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Electrohydrodynamic phenomena in liquid crystals constitute an old but still very active research area. The
reason is that these phenomena play the key role in various applications of liquid crystals and due to the general
interest of the physical community in out-of-equilibrium systems. Nematic liquid crystals (NLCs) are ideally
representative for such investigations. Our article aims to study theoretically the linear NLCs dynamics. We
include into consideration orientation elastic energy, hydrodynamic motion, external alternating electric field,
electric conductivity, and flexoelectric polarization. We analyze the linear stability of the NLC film, determining
dynamics of perturbations with respect to the homogeneous initial state of the NLC. For the purpose we compute
eigenvalues of the evolution matrix for a period of the external alternating electric field. These eigenvalues
determine the amplification factors for the modes during the period. The instability occurs when the principal
eigenvalue of the evolution matrix becomes unity by its absolute value. The condition determines the threshold
(critical field) for the instability of the uniform state. It turns out that one might expect various types of the
instability, only partially known and investigated in the literature. Particularly, we find that the flexoelectric
instability may lead to two-dimensionally space-modulated patterns exhibiting time oscillations. This type of
the structures was somehow overlooked in the previous works. We formulate conditions needed for the scenario
to be realized. We hope that the results of our work will open the door to a broad range of further studies. Of
especial importance would be a comprehensive understanding of the role of various material parameters and
nonlinear effects which is a key step for the rational design of NLCs exhibiting the predicted in this publication
multidimensional oscillating in time patterns.

DOI: 10.1103/PhysRevE.110.024701

I. INTRODUCTION

A wide variety of pattern-forming instabilities in nematic
liquid crystals (NLCs) under the influence of electric field
has been extensively investigated already about 50 years, see,
e.g., Refs. [1–27]. And many more references can be added.
Therefore, one could think that fundamental studies of this
phenomenon are exhausted. However, recently the topic was
resurrected and attracted much attention from researchers. At
least partially because the field has been enriched by observa-
tions of localized and propagating excitations in NLCs under
external alternating electric field [28–30]. Note that similar
phenomena (i.e., localized and propagating excitations) have
been observed in different kinds of liquid crystals and under
different conditions [31–35].

The observations of Refs. [28–30] were made at the con-
ditions, where the flexoelectric effect plays a crucial role.
The flexoelectricity in liquid crystals has been introduced
long ago by Meyer and then studied in many works [1–27].
However, the results reported in Refs. [28–35] suggest that
the flexoelectric mechanism can bring about a variety of un-
known scenarios. The observed in these works localized and
propagating excitations suggest that the mechanism behind is
based on nonlinear physics in out-of-equilibrium dissipative
systems. The first mandatory step to rationalize the observed
in these works nontrivial dynamic behavior is to solve the
linear dynamic equations for the NLCs in the external AC

field. This is the aim of our publication. For the problem under
consideration even the analysis of solutions of the linearized
equations turns out rather tricky. That is why in this paper
we have deliberately focused on the most limited questions of
linear stability and postpone the nonlinear step for the further
works.

In this work we solve numerically the set of the lin-
ear electrohydrodynamic equations in an external alternating
electric field. Our scheme includes all essential ingredients
of the problem, namely, the Frank elasticity, the hydrody-
namic motion, the electric conductivity, and the flexoelectric
polarization. In addition, we assume the uniform boundary
conditions with strong surface anchoring for the director. The
hydrodynamic motion is assumed to be incompressible, the
mass density ρ is regarded to be constant, and the incom-
pressibility condition ∇ · v = 0 is imposed on the velocity
field v. The incompressibility condition is explained by small
values of Mach number in the hydrodynamic motion that we
are interested in.

The linear electrohydrodynamic equations for NLCs are
known (see, e.g., Refs. [20,27,36–42]). However, in most
of the cited publications above, not all essential ingredients
were included into consideration: e.g., hydrodynamic motion
or finite (although small) electric conductivity. To be sure
that nothing is missing in the previous works (where the
linear dynamic equations were constructed by the symmetry
arguments) we rederived the equations by the linearization
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of the obtained recently [43] by our group complete set of
nonlinear dynamic equations of NLCs. It turns out that our
set of the linear equations coincides (up to notations) with the
equations presented in Ref. [37]. Thus we use the system of
linear equations of the nematic, in the form derived by lin-
earization of the complete system of nonlinear equations and
solve the equations in the main body of the paper. Partially
because in our approach it is essential to separate explicitly
the contributions from the ideally insulating NLC. Then the
finite conductivity effects are included as a perturbation over
small conductivity of the NLC.

In view of time periodicity of the external electric field,
the equations of nematodynamics have to be solved in terms
of Floquet normal form in time t . Thus the solution is char-
acterized by a set of characteristic exponents (decrements or
increments) λi, see Refs. [44,45]. We are interested in the dy-
namic behavior of the NLC on timescales much larger than the
period T of the external alternating electric field. The behavior
of the amplitudes of the modes on the timescales is described
by the factors exp(λit ). To establish the set of λi, we solve
the equations for one period and find the amplification factors
�i = exp(λiT ) of the eigenmodes of the evolution operator.

The flexoelectric effect makes the state of the nematic with
the homogeneous director field unstable in high-enough ex-
ternal electric fields. The critical electric field, corresponding
to the instability threshold, is determined by the condition
of zero real part of the main characteristic exponent, related
to the critical mode. All other characteristic exponents have
negative real parts at the threshold. Our aim is to perform
the linear stability analysis and to examine the behavior of
the nematic near the instability threshold. Unfortunately, the
equations cannot be solved analytically. That is why we
investigate their solutions numerically and supplement the
numerics by analytic expressions which can be obtained for
the pulse-like time-dependent electric field.

We study mainly the simplified model, assuming that all
three Frank modules are equal in the director elastic energy,
and the only flexocoefficient is taken into account. In addition,
we assume that the viscous dissipation energy is characterized
by a single viscosity coefficient η (see details in the next
section). This approach allows us to bury our ignorance about
the actual magnitudes of the many material characteristics of
nematics in a few phenomenological parameters. However,
even the simplified model enables one to draw general con-
clusions applying to any NLC. We believe that the model
reflects correctly the physics of the dynamic flexoelectric
instability. Unfortunately, even the simplified model of the
linear electrohydrodynamics of NLCs contains a large number
(often poorly known experimentally) of material parameters.
Therefore, a complete analysis of such a multiparametric
dynamic phase diagram is practically impossible even numer-
ically (and, most importantly, is not very meaningful).

That is why we introduced the simplified model where
the number of the parameters is reduced. We believe that
the model correctly describes qualitative features of the phe-
nomenon. We aim to draw general qualitative conclusions
concerning the character of the dynamic flexoelectric insta-
bility. To confirm that our qualitative conclusions are robust
with respect to the model assumptions, we discuss also some
results obtained by going beyond the simplified model.

We encounter competing bifurcations of the initially uni-
form director field, leading to the following patterns: (i)
stationary stripe structures, (ii) stationary two-dimensionally-
modulated structures or oblique rolls, and (iii) oscillating in
time two-dimensional structures. Which one of these bifur-
cations appears upon increasing the external electric field
depends on the material parameters and the field frequency
ω. The stripe flexoelectric domains, case (i), are well known
[10–13]. The oblique rolls from case (ii), were predicted
and observed experimentally, see Refs. [20,36–39]. However,
scanning the literature, we did not find theoretical predictions
or experimental observations of the oscillating patterns in
NLCs.

Let emphasize, that it is impossible to determine whether
oblique rolls or two-dimensional periodic structures oc-
cur above the threshold within the linear stability analysis.
Nonlinear terms should be included into consideration to dis-
criminate the possible structures, it is beyond our work. If
amplification factors � near the instability threshold are real,
both structures are possible. It can be shown based on a simple
phenomenological description in terms of the critical modes
with nonzero components of the wave vector qx, qy. Depend-
ing on the ratio of two nonlinear contributions in the dynamic
equations, either a one-dimensional or two-dimensional pat-
tern is formed.

We solve the complete set of the linear equations for NLCs
in the external AC electric field for two cases of the boundary
conditions: periodic boundary conditions and more realis-
tic boundary conditions corresponding to the strong planar
anchoring energy. As opposed to the static case, where the
flexoelectric instability is not observed for homeotropic LC
alignment [19], we find that, in the AC electric field, the
dynamic flexoelectric instability is possible for both types of
boundary conditions examined. For the homeotropic anchor-
ing in (−−) materials, the flexoelectric instability in an AC
electric field appears as a secondary instability, following the
bend Freedericksz transition (see, e.g., the review paper by
Eber et al. [46]). For the static (DC electric field) flexoelectric
instability, the strength and the type (planar or homeotropic)
boundary conditions are very important [19]. However, it is
not the case if the frequency of the AC electric field is high,
we are interested in our work.

