000598o
https://doi.org/10.1002/adma.202210745
https://doi.org/10.1021/la0617964
https://doi.org/10.1021/la804246a
https://doi.org/10.1021/la904286k
https://doi.org/10.1021/la900341r
https://doi.org/10.1021/la061452d
https://doi.org/10.1007/s00396-012-2774-z
https://doi.org/10.1017/S0022112099005844
https://doi.org/10.1021/la202771u
https://doi.org/10.1021/la0268350
https://doi.org/10.1103/PhysRevLett.115.016101
https://doi.org/10.1021/la025769z


ILIEV, PESHEVA, AND ILIEV PHYSICAL REVIEW E 110, 024801 (2024)

[18] R. Raj, R. Enright, Y. Zhu, S. Adera, and E. N. Wang, Langmuir
28, 15777 (2012).

[19] C. Dorrer and J. Rühe, Langmuir 23, 3179 (2007).
[20] S. Iliev and N. Pesheva, Phys. Rev. E 93, 062801 (2016).
[21] S. Iliev, N. Pesheva, and V. S. Nikolayev, Phys. Rev. E 90,

012406 (2014).
[22] A. Gauthier, M. Rivetti, J. Teisseire, and E. Barthel, Phys. Rev.

Lett. 110, 046101 (2013).
[23] K. Brakke, Exp. Math. 1, 141 (1992).
[24] S. Iliev, N. Pesheva, and P. Iliev, Phys. Rev. E 101, 052801

(2020).
[25] G. Carbone and L. Mangialardi, Eur. Phys. J. E 16, 67 (2005).
[26] C. W. Extrand, Langmuir 27, 6920 (2011).
[27] O. Vinogradova and A. Dubov, Mendeleev Commun. 22, 229

(2012).
[28] H.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I.

Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen, and M.
Kappl, Curr. Opin. Colloid Interface Sci. 59, 101574 (2022).

[29] H. J. Ensikat, Langmuir 28, 14338 (2012).
[30] K. Grundke, K. Pöschel, A. Synytska, R. Frenzel, A. Drechsler,

M. Nitschke, A. L. Cordeiro, P. Uhlmann, and P. B. Welzel,
Adv. Colloid Interface Sci. 222, 350 (2015).

[31] Y. Jiang and C.-H. Choi, Adv. Mater. Interfaces 8, 2001205
(2020).

[32] A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces
(Wiley, New York, NY, 1997).

[33] R. David and A. Neumann, Langmuir 29, 4551 (2013).
[34] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon

Press, Oxford, UK, 1987).
[35] S. Iliev, N. Pesheva, and P. Iliev, Phys. Rev. E 107, 024802

(2023).

[36] M. Rauscher and S. Dietrich, Annu. Rev. Mater. Res. 38, 143
(2008).

[37] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley,
Rev. Mod. Phys. 81, 739 (2009).

[38] A. Tinti, A. Giacomello, S. Meloni, and C. M. Casciola,
J. Chem. Phys. 158, 134708 (2023).

[39] R. C. Remsing, E. Xi, S. Vembanur, S. Sharma, P. G.
Debenedetti, S. Garde, and A. J. Patel, Proc. Natl. Acad. Sci.
USA 112, 8181 (2015).

[40] S. Iliev, N. Pesheva, and P. Iliev, Eur. Phys. J. E 45, 66
(2022).

[41] G. Macdougall and C. Ockrent, Proc. R. Soc. London Ser. A
180, 151 (1942).

[42] C. G. L. Furmidge, J. Colloid Sci. 17, 309 (1962).
[43] A. Prevost, E. Rolley, and C. Guthmann, Phys. Rev. B 65,

064517 (2002).
[44] E. Rolley, C. Guthmann, R. Gombrowicz, and V. Repain,

Phys. Rev. Lett. 80, 2865 (1998).
[45] P. Kumar, P. Mulvaney, and D. J. E. Harvie, J. Colloid Interface

Sci. 659, 105 (2024).
[46] E. Bormashenko, A. Musin, G. Whyman, Z. Barkay, and M.

Zinigrad, Langmuir 29, 14163 (2013).
[47] E. Bormashenko, A. Musin, G. Whyman, Z. Barkay, and M.

Zinigrad, Eur. Phys. J. E 38, 2 (2015).
[48] S. Moulinet, C. Guthmann, and E. Rolley, Eur. Phys. J. E 8, 437

(2002).
[49] B. M. L. Koch, A. Amirfazli, and J. A. W. Elliott, J. Phys. Chem.

C 118, 18554 (2014).
[50] E. Bormashenko, A. Malkin, A. Musin, Ye. Bormashenko,

G. Whyman, N. Litvak, Z. Barkay, and V. Machavariani,
Macromol. Chem. Phys. 209, 567 (2008).

024801-10

https://doi.org/10.1021/la303070s
https://doi.org/10.1021/la062596v
https://doi.org/10.1103/PhysRevE.93.062801
https://doi.org/10.1103/PhysRevE.90.012406
https://doi.org/10.1103/PhysRevLett.110.046101
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1103/PhysRevE.101.052801
https://doi.org/10.1140/epje/e2005-00008-y
https://doi.org/10.1021/la201032p
https://doi.org/10.1016/j.mencom.2012.09.001
https://doi.org/10.1016/j.cocis.2022.101574
https://doi.org/10.1021/la302856b
https://doi.org/10.1016/j.cis.2014.10.012
https://doi.org/10.1002/admi.202001205
https://doi.org/10.1021/la400294t
https://doi.org/10.1103/PhysRevE.107.024802
https://doi.org/10.1146/annurev.matsci.38.060407.132451
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1063/5.0140736
https://doi.org/10.1073/pnas.1503302112
https://doi.org/10.1140/epje/s10189-022-00220-3
https://doi.org/10.1098/rspa.1942.0031
https://doi.org/10.1016/0095-8522(62)90011-9
https://doi.org/10.1103/PhysRevB.65.064517
https://doi.org/10.1103/PhysRevLett.80.2865
https://doi.org/10.1016/j.jcis.2023.12.134
https://doi.org/10.1021/la403086w
https://doi.org/10.1140/epje/i2015-15002-y
https://doi.org/10.1140/epje/i2002-10032-2
https://doi.org/10.1021/jp504891u
https://doi.org/10.1002/macp.200700552

