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Ordered structures formed by nematic topological defects and their transformation
with changing the Euler characteristics
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Ordered chain structures from topological defects of opposite charges (“necklaces” of defects) were prepared
and their dynamics and cooperative rearrangement were investigated. We studied topological defects in nematic
films with change of the Euler characteristic induced by temperature. Topological defects emerged due to
competing surface anchoring on the nematic-isotropic and nematic-solid interfaces. Transformation of the
structure with a circular chain from topological defects to the structure with a single defect and then to a
structure without defects takes place as the nematic geometry changes. The temporal evolution of the number of
topological defects at their annihilation in the chains differs from coarsening in two-dimensional (2D) and 3D
geometry.
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I. INTRODUCTION

Topological defects are usually formed when symmetry
breaks during phase transition [1–6]. A single topological
defect cannot be born or disappear without change of the
topology of the system. Formation and behavior of topological
defects can be classified using topology and a topological
invariant, namely Euler characteristic χ that is defined using
the cell complex as χ = a0 − a1 + a2 − · · · , where ai is the
number of cells of dimension i [7]. The Euler characteristic
χ for the surface of a three-dimensional (3D) object can be
calculated as χ = 2−2g, where g is the genus of the object or
the number of “handles” [7]. For a sphere with n removed iso-
lated noncrossing regions another formula exists: χ = 2−n.
The Poincaré-Hopf theorem establishes the relation between
topology and physics of condensed matter. According to the
Poincaré-Hopf theorem, on the surface with the vector field
the total topological charge of defects

∑
s j = S equals the

Euler characteristic χ of the surface (index j numerates the
defects) [6]. In contrast to many other areas of physics, for
example cosmology or quantum field theory, topological de-
fects in liquid crystals can be easily obtained and visualized.
Defects are formed in the ordered field of nematic n director
[1]. The topological charge of a defect in a 2D ordered field
is defined as the number of turns of the field on a closed
contour around the defect [6]. Liquid crystals became classical
media for investigation of topological defects. In recent years,
there has been increased attention to the structures formed by
defects and the dynamics of individual and collective behavior
of topological defects. Experimental and theoretical studies
of the defect dynamics were performed for the case of pair
interaction of two defects of opposite and the same topological
charges [8–11]. Another active direction of investigation is
the collective behavior of topological defects, the study of the
time dependence of a dense array of disordered defects with
attractive and repulsive forces in the 2D geometry (topological
defect coarsening [9,12–23]). A series of works has been

devoted to studies of inclusions and liquid crystal droplets
with nonspherical geometry. Many-handle particles and inclu-
sions with various topologies have been obtained, topological
transitions with a change of Euler characteristic and number
of topological defects were investigated [24–28]. The field of
molecular ordering and birth of topological defects at con-
tact of several toroidal particles have been studied. A single
torus has one handle and zero Euler characteristic. A particle
composed by g > 1 tori has negative Euler characteristic χ =
2−2g and negative total topological charge of surface defects.
A useful method for preparing toroids is injection of liquid
or liquid crystal material into a rotating bath of yield stress
material [29–31]. In such a way it is possible to create toroidal
structures and conserve them for a long time. In nematic
toroidal droplets +1 and −1 defect pairs located near the outer
and inner parts of the torus were observed [31]. Defect pairs
were created at the isotropic-nematic phase transition and cor-
respond to a metastable state. The total topological charge of
the defects in the torus was zero in accordance with topology
[31]. In a number of studies ordered structures of topological
defects were created by employing special techniques such as
modulating the topography of the substrate, photopatterning,
using laser tweezers and application of electric field [32–39].
These works suggest potential of practical application.

In our paper, ordered arrays from topological defects con-
taining more than 102 defects organized in round chains
(“necklaces” from topological defects) were prepared in ne-
matic liquid crystal. Chains of defects obtained in our work
form as a result of self-organization without employing spe-
cial techniques. The end effects in the necklace are eliminated
due to the formation of a closed round chain. Static and col-
lective dynamics of obtained structures were investigated. We
demonstrate the mechanism of formation of a point topologi-
cal defect induced by change of the thickness of nematic film.
We report topological transitions from a droplet touching the
two surfaces of the cell to a droplet topologically equivalent
to a semisphere and then to a toruslike structure with change
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of the Euler characteristic χ and S from 0 to +1 and then to
0. Change of topological charges of defects S correlates with
topological predictions. Previous studies have shown that 2D
topological defect coarsening is characterized by power-law
dependence of the number of defects from time N (t ) ∼ t−α ,
where α is 0.9–1 [13,15,17,18,22,23]. We found an essentially
slower annihilation rate for our system.