As a result we find the characteristic exponents λi deter-
mining the amplification factors exp(λiT ) of the eigenmodes
of the equations. At the first step we solve the system un-
der assumption of the periodic boundary conditions. The
partial differential equations are reduced to ordinary differ-
ential equations (ODEs) in this case. At the second step
we use realistic boundary conditions on the nematic film
surfaces. We demonstrated that the results obtained in the pe-
riodic approach and for the realistic boundary conditions are
close if the inequality (q2

cy + q2
cx )1/2 � 1/d is satisfied, where

(qcx, qcy) are lateral components of the critical wave vector.
To check the generality of our conclusions, we solved the

dynamic equations for two types of time-dependent external
field: for the harmonic and for the pulsing external electric
field (that is the field which is constant during the half of a
period and changes its sign at the second half of the period).
We have found that all qualitative features of the solutions are
the same for the cases.
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Unfortunately, we did not find in the literature any ex-
perimental results manifesting our main new prediction in
this work (oscillating in time two dimensional textures). For
example, the results presented in Ref. [37] were obtained for
relatively large values of conductivities and low electric-field
frequencies, in contrast with our consideration (low con-
ductivity, high frequency). We present the phase diagrams,
revealing the parameters needed for realization of our sce-
nario. We hope that the direction of search suggested by our
analysis enables one to find a suitable material where the type
of instability will be observed.

Our paper is divided into five sections of which this intro-
duction is the first. In Sec. II we introduce the main relations
underlying our analysis and the computational scheme. In
Sec. III, the linear stability of the system with the periodic
boundary conditions in an external alternating electric field is
analyzed. We compare the results for the harmonic and for the
pulse dependence of the field on time. Section V is devoted
to linear stability analysis for a nematic film of finite thick-
ness. The nematodynamic equations are solved with suitable
boundary conditions. Our results are outlined in the conclu-
sion. Particularly, we discuss a possibility of the appearance
of oscillating-in-time states above the instability threshold.
All technical details needed to analyze the dynamics of flex-
oelectric instability for finite-size systems are presented in
Appendix A. We relegated into Appendix B the tables of
the results of our computations to compare quantitatively the
results obtained for the periodic boundary conditions (with
qz = π/d) with those for the realistic boundary conditions.

II. GENERAL RELATIONS

Nematic liquid crystals are anisotropic fluids, the
anisotropy is described in terms of the director field n, that
is, the unit headless vector. Distortions of the director fields
are associated with the nematic elastic energy
∫

dV

{
K1

2
(∇n)2 + K2

2
[n(∇ × n)]2 + K3

2
[n × (∇ × n)]2

}
,

(1)

which is called the Frank energy. Here K1, K2, K3 are the Frank
modules, typically of the same order.

The electric energy of the nematics is anisotropic as well.
Following the general ideology [18,47], it can be written as

−ε0

2

∫
dV {ε‖(nE )2 + ε⊥[E2 − (nE )2]}, (2)

where E is the electric field, ε0 is the vacuum permittivity,
and ε‖ and ε⊥ are components of the dielectric permittivity,
longitudinal and perpendicular to the director n. The degree
of the anisotropy is characterized by the difference 	ε = ε‖ −
ε⊥.

In addition, the nematics possess the flexoelectric polariza-
tion P f l related to distortions of the director field

P f l = e1n(∇n) + e3(n∇)n. (3)

Here e1, e3 are flexocoefficients related to splay-like and
bend-like deformations of the director field n [8,9,18]. The

flexoelectric energy is of the nematic written as

−
∫

dV P f l E. (4)

Note that, for the homogeneous-in-space electric field E, the
flexoelectric contribution (4) into the bulk energy of the ne-
matic (i.e., with surface terms neglected) is determined by the
single combination ζ = e1 − e3.

Dynamics of the nematics is determined by a set of kinetic
coefficients. First of all, we should note the director rotational
viscosity γ determining kinetics of the director. The quantity
has the dimension of the hydrodynamic viscosity coefficients
and is usually of the same order. Due to the anisotropy there
are five independent viscosity coefficients in the nematic, en-
tering the forth-order viscosity tensor ηi jkl [18]. The viscosity
coefficients are usually of the same order.

We examine the nematics in the external alternating elec-
tric field E . First, we consider the harmonically varying in
time electric field E = E0 cos(ωt ), where E0 is the amplitude
of the electric field and ω is its frequency. The field is periodic
with the period T = 2π/ω. Second, we consider the pulsing
periodic field consisting of both positive and negative pulses.
During a period of duration T its time dependence is

E (t ) = E0, 0 < t < T/2, E (t ) = −E0, T/2 < t < T,

(5)

where E0 is the amplitude of the field. The temporal depen-
dence (5) of the external electric field was first considered
(within the model neglecting hydrodynamic motion and con-
ductivity) in Ref. [10].

Nematics are weak electrolytes where both positive and
negative ions carry the electric current. The density of the
electric current j is determined by the directed motion of the
ions. Due to the anisotropy of nematics the relation between
the electric field E and the density of the electric current is

j = σ‖n(nE ) + σ⊥[E − n(nE )], (6)

where σ‖ and σ⊥ are the components of the conductivity lon-
gitudinal and perpendicular to the director n. The conductivity
can be estimated as

σ ∼ ce2

kBT
D,

where D is the diffusion coefficient of the ions, c is their
density, e is the electron charge, kB is Boltzmann constant and
T is temperature.

Using the expression for the density of the electric current
(6), we ignore contributions to j related to possible inhomo-
geneities of the space distribution of the ions. Therefore the
frequency ω should be much larger than the ions relaxation
rate D/r2

D where Debye length rD is estimated as

rD ∼
(

kBT ε0ε⊥
ce2

)1/2

.

Therefore the condition ω � D/r2
D can be rewritten as

ω � σ

ε0ε⊥
. (7)

The inequality (7) is assumed to be satisfied in what follows.
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We are interested in the flexoelectric instability. To restrict
to only this case, it is convenient to avoid other types of
electrohydrodynamic instability. In this respect one should
distinguish materials with positive and negative signs of
the dielectric permittivity difference 	ε = ε‖ − ε⊥ and of
the conductivity difference 	σ = σ‖ − σ⊥. Correspondingly,
there are four classes of the NLCs. These classes are desig-
nated as (−−), (−+), (+−), and (++), where the first sign
in the brackets stands for the dielectric permittivity and the
second one stands for the conductivity, see [18].

At increasing the external electric field the (++) and
(+−) materials experience the well-known Frederiksz insta-
bility, not related to flexoelectricity. The theoretical analysis of
electrohydrodynamic instabilities in nematic films and the ex-
perimental data [5–8,14–20,25–27,36–39] shows that for the
(−+) nematics the instability usually leads to static stripes.
At some conditions the instability leads to a two-dimensional
pattern of the director field [37]. However, the pattern appears
to be stationary as well. It is why in this paper we consider
solely the (−−) materials.

There is a hierarchy of the relaxation times in NLCs. The
slowest mode is related to the director relaxation. Its decre-
ment is determined by the director rotational viscosity γ and
the Frank modules K1, K2, K3. The decrement is estimated as
Kq2/γ , where K stands for K1, K2, K3 and q is the character-
istic wave vector of the considered mode.

The relaxation rate of the hydrodynamic motion of the
nematic at a given wave vector q can be estimated as ηq2/ρ,
where ρ is the mass density, and η estimates the dynamic
viscosity coefficients of the nematic. This relaxation rate is
much larger, than the director distortion relaxation rate. The
ratio of these rates is the dimensionless parameter Kργ −1η−1,
independent of q. Usually γ ∼ η, therefore the parameter can
be written as Kρη−2. Typically in NLCs it is a small parameter
in the range 10−4–10−3[27,36–40,48]. The smallness of the
parameter Kρη−2 means that, at studying the dynamics of
the director distortions, the velocity v of the nematic can
be treated in the adiabatic approximation. In other words,
the velocity adjusts simultaneously to the director field. The
approximation leads to the estimate v ∼ (Kq/η)δn for the
velocity, where δn is the director field distortion.

Near the threshold the terms in the equations with the exter-
nal electric field and with the Frank modules are of the same
order. Comparing the Frank energy (1) and the anisotropy of
the electric energy (2) we obtain the following relation:

|	ε|ε0E2
c ∼ Kq2

c , (8)

which gives the estimate for the wave vector qc of the crit-
ical mode. Here Ec is the amplitude of the external electric
field corresponding to the onset of the flexoelectric instability.
Comparing then the director relaxation rate ∼ Kq2/γ and the
field frequency ω, we arrive at the estimate

qc ∼ (γω/K )1/2 (9)

for the critical wave vector. Combining the estimates (8) and
(9), we find

|	ε|ε0E2
c ∼ γω. (10)

The flexoelectric energy (4) competes with the Frank en-
ergy (1). Comparing the energies for the critical values (10)

and (9), we find that their ratio is determined by the factor
ζ (|	ε|K )1/2. Thus no flexoelectric instability occurs if ζ is
too small. The instability, observed at increasing the external
alternating electric field, occurs if the inequality is correct

ζ 2/(|	ε|ε0K1) > C, (11)

where C is a constant of order unity. Its value is not uni-
versal being dependent on the material parameters of the
nematic. The condition (11) is a generalization of the anal-
ogous condition for the onset of the flexoelectric instability
in the static electric field (the same holds for the pulse field
within the model neglecting hydrodynamic motion and con-
ductivity, see Refs. [10–13]). In turn, the conditions (8)–(10)
are generalizations of the analogous conditions for the onset
of the flexoelectric instability for the pulse field within the
model neglecting hydrodynamic motion and conductivity, see
Ref. [10].