II. EXPERIMENT

In our investigations nematic liquid crystal E7 (Synton
Chemical) was used with a wide biphasic nematic-isotropic
range about 2 K. This allows preparing isotropic droplets in
the nematic environment and a large number of topological
defects on the droplet interface. Nematic liquid crystal was
in optical cells with a gap of thickness h about 40 µm. The
extension of investigated isotropic droplets in the cell plane
is much larger than h. We used homemade cells with coating
favoring homeotropic orientation, that is, with the n director
perpendicular to the surfaces of the cells. For investigation of
topological defects, a polarizing optical microscope (Olympus
BX51) was used in the transmission mode. The cell was
placed into a Linkam LTS120 thermostating stage. The dy-
namics of defects and their annihilation were monitored using
a high-speed video camera (Baumer VCXU-02C).

III. RESULTS AND DISCUSSION

A large number of topological defects in 2D geometry is
usually created by means of very fast cooling, mechanical or
electric field influence on liquid crystal materials [17,22,23].
In our experiments we were successful in preparing a large
array of topological defects in the form of a circular chain
using a different procedure, namely, very slow cooling of
a liquid droplet. Circular chains from topological defects
were formed at the nematic-isotropic liquid interface in the
two-phase nematic-isotropic region. To prepare the chains,
large isotropic droplets with a diameter of several hundreds
of microns in the nematic environment were first obtained
by heating the nematic film [Fig. 1(a)]. Such droplets touch
both surfaces of the cell (top and bottom). Their boundary is
equivalent to a sphere with two removed noncrossing regions.
Its Euler characteristic is χ = 2−n = 0, and S = 0. After
preparing the droplet, heating was stopped and the sample
was slowly cooled with a rate 0.1–0.2 °C/min. Upon cooling
to about 57 °C a thin circular stripe of the nematic phase
was formed between the boundary of the cell and the sur-
face of the isotropic droplet. Since in liquid crystal biphenyls
and in mixture E7 the nematic n director tilts with respect
to the nematic-isotropic interface with azimuthal degeneracy
[40,41] and orients perpendicular to the boundary of the cell
with homeotropic anchoring (hybrid aligned liquid crystal),
topological defects appear in the nematic stripe. Such defects
form a circular chain (a necklace from topological defects).
Typical examples of the chains from defects are shown in
Figs. 1(b) and 2(a). Figure 1(c) shows two adjacent topolog-
ical defects on a large scale. The projection of the n director
on the isotropic-nematic interface can be considered as the 2D
director field.

FIG. 1. (a) A large isotropic droplet (black area in crossed po-
larizers) in nematic environment. Small isotropic droplets are also
present in the nematic film. (b) A circular chain of topological de-
fects appeared in confined geometry of isotropic droplet. (c) Two
topological defects of opposite signs (s = +1 and s = −1) from
the chain. The projection of the n director onto the nematic-isotropic
interface forms an ordered field on the interface. This field is shown
in (d). Orientation of crossed polarizer (P) and analyzer (A) is shown.
The scale bar is given for frames (c) and (d). The horizontal size of
frames (a) and (b) is 850 µm.

We start with the description of the static structure and
dynamic transformation of chains [Figs. 1(b) and 2(a)]. When
viewed in crossed polarizers, four dark and four bright brushes
extend from each defect. This means that the module of
the topological charge of every defect |s j | = 1. Types of
topological defects and their topological charges were deter-
mined using different orientation of polarizers and a Berek
compensator. A part of the chain [Fig. 2(a)] is shown in
Figs. 2(b)–2(d) in large scale. When the sample is viewed
between vertical and horizontal crossed polarizers, the neigh-
boring defects denoted A and B look the same [Fig. 2(b)]; the
dark brushes in these defects are oriented nearly vertically and
horizontally. We determine the sign of the topological charge
by rotating the polarizers. Figure 2(d) shows the appearance
of the same region when the polarizer P and analyzer A are
both rotated in clockwise direction by 15 ° with respect to
Fig. 2(b). The reaction of the extinction pattern of defects
A and B to polarizer rotation is different. The brushes of
defect A rotate in opposite direction with respect to polarizers
(counterclockwise) and the brushes of defect B rotate in the
same direction as the polarizers (clockwise). This indicates
that the topological charge of defect A is −1 and the charge
of defect B is +1 [2]. In the chains the topological charge of
neighboring defects is found to be the opposite. So the chain
is composed by alternating +1 and −1 defects. The number of
topological defects N in a closed chain is even [for example,
in the chain in Fig. 2(a), N = 42], and the total topologi-
cal charge of the chain is zero. There are two types of +1
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FIG. 2. (a) A circular chain (necklace from topological defects)
formed in a circular nematic stripe on the periphery of isotropic
droplet. The boundary of the droplet is indicated by a thin dashed
line. (b)–(d) The region with two defects denoted A and B in frame
(a) is shown on an enlarged scale with different orientation of polar-
izers (b),(d) and with a Berek compensator (c). (b) Crossed polarizers
are oriented parallel and perpendicular to the segment of the chain.
(c) View with a Berek compensator (the slow axis of the compensator
is shown by the dark line). (d) The polarizer and the analyzer are
rotated by 15 ° clockwise with respect to (b). The brushes of the
defect B rotate in the same direction (clockwise), the brushes of
defect A rotate in the opposite direction (counterclockwise). The type
of defect (+1, −1) is shown in frame (b).