For the nematic film of finite thickness d , the estimates,
formulated above, are correct provided qcd � 1. Furthermore,
the condition is assumed to be satisfied. Moreover, we con-
sider relatively thick films where qcd is large. The main
qualitative findings of our work are valid for such “thick”
films, and all quantitative results for the film of finite thickness
are close to those for the sample under periodic boundary
conditions.

In our numerical computations we use mainly the simpli-
fied model with a single Frank module K1 = K2 = K3 = K
and with a single viscosity coefficient η. Namely, we assume
that η1 = η2 = η3 = η4 ≡ η, and η5 = 0, see Ref. [43]. It is
easy to check that such a choice does not violate the condi-
tions for the positive entropy production, see the conditions
in Ref. [18]. We assume e3 = 0 as well. To check generality
of the results obtained in the framework of the simplified
model we performed also the computations giving up some re-
strictions of the simplified model, namely, for different Frank
modules and for nonzero e3.

In the framework of the simplified model we deal with the
following dimensionless parameters:

η/γ , 	ε/ε⊥, K1|	ε|ε0/ζ
2, (12)

controlling the character of the instability. All the subsequent
general conclusions can be formulated in terms of the dimen-
sionless parameters.

Note that not all relevant for the NLC dynamic parameters
are reliably known experimentally even for the so-to-
speak standard [e.g., 4-methoxybenzylidene-4′-butylaniline
(MBBA)] nematics. All the more it is true for some re-
cently synthesized materials, see, e.g., Refs. [28–35]. Thus
one may play with the material parameters (of course within
the limits of physically acceptable values). Following this
way, we predict the region of parameters where the scenario
of the dynamic flexoelectric instability is realized, related to
oscillating-in-time patterns.

Linear dynamic equations of nematic liquid crystals

To be specific, in what follows we consider the nematic
film enclosed by two parallel plates and chose the X and Y
axes of the reference system along the plates. We assume that
the external alternating electric field is directed along the Z
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axis, and that without the external electric-field director n
is aligned everywhere along the X axis. Experimentally, the
geometry can be achieved by special preparing the surfaces of
the plates guaranteeing that n is directed along X axis there.
Above the instability threshold the director field n loses its
homogeneity.

Since the nematic film is assumed to be homogeneous
in the X -Y plane, one can examine modes with the har-
monic dependence exp(iqxx + iqyy) of all varying quantities.
The flexoelectric instability occurs at a finite wave vector
q = (qx, qy ). The stripe structure of the director field above
the instability threshold corresponds to qx = 0 or to qy = 0
for the critical mode. If both components of the wave vector
of the critical mode are nonzero, then two-dimensional mod-
ulated structures can be realized.

We perform the linear stability analysis of the nematic liq-
uid crystal dynamics in the presence of an alternating electric
field. The linear electrohydrodynamic equations for NLCs are
known (see, e.g., Refs. [20,27,36–42]). The equations can also
be derived by the linearization of the complete set of nonlinear
dynamic equations of NLCs obtained recently [43] by our
group. It turns out that our set of the linear equations coincides
(up to notations) with the equations presented in Ref. [37].
Thus we use the system of linear equations of the nematic in
the form derived by linearization of the complete system of
nonlinear equations [43].

Within our simplified model (K1 = K2 = K3 = K , e3 = 0
and a single viscous coefficient η), one finds the follow-
ing system of equations for the fields with the dependence
∝ exp(iqxx + iqyy):

∂t ny = iqxvy + 1

γ

[
K

(
∂2

z − q2
)
ny − iζqynzE (t ) − ζqxqy�

]
,

(13)

∂t nz = iqxvz + 1

γ

[
K

(
∂2

z − q2
)
nz + iζqynyE (t )

+ 	εε0E (t )2nz − i	εε0E (t )qx� + iζqx∂z�
]
, (14)

ρ∂tvy = η
(
∂2

z − q2
)
vy − iqy� − iK

(
∂2

z − q2
)
qxny, (15)

ρ∂tvz = η
(
∂2

z − q2
)
vz − ∂z� − iK

(
∂2

z − q2
)
qxnz

− ε⊥ε0E (t )
(
∂2

z − q2)�, (16)

∂t
[
ε‖ε0q2

x� + ε⊥ε0
(
q2

y − ∂2
z

)
�

− iqx(	εε0nzE (t ) + iζqyny + ζ∂znz )
]

= −σ‖q2
x� − σ⊥

(
q2

y − ∂2
z

)
� − i	σE (t )qxnz. (17)

Here q2 = q2
x + q2

y ; ny, nz are the components of the director
n, describing its deviations from the equilibrium orientation;
and vy, vz are the components of the velocity. We introduce
also δE = −∇� as a perturbation of the homogeneous elec-
tric field. The parameter �, figuring in the equations (15) and
(16), is the effective pressure, satisfying the relation
(
∂2

z − q2)� = iζE (t )q3
xnz + ζq4

x� + K
(
∂2

z − q2)
× qx(qyny − i∂znz ) − ε⊥ε0E (t )∂z

(
∂2

z − q2
)
�.

(18)

The condition (18) is a consequence of the incompressibility
condition iqxvx + iqyvy + ∂zvz = 0. The same condition en-
ables one to exclude vx from the set of the dynamic variables.

Modification of the equations in the case of three different
Frank moduli is discussed in Appendix A.

One has to solve the set of the linear equations (13)–(18)
supplemented by suitable boundary conditions. The natural
boundary conditions for the fields ny, nz, vy, vz, � are zero
Dirichlet boundary conditions. Physically, they are related to
fixing director at the surface by the strong anchoring energy
to nonslipping boundary conditions for the velocity and to
fixing the electric potential at the boundaries of the plates.
The last condition is provided by the conducting electrodes on
the surfaces of the nematic film. The zero Dirichlet conditions
have to be supplemented by an additional boundary condi-
tion ∂zvz = 0, following from the incompressibility condition
iqxvx + iqyvy + ∂zvz = 0 and zero values of the components
vx, vy at the boundaries. Thus we arrive at the boundary
conditions for the film of thickness d , imposed at z = ±d/2:

ny(z = ±d/2) = 0,

nz(z = ±d/2) = 0,

�(z = ±d/2) = 0,

vy(z = ±d/2) = 0,

vz(z = ±d/2) = 0,

∂zvz(z = ±d/2) = 0. (19)

From the formal point of view, the additional condition
∂zvz(z = ±d/2) = 0 is needed to specify the generalized
pressure �, see Eq. (18).

The system of equations (13)–(17) describes a set of
modes, possessing a complicated temporal behavior in the
external alternating electric field. One can extract eigenmodes,
that are characterized by returning to their spatial structure
after a period T of the external field up to a factor �i,
which can be called the amplification factor of the eigenmode.
We introduce also the characteristic exponents λi related
to the amplification factors �i through �i = exp(λiT ). The
exponents λi determine the behavior of the eigenmodes on
temporal scales much larger than T via the factors exp(λit ).
The equations (13)–(18) written in terms of the variables ny,
inz, ivy, vz, �, and � have real coefficients. That is why the
characteristic exponents λi must be all real or contain some
complex conjugated pairs.

One easily checks that the set of the linear electrohydro-
dynamic equations (13)–(18) is invariant under the following
transformations:

qy → −qy, nz → −nz, ny → ny,

vz → −vz, vy → vy, (20)

and

qx → −qx, nz → nz, ny → ny,

vz → −vz, vy → −vy, � → −�. (21)

Note that even beyond the assumptions of our simpli-
fied model the complete set of the linear nematodynamic
equations remains invariant under the transformations (20)
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and (21). The symmetry of the equations under the trans-
formations (20) and (21) lead to the conclusion that the
characteristic exponents λi(qx, qy), do not change upon chang-
ing sign of qx or qy.

The modes described by the system of equations (13)–(17),
all decay below the instability threshold. Above the threshold,
a mode (or modes) that can be called the critical one becomes
unstable. Evidently, the actual patterns of the nematic above
the threshold cannot be analyzed in the framework of the
linear approximation (above the threshold the amplitude of
the mode grows and the linear approximation is violated).
Nevertheless, some general conclusions concerning the state
can be derived from the analysis of the system at the threshold.

One can get some insight on various structures above the
threshold phenomenologically. For the real amplification fac-
tor at fixed qz in the vicinity of the threshold the instability
occurs for the modes with nonzero components of the wave
vectors qx, qy. Introducing two complex amplitudes describing
the modes one finds that the solution with one nonzero ampli-
tude corresponds to oblique rolls whereas the solution with
two nonzero amplitudes corresponds to a two-dimensional
periodic structure [49].

Near the instability threshold the only third-order terms in
the dynamical equations should be taken into account, if the
terms stabilize the solution of the equations. In the case the
amplitude of the inhomogeneous contribution to the director
field is small near the threshold. Then finally the only spatial
harmonic survives with the wave vector q, corresponding to
the maximum value of Reλc(q), where λc is the characteristic
exponent of the critical mode. Near the threshold |λc| � ω

and, consequently, the slow dynamics of the director patterns
is determined just by the critical characteristic exponent λc.
If Imλ = 0, then the pattern is stationary. Of course, the
stationary behavior occurs on the timescale much larger than
the period T of the external alternating electric field, whereas
oscillations of the pattern with the period T are omnipresent.

Thus there are different possibilities related to the value
of the characteristic exponent λ(qx, qy) of the critical mode.
If Imλ = 0 then the stationary patterns of the director field
n are realized above the threshold, whereas the case Imλ �=
0 leads to the possibility of dynamic (oscillating in time)
two-dimensional structures above the instability threshold. To
avoid a misunderstanding, we stress again that, speaking about
the stationary or oscillating regimes, we imply timescales
much larger than the period T of the external alternating
electric field.

If Imλ �= 0, then the critical mode oscillates with time.
Thus we arrive at the traveling wave described by the fac-
tor exp(iImλt + iqr). One might encounter two or four plain
waves, depending on the arrangement of the values of critical
wave vectors in q space. Then the nematic pattern appearing as
a result of the instability consists of some traveling or standing
waves, depending on conditions at the plates limiting the NLC
sample. We are especially interested in the possibility and aim
to establish conditions for its realization. Our detailed analysis
based on the results of numerical computations is presented in
subsequent sections.

Some words about the mechanism of appearing the os-
cillating critical mode are in order. We assume that the
conductivity of the nematic is relatively small; that is, it satis-

fies the inequality (7). Then, as it follows from Eqs. (13)–(17),
there is a slowly decaying “potential” mode with ReλT � 1.
Indeed, in the limit σ⊥, σ‖ → 0 the quantity in the square
brackets on the left-hand side of Eq. (17) is unchanged
during the electric-field period, which corresponds to the
condition λ = 0 for the mode. For finite σ⊥, σ‖ we obtain
|λ| ∼ σ/(ε0ε⊥), explaining the inequality ReλT � 1 for the
“potential” mode, following from Eq. (7).

The flexoelectric instability implies that the director dy-
namics is also a “soft” mode. Upon approaching the threshold
the value Reλ for the mode tends to zero. Therefore, near
the threshold there occurs a hybridization of the “director”
and of the “potential” modes. The hybridization can lead to
forming two mixed modes with complex conjugated charac-
teristic exponents λ, then Imλ �= 0. At some conditions the
mixed modes survive up to the instability threshold. Then λ

has a nonzero imaginary part at the threshold. We examine
the conditions needed for realization of this scenario.

Let us stress that in our model the director modes and
hydrodynamic modes are coupled via the kinetic lambda term,
see Eqs. (13)–(17). This coupling is a crucial ingredient of our
scenario of the flexoelectric instability.

We intend to give a general view on the dynamic flex-
oelectric instability. Obviously, it is impossible to scan the
multidimensional space of the material parameters character-
izing the nematic. That is why we simplify the description,
reducing the number of the parameters. Of course, to simulate
the properties of a specific nematic, one should restore the
complete equations with all phenomenological material coef-
ficients taken into account. We do believe that our approach
gives the qualitatively correct general picture (e.g., types of
the instability and their arrangement on the “phase diagram”
plotted in terms of the key parameters). To justify our belief
we have performed computations with three different Frank
moduli, and two flexoelectric coefficients. We found that, in
this case, the qualitative features of the phenomenon (the
topology of the “phase diagram” and the scaling laws) remain
the same as in our simplified model.

III. FLEXOELECTRIC INSTABILITY IN CASE OF
PERIODIC BOUNDARY CONDITIONS

Here we consider the periodic in z setup, enabling us to
reduce the partial differential equations to the ordinary differ-
ential equations and to avoid difficulties related to the account
of the boundary conditions (19). As we already noted, the
approach allows one to scan quickly a wide range of material
parameters to find the most interesting regions. If it is nec-
essary, later the parameters can be examined in more detail
for the nematic sample with the realistic boundary conditions
(19). The corresponding analysis is presented in Sec. V.

Note that the case of homeotropic LC alignment in the
cell of the (−−) material under AC electric field differs
from the situation with the boundary conditions (19). In the
homeotropic case the flexoelectric instability appears as a sec-
ondary instability, following the bend Freedericksz transition
(see, e.g., the review paper by Eber et al. [46]). The electric
field EF at which the Freedericksz transition occurs can be
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estimated from the standard relation

ε0|	ε|E2
F ∼ K/d2.

In the case considered in our paper, the critical electric field
Ec at which the flexoelectric instability takes place is deter-
mined by the formulas (8)–(10). Our computations suggest
that the dynamic flexoelectric instability occurs when the lat-
eral critical wave vector of the most unstable mode (qcx, qcy)
satisfies the inequality (q2

cy + q2
cx )1/2d � 1. Then according

to the estimates Ec � EF . At the condition the behavior of
the substance near the flexoelectric instability in the boundary
layers of thickness ∼q−1

c is sensitive to the boundary condi-
tions whereas its behavior in the rest of volume is independent
of them. That is why our results are not sensitive to the bound-
ary conditions, including the homeotropic or oblique ones. We
confirmed the assertion by comparing the periodic setup with
the case of the strong parallel anchoring of the director. Note
that, for the static field the flexoelectric instability occurs at
qc ∼ d−1 and is sensitive to the boundary conditions.

We demonstrate in Sec. V and in Appendix B, that the
results for the case of periodic boundary conditions (at
qz = π/d) and for the case of the realistic boundary condi-
tions (19) are close. The fact is justified by the inequality
(q2

cy + q2
cx )1/2 � 1/d .

For the case of periodic boundary conditions the set of
equations (13)–(17) admits a solution, which is a linear com-
bination of cos(qzz) and sin(qzz), where qz is an arbitrary
parameter. Then the system of equations (13)–(17) are re-
duced to the ordinary differential equations for the coefficients
at cos(qzz) and sin(qzz). In terms of the variables ny, inz, ivy,
vz, �, and �, the equations have real coefficients. That is why
the amplification factors �i or the characteristic exponents λi

are either real or form pairs of complex conjugated values. We
fix qz and find qx and qy corresponding to the critical mode,
first achieving at the flexoelectric instability.

Alternatively one can look for a solution of the system
(13)–(17) proportional to exp(iqzz). Then the equations, fol-
lowing from Eqs. (13)–(17) for the periodic BC case can
be simply rewritten, see Appendix A. After substituting the
expression (A6) into equations (A1)–(A5) they are reduced to
the form

d f
dt

= �̂ f , (22)

where f is the vector with the components ny, nz, vy, vz,
�, and �̂ is the matrix 5 × 5 with components periodically
varying as time t goes.

As we noted, in NLCs the hydrodynamic flow degrees of
freedom are much faster than the director mode. Therefore
the velocity in the slow critical mode can be examined in the
adiabatic approximation. That means that the time derivatives
in the equations (A3), (A4) for vy, vz can be neglected. Then
the velocity components can be expressed from the expres-
sions via ny, nz, �. Substituting the expressions into Eqs. (A1),
(A2), (A5) we find the equation of the form (22) for the three
variables ny, nz, �. Then we arrive at the 3 × 3 matrix �̂.
We use both approaches, with the matrix 5 × 5 and with the
matrix 3 × 3. The results, obtained in the framework of the
approaches, appear to be the same.

One technical comment is in order here. The characteristic
relaxation times of the essential dynamic modes (director,
velocity, and potential modes) are strongly different. There-
fore the computation of the evolution matrix 5 × 5 requires
the solution of so-called rigid system of differential equa-
tions [50], which could create some problems for numerical
computations. This is why we use both approaches, with the
matrices 5 × 5 and the matrices 3 × 3, to be sure that the
numerical results are correct.

We solve numerically the equation (22) on a period to find
the evolution matrix Ŵ :

f (t + T ) = Ŵ f (t ). (23)

The evolution matrix Ŵ is independent of time t thanks to pe-
riodicity of the matrix �. The eigenvalues of the matrix Ŵ are
no other than the amplification factors �i of the eigenmodes
of the problem. Note that for n periods

f (t + nT ) = (Ŵ )n f (t ). (24)

The eigenvalues of the matrix (Ŵ )n are �n
i . Therefore, to

better distinguish the critical mode, it is worth examining the
evolution determined by Eq. (22) on a few periods.