topological defects with radial and circular orientation of di-
rector around the center of defect [42]. The distribution of
the director around +1 defects can be found from observa-
tions with the Berek compensator [Fig. 2(c)]. When a Berek
compensator is inserted under 45 ° with respect to polarizers,
the appearance of defects A and B differs: the positions of
dark and bright regions around defects A and B are the op-
posite [Fig. 2(c)]. The pattern around defect B in Fig. 2(c)
demonstrates that the director has a radial orientation [42].
Figure 1(d) shows schematically the orientation of the director
field near two defects in the chain.

The peculiarities of formation of chain structure from
defects are connected with topology of the system. Euler
characteristic of a closed circle χ = 0. So, according to
Poincaré-Hopf theorem the sum of topological charges of
the defects S must be zero (S = 0). In our experiments
chains without distortions formed in different events have
regular features. We found that number of topological defects
in closed chains with different total numbers of defects and
different size of the circle was even. We found that in closed
chains (Figs. 2 and 3) in which we were able to determine the
sign of the topological defects, the number of the topological
defects with charge s = +1 equals the number of s = −1
defects. Defects with opposite charges alternate, so S = 0 as
the topology predicts. After formation of a circular chain the

FIG. 3. Time evolution of the chain from topological defects at
their annihilation. The number of the defects in the chain N(t) and
the radius of the chain decrease with time. When a thin nematic film
is formed in the central area, s = +1 topological defect appears in
the center (d). The total number of topological defects in the droplet
becomes odd (N = 11). Time after frame (a) is 75 s (b), 160 s (c),
and 270 s (d).

droplets in Figs. 1(b), 2(a), and 3(a) continue to touch the two
surfaces of the cell (central region of the droplets), so their
Euler characteristic can be calculated as χ = 2−n = 0.

At heating the round stripe with the chain of defects melts,
the isotropic droplet increases in size, and all the film trans-
forms in the isotropic phase. At small cooling and even at
a constant temperature the chain also disappears but in a
nontrivial way. Neighboring defects in the chain with opposite
charges approach each other and annihilate by pairs. The
number of defects in the chain decreases. The radius of the
chain also decreases [Figs. 3(a)–3(d)] but S remains zero. On
cooling the nematic film gradually spreads to the center and a
point topological defect with four bright and dark brushes is
formed in the center [Fig. 3(d)]. Measurements with different
orientations of the polarizers show that the topological charge
of the defect in the center is +1. The question could arise
about the topological reason of formation of a single point
topological defect. The nematic area spreads from the droplet
perimeter to the center and, as clearly visible in Fig. 3(d), its
Euler characteristic was changed. Now the nematic-isotropic
interface becomes topologically equivalent to a semisphere (a
sphere with one removed region). The Euler characteristic of
such object χ = +1. So, the total topological charge of de-
fects in the droplet must be S = +1. But in the chain the sum
of topological charges S remains 0. So, in accordance with
topology an additional defect with charge s = +1 appears,
which we indeed observe [Fig. 3(d)].