To find the evolution matrix Ŵ one can take as initial
values f in Eq. (23) the vectors (1, 0, 0, . . . ), (0, 1, 0, . . . ),
.... Then the corresponding vectors f (t + T ) (found numeri-
cally) constitute the evolution matrix Ŵ . The procedure can
be conducted both for the matrices 5 × 5 and 3 × 3, and is
directly generalized for the evolution on some periods. After
computing the evolution matrix Ŵ we find its eigenvalues �i

and then the characteristic exponents from �i = exp(λiT ).
We are interested in the principal modes, i.e., the modes

with maximal real part of the characteristic exponents λi, rele-
vant for examining the flexoelectric instability. The oscillating
in time regime of the critical mode is realized if there exist
two modes characterized by complex conjugated values of the
characteristic exponents with nonzero imaginary parts. Note
that at qx = 0 the system of the equations (A1) and (A2) for
the components ny, nz of the director field is decoupled from
the other equations. Then the evolution of ny, nz is governed
by a Hermitian matrix 2 × 2. Therefore the characteristic ex-
ponents λi related to the director mode are real in this case.
Since just the director mode is responsible for the flexoelectric
instability, we conclude that the oscillating regime cannot be
realized at qx = 0.

To simplify the dynamic analysis, one often neglects the
hydrodynamic flow (see, e.g., Ref. [40]). In the case we stay
with the three variables ny, nz, �. Although the matrix, deter-
mining the time derivative of the variables is not Hermitian,
we did not find a nonzero imaginary part of λ1 in this case.
Thus our results suggest that an account of the hydrodynamic
degrees of freedom is crucial for achieving the regime with
the oscillating in time critical mode.

Pulsing external electric field

We analyze mainly the external harmonically varying elec-
tric field E = E0 cos(ωt ). To check whether the obtained
results are robust we investigate also the pulsed form (5) of
the alternating external electric field. The case enables one
to examine the flexoelectric instability semi-analytically. As
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for the harmonically varying field, we study solutions of the
system of the dynamic equations (A1)–(A5) during a period
of the pulsing field. The evolution matrix Ŵ is collected from
the solutions for the initial vectors (1, 0, 0, . . . ), (0, 1, 0, . . . ),
... as well.

For the pulsing field (5) the dynamic equations (A1)–(A5)
during the time intervals 0 < t < T/2 and T/2 < t < T are
the sets of linear differential equations with constant coef-
ficients. Thus any solution of such system is a sum of the
functions ∝ exp(pt ), where the set of the five exponents pα

can be obtained analytically. The temporal dependencies of
the coefficients ny, nz, vy, vz, � during the first half-period
are determined by the five initial conditions (1, 0, 0, . . . ),
(0, 1, 0, . . . ), .... To find the t dependence of the coefficients
ny, nz, vy, vz, and � during the second half-period, one has to
use the continuity conditions at t = T/2 for the variables ny,
nz, vy, vz and of the variable

−ε‖q2
x� − ε⊥

(
q2

y + q2
z

)
� + iqx	ε nzE ,

as it follows from Eqs. (A1)–(A5).
As a result of the procedure, we find ny, nz, vy, vz, �

at t = T for all five initial conditions. Thus the quantities,
constituting the evolution matrix Ŵ , can be found analytically.
To find the eigenvalues of Ŵ (amplification factors) �i one
has to solve the characteristic equation det (Ŵ − �) = 0. The
equation is too complicated to be solved analytically. How-
ever, the equation can be easily solved numerically. This is
the only numerical step needed to investigate the dynamic
flexoelectric instability in the pulsating electric field for the
case of periodic boundary conditions.

Our computations show that the results for the pulsing field
agree well with the corresponding results for the harmonically
varying external field. The threshold value of the amplitude of
the pulsing field is approximately two times smaller that the
amplitude of the harmonic field.

IV. POSSIBLE TYPES OF INSTABILITY

Here we illustrate different types of instability noted in
Sec. II by presenting results of the numerical computations
for suitable values of the material parameters. In general the
periodic in time external AC electric field is considered in this
section. We draw the values of the amplification factor � of
the critical mode near the instability threshold as a function of
the lateral wave vector (qx, qy) at a given qz. It is chosen to be
less than the lateral wave vector.

Let start with discussing the case of stationary stripes. The
case is most easily realized provided the instability occurs at
qx = 0, qy �= 0. As we already noted, in the case the critical
mode has real �. Therefore in this regime the stripe structure
arises above the instability threshold with the stripes oriented
along the X axis. The case is realized if the dimensionless
parameters (12) are relatively large.

To illustrate the statement we present our numeric results
for the parameters

η/γ = 1, 	ε/ε⊥ = −0.15, K1|	ε|ε0/ζ
2 = 0.091.

The complete set of the parameters used for the computations
is presented in the caption for Fig. 1, where the dependencies
on qx, qy of the amplification factors � of two principal

FIG. 1. The dependence of the amplification factors � of two
principal modes on qx and qy for ω = 2π × 510 s−1 : � =
1.00 at Ebc = 3.73 × 106 V/m, qz = 0.04 µm−1, σ⊥ = 1 s−1 =
10−10 �−1 m−1, 	σ = −0.2σ⊥, K = 7 × 10−12 N, ζ = 9.2 × 10−4

SGSE units = (9.2/3) × 10−11 C m−1, ε⊥ = 9.2, 	ε = −4 π ×
0.11, γ = 0.06 Pa s, η = 0.06 Pa s.

modes are presented near the instability threshold. Besides
the simple stripe structure some more complicated stationary
structures can be realized above the instability threshold. They
are realized if the instability is achieved at qx �= 0, qy �= 0. The
possibility is discussed, e.g., in Refs. [37–39]. In this case
at the instability threshold there are four wave vectors ±qx,
±qy corresponding to � = 1. Above the instability threshold
some stationary periodic two-dimensional director pattern can
occur. Alternatively, an oblique stripe structure can arise. The
choice depends on the character of nonlinearity and is beyond
the linear stability analysis.

To illustrate the possibility, we present numeric results for
the parameters

η/γ = 0.82, 	ε/ε⊥ = −0.214, K1|	ε|ε0/ζ
2 = 0.073,

in Fig. 2(a), and

η/γ = 0.53, 	ε/ε⊥ = −0.214, K1|	ε|ε0/ζ
2 = 0.049,

in Fig. 2(b). The complete set of the parameters used for the
computations is presented in the caption to Figs. 2(a) and 2(b).

The next case that can take place at the instability, is re-
lated to the oscillating director pattern above the instability
threshold. It is realized if two critical modes with the complex
conjugated amplification factors � appear at the instability
threshold, that is achieved at qx �= 0, qy �= 0. The case is real-
ized at small enough parameters (12). Such situation probably
may occur in nematic materials exhibiting phase transitions
into various ferroelectric structures, see Refs. [8,51–54].

As an illustration of this possibility, we present numerical
results for the following dimensionless parameters

η/γ = 1, 	ε/ε⊥ = −0.052, K1|	ε|ε0/ζ
2 = 0.095
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FIG. 2. The dependencies of the amplification factors �1 and �2 of two principal modes on qx , qy at ω = 2π × 500 s−1, qz = 0.41 µm−1,
K1 = 7 × 10−12 N, K2 = 5 × 10−12 N, K3 = 5 × 10−12 N, ε⊥ = 14, 	ε = −3, σ⊥ = 10 s−1 = 10−9 �−1 m−1, 	σ = −0.2σ⊥, γ = 0.066 Pa s,
(a) � = 1.0038 at Ebc = 1.86 × 106 V/m for ζ = (15.16/3) × 10−11 C m−1, η = 0.054 Pa s; (b) � = 1.0006 at Ebc = 1.46 × 106 V/m for
ζ = (18.5/3) × 10−11 C m−1, η = 0.035 Pa s.

in Fig. 3 for qz = 0.39 µm−1, where the real and the imaginary
parts of the complex amplification factor � of the degenerated
modes are presented. The complete set of parameters used for
the simulation is presented in the caption to Fig. 3.

We checked that the oscillating regime can be realized for
the case of different Frank modules and two different flexoco-
efficients. The case is illustrated in Fig. 4. The equations used
for the computations can be found in Appendix A, Eqs. (A20)
and (A21). As it is seen from Fig. 4, the absolute values of the
amplification factor � of two principal modes has two com-
peting maxima, one of which is narrow and corresponds to
complex �, whereas the second one is wide and corresponds
to real � (though with qx �= 0). Such possibility can be easily
realized for the case of different Frank modules.