In the previous paragraph, we have described the topolog-
ical reason of formation of a new +1 defect. The mechanism
of the topological defect formation with a point singularity
is of considerable interest and even a challenge for various
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fields of science. We found unusual features in the appearance
of the s = +1 point defect. When the nematic spreads to
the center, first the black wide cross without visible point
singularity is formed [Fig. 3(c)]. At the study of director
transformation we made investigations with different orien-
tation of polarizers and a Berek compensator as in the case of
the chain (Fig. 2). Utilizing the compensator, we determined
the optical path difference in various regions of the nematic
film covering the droplet. These investigations show that the
thinner part of the nematic film (Fig. 3) is near the center.
The anchoring energy for homeotropic orientation at the solid
surface is about 10−5 J/m2 near the nematic-isotropic tran-
sition [1]. This value is substantially larger than the polar
anchoring energy for the tilted orientation at the nematic-
isotropic interface in cyanobiphenyls (about 5×10−7 J/m2 in
4-cyano-4′-pentylbiphenyl (5CB) [1]). In very thin films the
anchoring energy at the cell surface can dominate and nematic
orientation is perpendicular to the cell plane. Similar director
reorientation was observed in thin nematic cells with hybrid
anchoring and different anchoring strength at the two solid
surfaces [43,44]. On slow cooling, the nematic film becomes
thicker and the n director near the nematic-isotropic interface
deviates from homeotropic orientation. The point singularity
is gradually formed in the center [Fig. 3(d)]. The effective size
of the central defect core in Fig. 3(d) determined from optical
investigations is less than 3 µm. So, in our experiment we
demonstrate how a topological defect with point singularity
can continuously arise.

In some other measurements, in particular for higher rate
of cooling, we observed the birth of several new defects in the
central region. These defects are formed similar to a single
defect described in the previous paragraph. The number of
these new defects was always odd with sum of their topo-
logical charges S = +1. For instance, in the case of three
new defects, two defects with s = +1 and one defect with
s = −1 were born. Then the s = −1 defect annihilates with
its antipode (s = +1 defect) and as a result only one +1 defect
remains as in the case of Fig. 3(d).

In earlier investigations of the 2D dense arrays of topolog-
ical defects [12–15,18,19] the main purpose was the studies
of the collective behavior of defects, namely, the number
of defects N(t) or defect density ρ(t) as a function of time
when defects of opposite signs meet and annihilate in pairs.
Theoretically two systems of particles and antiparticles were
considered: (1) the particles and antiparticles move purely
diffusively and annihilate at meeting in pairs (+1 and −1
defects); (2) defects move due to the long-range Coulomb
forces between particles. The first model was considered by
Toussaint and Wilczek [12]. They found that particle density
as a function of time ρ(t) strongly depends on the dimension
D of system. For a one-dimensional model ρ(t ) ∝ (t )−1/4.
In space of dimension D = 2 the square root dependence
on time ρ(t ) ∝ (t )−1/2 was found. Jang et al. [18] numeri-
cally studied the evolution of the 2D system when diffusion
motion dominates and obtained similar results (a power law
with the exponent about −0.55). There is a large number
of theoretical and experimental papers on the annihilation
dynamics in 2D systems with opposite (+1, −1) charged
defects [5,7,11,15,17]. For two defects of opposite charges the
attractive force is F ∝ −K/L, where K is the elastic constant

FIG. 4. The number of topological defects in the chains N versus
time. The solid line is the power-law dependence N (t ) = A/(t − t0 )ν

with an exponent ν = 0.4.

and L is the separation between defects. For viscous liquid
crystal the dissipation of energy is connected with the rotation
of the director at the motion of the defect. The friction force
Ff is Ff ∝ ηζdL/dt , where ζ = ln(R/Rc) [9,14], R is the
size of the topological defect, Rc is its core radius, η is the
damping constant (viscosity), and dL/dt is the velocity of
the defect. On the basis on these two forces the equation of
motion is ζdL/dt ∝ K/Lη [9]. For the 2D space the scaling
or the self-similarity argument was used to calculate N(t) from
time [9,22]. If at coarsening the system is characterized by the
single length scale (average distance between defects) r(t) the
equation for L(t) is valid for r(t) [9]. The scaling solution of
the differential equation gives r2(t ) ∝ t [9]. The number of
defects at time t in the 2D system is N (t ) ≈ A/r2(t ), where
A is the area of the sample. So, the number of defects decay
inverse to the time N (t ) ∝ (t )−1.

Temporary dependence N(t) in our experiment is shown
in Fig. 4. In the analysis we used droplets with the initial
number of defects in the chain N � 102 and the radius
about 400 µm. The dependence N(t) can be described by
power law N (t ) = A/(t − t0)ν with an exponent ν = 0.4 ±
0.1. This value ν is essentially smaller than the exponent
ν = 1 obtained in scaling in the case of 2D topological defect
annihilation and even than the exponent about 0.9 obtained in
numerical calculations and in experiments [13,17,18,22,23].
The difference of our value with the existing data for 2D
systems [13,17,18,22,23] can be connected with the difference
of our system with 2D ones in previous experimental and
theoretical investigations [13,17,18,22,23]. In experiments on
2D coarsening the area where N(t) was determined remains
the same. In our case the length of the chain L(t) decreases
with time, which should also lead to some decrease of the
value of ν.