A. Phase diagram

One cannot study numerically the complete multidi-
mensional phase space, and anyway it would be not very
instructive. To gain a better understanding and some flavor
of what can happen, it is beneficial to study the effects of the
parameters chosen as selectively as possible. One of the way
to explore the found above instabilities within the simplified
model is to look for a plane of two parameters, the viscosity
coefficient η and the flexoelectric coefficient ζ . The results
are presented as “phase diagrams” plotted in terms of the
dimensionless parameters η/γ and Kε0|	ε|/ζ 2. We put a
series of the points to the diagrams, where the character of
the critical mode is determined numerically. In the diagrams

the star ∗ designates the critical phase with qx = 0 and real
�, the open circle ◦ designates the phase with qx �= 0 and
real �, and the bullet • designates the phase with qx �= 0 and
complex �.

First, we take K1 = K2 = K3 = 4 × 10−12 N, σ⊥ = 10 s−1,
	σ = −2 s−1, qz = π/8 µm−1, ε⊥ = 14, 	ε = −0.8π , γ =
0.06 Pa s, ω = 1000π s−1. For the sinusoidal external field
the results are presented in Fig. 5, where we see all three
possibilities. If both dimensionless parameters are large, the
critical mode has qx = 0. At this condition the amplification
factor � is real. At the increase of ζ , i.e., at the decrease of
K|	ε|/ζ 2, the wave vector qx of the critical mode becomes
qx �= 0 and the amplification factor � remains real, if η/γ is
moderate. Finally at decrease of η we pass to the critical mode
with qx �= 0 and complex amplification factor �.

To check the “robustness” of the phase diagram presented
in Fig. 5 we conduct an analogous investigation for the pulsing
external field, see Eq. (5). The material parameters are the
same as above. The results are presented in Fig. 6. The general
shape of this diagram is analogous to the diagram for the
harmonic field, although the position of transition lines is
different. For example, the transition to the phase where the
critical mode with qx �= 0, real � takes place at larger values
of ζ . The amplitude of the threshold external field for the
pulsing field is smaller than for the harmonically varying field.

The results presented above were obtained within our
simplified model. The model is formulated with several
assumptions (equal Frank constants, one flexoelectric coeffi-
cient, and a single viscosity coefficient), driven by pure desire

FIG. 3. The dependencies of absolute value of amplification factor � of two principal modes and the imaginary part of �1 on qx and qy

for ω = 2π × 500 s−1: � = 1.0065 ± i0.013 at Ebc = 3.94 × 106 V/m for qz = 0.39 µm−1, σ⊥ = 1 s−1 = 10−10 �−1 m−1, 	σ = −0.2σ⊥,
K = 4 × 10−12 N, ζ = (6.5/3) × 10−11 C m−1, ε⊥ = 24, 	ε = −4 π × 10−1, γ = 0.06 Pa s, η = 0.06 Pa s.
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FIG. 4. Dispersion laws near the threshold. The dependence of modules of amplification factor �1 and imaginary part of �1 of
main mode on qx and qy for ω = 2π × 500 s−1. � = 1.00141 ± i0.001 at Ebc = 0.65 × 106 V/m for qz = 0.4 µm−1, σ⊥ = 0.3 s−1 =
0.3 × 10−10 �−1 m−1, 	σ = −0.7σ⊥, K1 = 7 × 10−12 N, K2 = 5 × 10−12 N, K3 = 5 × 10−12 N, ζ = (34/3) × 10−11 C m−1, e3 = (34/3) ×
10−11 C m−1, ε⊥ = 14, 	ε = −3, γ = 0.066 Pa s, η = 0.015 Pa s.

to make formulas simpler. We do believe that more realistic
description will not affect our qualitative conclusions, and
transparency is worth a few oversimplifications. To illustrate
our believe we compute more complex phase diagram for
three different Frank modules, K1 = 7 × 10−12 N, K2 = K3 =
5 × 10−12 N. The results are presented in Fig. 7, the complete
set of parameters used for the computations is presented in the
caption to the figure. We see that the relative position of the
three regions remains the same, although the borders between

FIG. 5. The phase diagram of instabilities at different η for the
harmonic external field. Designations: ∗ is the phase with qx = 0 and
real �, ◦ is the phase with qx �= 0 and real �, and • is the phase with
qx �= 0 and complex �

the phases are different. The phase regions have nontrivial
form. And one can see the possibility of the instability, related
to the oscillating director pattern. The results demonstrate
universality of the phase diagram topology.

It is worth noting also an interesting and useful work [12]
illustrating the quantitative relevance (for the static flexo-
electric instability) to take into account three Frank moduli
and two flexoelectric coefficients. The same (the quantita-
tive relevance of three elastic moduli and two flexoelectric

FIG. 6. The phase diagram of instabilities at different η and ζ for
the pulsing external field. Designations: ∗ is the phase with qx = 0
and real �, ◦ is the phase with qx �= 0 and real �, and • is the phase
with qx �= 0 and complex �.
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FIG. 7. The phase diagram of instabilities at different η and ζ for harmonic external field and different Frank modules K1 = 7 ×
10−12 N, K2 = K3 = 5 × 10−12 N, and under other parameters values: qz = 0.41 µm−1, σ⊥ = 10 s−1 = 10−9 �−1 m−1, 	σ = −2 s−1 =
0.2 × 10−9 �−1 m−1, ε⊥ = 14, 	ε = −3, γ = 0.066 Pa s, ω = 2π × 500 s−1. Designations: ∗ is the phase with qx = 0 and real �, ◦ is
the phase with qx �= 0 and real �, and • is the phase with qx �= 0 and complex �.

coefficients) is true also for the dynamic flexoelectric in-
stability we are interested in our work. Thus we provided
calculations of the critical electric-field amplitude as a func-
tion of the Frank-constant ratio K2/K1. Doing so for the
typical for NLC inequality K2 < K1 we obtain the dependence
that coincides with the results of Refs. [8,12], the critical
electric field amplitude increases as the ratio K2/K1 increases
up to unity. The results are presented in Fig. 8.

FIG. 8. Critical electric-field amplitude Ec as a function of Frank
constants ratio K2/K1, for the certain material parameters for the case
considered in Table III.

Let note, that the imaginary part of the amplification factor
weakly depends on the electric field and on its frequency
in the vicinity of the threshold. The nonzero imaginary part
of the amplification factor appears as a result of hybridiza-
tion of two modes and can exist at any absolute value of
the amplification factor. The conclusion is confirmed by our
computations. Typical examples presenting the behavior of
the imaginary part of the amplification factor and its absolute
value as functions of the electric-field amplitude are given
in Fig. 9, which illustrates our conclusions for the certain
set of the material parameters. We found that the results for
the periodic boundary conditions and for the realistic set of
boundary conditions (19) are close.

In addition, we examined the extended model with three
different Frank moduli and with two different flexocoeffi-
cients for some sets of other material parameters and found
that the behavior near the instability threshold is qualitatively
the same as for the simplified model, see Figs. 1, 3, 5, 6, 10.
Our results for the extended model are presented in Figs. 2–4,
7, 11, and 12 for the periodic boundary conditions and can be
found also in Appendix B for a film with the realistic boundary
conditions. We have also investigated the extended model with
two flexo-coefficients. It gives qualitatively the same results.

B. Transitions between the regimes

The aim of this section is to add a bit more details about
transitions between the different regimes of the instability. On
the phase diagrams the transitions are reflected as the borders
between regions with different character of the instability.
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FIG. 9. Typical dependencies of square of Im(�) and |�| on the
amplitude of the electric field, respectively, for the certain material
parameters for the case considered in Table I.

The transitions between the different regimes, which (de-
pending of the material parameters) can be continuous (soft
bifurcation) or jump-like (hard bifurcation). For example the
transition from the case qx = 0, real � to the case qx �= 0,
complex � occurs discontinuously (with a jump from one
type of the critical mode to another one), see Fig. 10. In turn,
the transition from the case qx �= 0, real � to the case qx �= 0,
complex � occurs continuously, see Fig. 11. In particular,
Fig. 11 demonstrates how the maximum with complex �

appears at the transition from two-dimensional pattern regime
with real �, to the oscillating regime. The transition occurs
continuously at the varying dimensionless parameter η/γ .

As it concerns the transition from the case qx = 0, real �

to the case qx �= 0, real �, it can be either continuous or with a
jump between the competing critical modes, depending on the
material parameters. The continuous transition can be easily
realized for the case of different Frank modules. This case is
illustrated in Fig. 12, corresponding to the continuous tran-
sition from the static stripes regime to the two-dimensional
director pattern regime upon variation of the parameter η/γ .