The circular chain exists when the distance between nearest
defects is relatively small. The situation is changed when the
number of defects in the chain becomes small and the distance
between defects is of the order of radius of the chain. The
chain becomes unstable, is destroyed, and all the defects form
a single system with an odd number of defects. As the result
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FIG. 5. Topological transition of an isotropic droplet with a point
defect on the nematic-isotropic interface (a) to a toroid (d) without
topological defects. (a),(b) Evolution of the topological defect on
the nematic-isotropic interface. The interference colors change with
increasing nematic thickness. (c) Formation of a nematic hole in
the isotropic droplet. The hole starts to form in the center of the
topological defect. (d) A toruslike droplet without topological defects
on the nematic-isotropic interface. N denotes the nematic phase. The
exposure time in frame (d) was increased with respect to frames
(a)–(c). Time after frame (a) is 145 s (b), 315 s (c), and 470 s (d).

of their annihilation only one +1 topological defect remains
[Fig. 5(a)]. In thin nematic film black brushes of the defect
are oriented parallel and perpendicular to the polarizer and
analyzer. At cooling the droplet transforms its shape. When
the thickness of the nematic film increases bright brushes
become colored [Fig. 5(b)] and brushes near the defect core
somewhat rotate with respect to vertical and horizontal orien-
tation [Fig. 5(b)]. This rotation can be connected with twist of
the n director around the axis perpendicular to the isotropic-
nematic interface. We observed chiral structures in achiral
nematic E7. Such chiral symmetry breaking was observed in
thermotropic nematic and in achiral lyotropic chromonic liq-
uid crystals [45–48]. Formation of these structures is related to
spatial confinement and anisotropy of orientational elasticity,
when the twist elastic constant is smaller than the bend and
splay constants [45,48]. We observed rotation of brushes in
different events both in clockwise and counterclockwise di-
rections. Such equal probability of both handedness is due to
the nonchiral liquid crystal [45,48].

At further cooling the center of the isotropic droplet is filled
with a nematic crater [Fig. 5(c)], the defect disappears, and a
circular liquid toroid, which is topologically equivalent to a
torus, is formed in the nematic environment [Fig. 5(d)]. The
Euler characteristic of the torus (g = 1) is χ = 0. The torus-
like droplet in Fig. 5(d) has no topological singularities which
correlate with topology. It has been shown that depending on
the aspect ratio R/a, where R is the central ring radius and a
is the tube radius, and on the elastic anisotropy, the nematic
director configuration inside the torus could be both chiral
and nonchiral [46,49]. At large ratio R/a the configuration
in the torus is nonchiral. In our case the torus is nonchiral
[R/a ≈ 8, Fig. 5(d)]. Further evolution of the torus can occur
via breakup due to Rayleigh-Plateau instability at R − a � a
or via shrinkage towards the center when R − a � a [29,30].
In our case at (R−a)/a ≈ 8.5 we observed the breakup of the
toroid with the appearance of small droplets.

Koizumi et al. [45] at heating observed transformation of
a lyotropic nematic tactoid to a torus. They explained this
transformation by the interplay of nematic elastic constants
(splay K11 and bend K33 modulus) and hindrance of splay
deformation in the torus. At the latest stage of our series
of transformations we demonstrate the topological process at
cooling and formation of isotropic toroid. The nematic hole
in the droplet starts to form in the center of the topological
defect [Fig. 5(c)]. This process with change of topology and
decreasing χ leads to a small elastic deformation.

IV. SUMMARY

In our experiments, we have realized circular chains from
defects of opposite topological charges (a necklace from
defects) and investigated their collective dynamics. It was
established that defect formation in the chain and defect
annihilation are consistent with topological predictions. The
mechanism of continuous formation of a point topological
defect was demonstrated. In the chain the numbers of defects
of opposite topological charges are equal, in the droplet topo-
logically equivalent to a semisphere the number of +1 defects
exceeds the number of −1 defects by 1, and the toruslike
structure is formed without topological defects. We realized
a transition from the droplet connecting two cell surfaces
to the droplet topologically equivalent to a semisphere and
then to toroidal droplet and found that defect transformation
correlates with topological predictions.
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