It is instructive to examine in more details the transition to
the oscillating regime from the stationary stripe structure. The
transition occurs by the variations of the parameters listed in
(12). Near the transition a competition of potentially critical
modes takes place. Typically, the modes with the complex
amplification factor �, having maximum at qx �= 0, qy �= 0,
compete with the mode with the real amplification factor �,
which has the maximum at qx = 0, qy �= 0. The transition

takes place when the absolute values of the amplification
factors of both modes are equal to unity, thus it is a discon-
tinuous transition. To illustrate the phenomenon, we present
the computation results demonstrating the transition to the
oscillating regime from the regime of stationary stripes under

η/γ = 1, 	ε/ε⊥ = −0.07 ÷ −0.052,

K1|	ε|ε0/ζ
2 = 0.095,

in Fig. 10. The transition occurs at varying (decrease)
|	ε|/ε⊥. The complete set of the parameters used for the
computations is presented in the caption to Fig. 10.

Note that our calculations confirm that the instability (with
the finite wave vectors) is also possible only if ζ 2 > C|	ε|K ,
with certain values of C in accordance with the criterion (11),
as discussed above.

We studied numerically the dependencies of the critical
electric field Ec and of the critical wave vector on the fre-
quency ω. We confirmed that the estimates (9) and (10) are
valid. We provide the typical examples of the discussed depen-
dencies in Figs. 13 and 14, which correspond to (9) and (10)
for certain sets of the material parameters given in Table I.

V. REALISTIC BOUNDARY CONDITIONS

Here we consider the case of the realistic boundary
conditions (19). Computations of the dynamic flexoelectric
instability for such case are more involved and computer time
consuming than for case of periodic boundary conditions.
The complete system of the linear equations describing the
nematic dynamics is the system of six equations (13)–(18).
All the equations are of the second order in ∂z. In addition to
the equations, one should use the boundary conditions (19) at
the surfaces of the film.

It is convenient to exclude the “pressure” � from the sys-
tem of equations, thus reducing the number of the equations to
five. Of course, the order of the equations after the exclusion
is increased. It is possible to obtain an equation of the fourth
order for vz, keeping the orders of the equations for other vari-
ables to be equal to two. The system of such equations ideally
corresponds to the boundary conditions (19). Let us sketch a
derivation of the equations.

To find the equation for vz, one applies ∂2
z − q2 to Eq. (16)

and then expresses (∂2
z − q2)� from Eq. (18) to obtain

ρ
(
∂2

z − q2
)
∂tvz = η

(
∂2

z − q2
)2

vz − iζE (t )q3
x∂znz − ζq4

x∂z�

− K
(
∂2

z − q2
)
qx(∂zqyny − iq2nz )

+ ε⊥ε0E (t )q2(∂2
z − q2)�. (25)

Next, applying ∂z to Eq. (16) and expressing then ∂2
z � from

Eq. (18), one finds

q2� = − ρ∂t∂zvz + η
(
∂2

z − q2
)
∂zvz

− iζEq3
xnz − ζq4

x� − K
(
∂2

z − q2
)
qxqyny. (26)

Substituting the expression into Eq. (15), we find the equa-
tion for vy. There is the term proportional to ∂3

z ny in Eq. (25).
Applying ∂z to Eq. (13) we can then express ∂3

z ny, then sub-
stituting it into Eq. (25). In more detail, the derivation and the
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FIG. 10. Change of principal modes spectrum |�| under transition from static strips regime to oscillating regime: (a) ε⊥ = 18 and 	ε/ε⊥ =
−0.07; (b) ε⊥ = 19.4 and 	ε/ε⊥ = −0.065; (c) ε⊥ = 24 and 	ε/ε⊥ = −0.052 and other parameters: ω = 2π × 500 s−1, Ebc = 3.94 × 106

V/m, qz = 0.41 µm−1, σ⊥ = 1 s−1 = 10−10 �−1 m−1, 	σ = −0.2σ⊥, K = 4 × 10−12 N, ζ = (6.5/3) × 10−11 C m−1, 	ε = −4 π × 10−1,
γ = 0.06 Pa s, η = 0.06 Pa s.

resulting equations are presented in Appendix A, Eqs. (A20)
and (A21).

One can check, that after substitution (cf. with Ref. [37])

vx → −ivx, vy → −ivy, nz → −inz, (27)

to the equations we arrive at the system of equations with real
coefficients for the new variables.

In the framework of our computational scheme, we solve
the Cauchy problem for the system of differential equa-

tions for the fields uα (z) = (ny, nz, vy, vz,�), starting from
some initial condition at t = 0 and satisfying the bound-
ary conditions (19). The problem is solved numerically for
a period of the external electric field or for a number of
periods.

To examine the instability, we use the scheme based on
approximating the functions uα by an expansion over a fi-
nite basis. Namely, we chose a set of Nf basic functions
gα, j (z) where the first subscript, α = 1 ÷ 5 corresponds to the

FIG. 11. Change of principal modes spectrum |�| under transition from two-dimensional director pattern regime maximum with real � to
oscillating regime: (a) η/γ = 0.35/0.66 and Ebc = 0.93 × 106 V/m; (b) η/γ = 0.25/0.66 and Ebc = 0.9 × 106 V/m; and other parameters:
ω = 2π × 500 s−1, qz = 0.4 µm−1, σ⊥ = 10 s−1 = 10−9 �−1 m−1, 	σ = −0.2σ⊥, K1 = 7 × 10−12 N, K2 = 5 × 10−12 N, K3 = 5 × 10−12 N,
ζ = (26.46/3) × 10−11 C m−1, ε⊥ = 14, 	ε = −0.75, γ = 0.066 Pa s.
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FIG. 12. Transition from the static stripes regime to two-dimensional director pattern one with amplification factor maximum position:
(a) qx = 0, qy = 6.68 µm−1, η/γ = 0.5/0.66 = 0.76; (b) qx = 0.66 µm−1, qy = 6.55 µm−1, η/γ = 0.54/0.66 = 0.82; (c) qx = 1 µm−1, qy =
6.3 µm−1, η/γ = 1. Dependencies of amplification factor � of the principal mode on qx, qy at ω = 2π × 500 s−1, Ebc � 1.86 × 106 V/m for
qz = 0.41 µm−1, σ⊥ = 10 s−1 = 10−9 �−1 m−1, 	σ = −0.2σ⊥, K1 = 7 × 10−12 N, K2 = 5 × 10−12 N, K3 = 5 × 10−12 N, ζ = (15.6/3) ×
10−11 C m−1, ε⊥ = 14, 	ε = −3, γ = 0.066 Pa s.

fields ny, nz, vy, vz, � and the second subscript j = 1 ÷ Nf

numerates the functions of the set. Thus we arrive at the
expansion

uα (z) =
Nf∑
j=1

fα, jgα, j (z), (28)

where fα, j are some coefficients.
To guarantee the correct boundary conditions for the fields

ny, nz, vy, vz, � the appropriate boundary conditions should be
imposed on the basis functions gα, j (z). Namely, the functions
gα, j should be zero at z = ±d/2. In addition, the functions
g4, j , figuring in the expansion of vz, should have zero z deriva-
tives at z = ±d/2, see Eq. (19). We use the following basic
set of the functions. For the fields ny, nz, vy, and � we use the
sinusoidal basic functions

gα, j (z) = sin [π j(z/d + 1/2)], α = 1, 2, 3, 5,

j = 1, . . . , Nf ; (29)

equal to zero at z = ±d/2. For the field vz we choose the basic
functions

g4, j (z) = (z2 − d2/4) sin [π j(z/d + 1/2)], j = 1, . . . Nf ;
(30)

satisfying both boundary conditions, vz = 0 and
∂zvz = 0.

FIG. 13. Dependence of square of the critical electric field E 2
c on

the frequency for the certain other material parameters for the case
considered in Table I. The calculated values of E 2

c are represented by
points, and linear fit by thin solid line, respectively.

To pass from the fields uα (z) to the coefficients fα, j

one should define the projection procedure u → f . For the
purpose we use the metrics L2, which corresponds to the usual
notion of distance between points in the plane, then

fα,a =
∑

b

M−1
α,ab

∫
dzgα,b(z)uα (z). (31)

The matrices M̂α in Eq. (31) are five matrices Nf × Nf with
the components

Mα,ab =
∫

dzgα,a(z)gα,b(z). (32)

The matrices M̂α are, obviously, symmetric.
After solving Cauchy problem on one period and project-

ing the initial and the final values of the fields uα in accordance
with Eq. (31), we find the coefficients fα, j (0) and fα, j (T ). The
linear character of our problem means that

fα,a(T ) =
∑
β,b

Wα,a;β,b fβ,b(0). (33)

The matrix Ŵ is a 5Nf × 5Nf matrix, which represents a
generalization of the matrix 5 × 5 figuring in Eq. (23). We
call the matrix Ŵ the evolution matrix as well. Eigenvalues �i

of the evolution matrix Ŵ determine the amplification factors

FIG. 14. Dependence of square of critical wave vector q2
c =

q2
cx + q2

cy + q2
cz on the frequency for the certain other material pa-

rameters for the case considered in Table I. The calculated values
of q2

c are represented by points, and linear fit by thin solid line,
respectively.
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FIG. 15. Principal eigenmodes for (a) the fields ny, nz, � and (b) for the fields vy, vz as functions of πz/d , for t = 150T .

of the eigenmodes during the period T and, consequently,
the characteristic exponents via the relations �i = exp(λiT ).
Since after the substitution (27) we deal with the differential
equations with real coefficients, the amplification factors �i

or the characteristic exponents λi are all real or, in addition
to the real parameters, there are pairs of complex conjugated
parameters.

The evolution matrix Ŵ can be found, if we subsequently
solve Cauchy problem for the set of the initial functions
gα,a(z) at t = 0. Expanding the resulting functions at t = T
in accordance with the rule (31), we find the set of the
coefficients Wα,a;β,b constituting the evolution matrix Ŵ , de-
termining the evolution of the system during the period.
Ultimately, we are interested in the eigenfunctions of the
evolution matrix Ŵ and in the corresponding eigenvalues �.
More precisely, we are interested in the eigenfunction with
the principal � (that is with maximal |�|), since just the
eigenfunction describes the instability.

Luckily it turns out that, for the critical mode, the ampli-
tudes at the basis functions g j in the eigenfunction expansion
decay sufficiently fast with its number with the use of a
reasonable set of the basis functions. The values of the am-
plification factors � obtained for different numbers Nf of the
basis functions converge as Nf increases. This fact verifies the
regular convergence of the computational procedure. Thus,
the described procedure allows one to obtain rather accurate
quantitative description of the modes for the finite-thickness
nematic film.

We established that, with the accuracy needed for this
work, it is enough to take six basic functions, Nf = 6. Then
the matrix Ŵ is a matrix 30 × 30, where 30 is the product
of the number of the fields (five) and the number of basic
functions (Nf = 6). It is not very easy to compute all eigenval-
ues of the matrix 30 × 30. However, we are interested solely
in the principal mode. Therefore one can take the evolution
during many (say N) periods. Then the eigenvalues of the
corresponding evolution matrix are �N . This trick essentially
simplifies investigation of the principal mode.

The principal eigenmodes near the threshold found as a
result of the described procedure for a certain set of the ma-
terial parameters are plotted in Fig. 15. The behavior of the
eigenfunctions is fairly smooth.

To justify explicitly that the results for the periodic bound-
ary conditions and for the film of finite thickness under

realistic boundary conditions (19) are close, we have per-
formed the computations for both cases with the identical sets
of the material parameters. As an illustration, we have chosen
three sets of the material parameters corresponding to all three
types of the flexoelectric instability. They correspond to the
points marked by squares on the phase diagram in Fig. 7. The
results are summarized in the tables given in Appendix B. In
the tables we show the values of the critical electric field and
the values of the amplification factor � in the vicinity of the
critical wave vector. The results confirm our expectations.

Note that when we investigate phase behavior of the system
over varying film thickness d only, under fixed other mate-
rial parameters, starting from oscillating regime, we always
go upon decreasing of d to stationary stripe regime (trivial
maximum with qx = 0).

VI. CONCLUSION

In this work we find that the flexoelectric instability of
NLCs in the external alternating electric field can lead to
different inhomogeneous spatio-temporal structures of the
director field n if a certain threshold value of the field is
exceeded. The subject of our consideration are nematics with
negative anisotropy of both the dielectric permittivity ε‖ −
ε⊥ < 0 and the conductivity σ‖ − σ⊥ < 0, whereas above the
subscripts ‖ and ⊥ designate the components along the di-
rector n and perpendicular to it. We analyzed the nematic
film placed between two parallel conducting plates with the
alternating electric potential differences applied to the plates.
Then the electric field E, directed perpendicular to the plates,
is induced inside the film. Below the transition the state is
assumed to be homogeneous with the director oriented along
the surfaces of the plates. Such ordering is caused by suitable
boundary conditions for the director at the surfaces.

We study numerically the flexoelectric instability based
on the linearized dynamic equations of nematics. The set of
the equations cannot be solved analytically in the external
alternating electric field. To find the qualitative peculiarities of
the flexoelectric instability, we studied first the case when the
boundary conditions can be ignored. Therefore, after Fourier
transform all the fields have harmonic dependence with a
wave vector qz in the direction perpendicular to the plates.
Then the equations can be easily solved numerically. To check
whether such approach is physically adequate, we performed
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much more involved computations for the nematic films of
finite thickness for the planar boundary conditions for the di-
rector, no slipping boundary conditions for the hydrodynamic
velocity and fixing the electric potential at the plates. We
show that the results for both cases are close to each other
if we choose qz = π/d , where d is the thickness of the film.
This slightly surprising finding can be crudely understood by
the fact that for Fourier harmonics relevant for the instability
characteristic space scale along the z axis is smaller than that
in the orthogonal plane. We obtained that for, the case of
sufficiently thick film, the results for the periodic boundary
conditions and for the case of realistic boundary conditions
(19) are close.

The flexoelectric instability is related to the distortions
of the director field. However, in dynamics the director is
coupled to hydrodynamic and electromagnetic degrees of
freedom, that leads to a complicated structure of the critical
mode, becoming unstable at increasing the external electric
field. If the excitation with qx = 0 and qy �= 0 becomes un-
stable first then a stationary stripe structure appears above
the threshold. This scenario is well known and described in
the literature. If the both components qx �= 0 and qy �= 0 then
the state above the threshold is determined by nonlinear terms.
Both oblique rolls or various two-dimensional periodic struc-
tures could be realized above the threshold.

We revealed the third possibility (somehow overlooked in
the previous works), the mode with the tilted wave vector
and with the complex characteristic exponent of the critical
mode. Then nonstationary (oscillating in time) structures ap-
pear above the threshold. They are propagating or standing
waves. We demonstrate numerically that the scenario with the
oscillating structures can take place at a set of parameters
for the computations for both cases of boundary conditions:
periodic and realistic (19).

We show that the third scenario is realized at the con-
dition (7), leading to the existence of a slowly decaying
“potential” mode describing the relaxation of the electric-field
fluctuations. Then in a range of the wave vectors qx and
qy the hybridization occurs of the “potential” mode and of
the “soft director” mode related to the director instability.
The hybridization could lead to the instability characterized
by a complex characteristic exponent λ that determines the
behavior ∝ exp(λt ) of the critical mode for times larger than
the period. In the case λ is purely imaginary at the threshold.
Note that the scenario needs that the both components of the
lateral wave vector of the critical mode be nonzero (qx �= 0
and qy �= 0).

We are confident in our main physical result (oscillating
in time patterns). The accuracy of our computation of the
magnitude of � can be estimated as the limiting numerical
calculation error, which is of the order of 1 × 10−8 for float
values (and 1 × 10−15 for double values, which were used
in some simulations). To justify that our results are correct
and sufficiently robust, we developed and used different algo-
rithms for calculation of �. We used the sinusoidal and the
pulse external electric field, and we utilized the periodic and
the realistic boundary conditions. The results for the cases are
close.

The condition (7) is crucial for our scenario. It can be
achieved, e.g., in purified from impurities NLCs (for this

point, see the discussion of this issue in Refs. [28–30]). Let
us stress that the obligatory ingredient for the third scenario
is the coupling of director to hydrodynamic degrees of free-
dom (neglecting hydrodynamic velocity v and its fluctuations
makes the third scenario impossible). Our computations show
also that the dielectric anisotropy of the nematic should be
relatively weak for the realization of the third scenario. The
condition can be satisfied for NLCs near the transition tem-
perature to the isotropic phase (or for the alternating field
frequency in the vicinity of the so-called inversion point,
where the dielectric anisotropy changes its sign).

It is worth noting that, upon decreasing the film thick-
ness d (keeping all other parameters fixed), we always find
the transition from the oscillating-in-time two dimensional
patterns into the stationary stripe regime (with qx = 0). The
oscillating-in-time patterns can be realized for the relatively
thick films. Quantitatively, it implies the condition qd � 1,
where the characteristic wave vector q of the unstable har-
monic is determined by Eq. (9).

We examined mainly the case of the external electric field
harmonically varying with time. One can consider another
possibility of the external alternating electric field. Namely,
the field can be the pulse function (telegraph process). Then
the system of equations for the case of periodic boundary
conditions can be solved practically up to the end without
numerical computations. We show that the results derived
in the framework of this model are similar to those for the
sinusoidal field. In particular, the oscillating-in-time or propa-
gating patterns are realized for some region of parameters near
the threshold field. The results confirm the universal character
of our findings.

In our work we performed a linear stability analysis of
NLC films in an external alternating electric field for suf-
ficiently small electric conductivity. Unfortunately, we did
not find in the literature any experimental results satisfying
the necessary condition of applicability (7) of our dynamic
theory: ω � D/r2

D, which can be rewritten as ω � σ/(ε0ε⊥).
For instance, the results provided in Ref. [37] are obtained
for values of conductivities and electric-field frequencies that
do not satisfy the condition (7). Scanning the literature we
did not find experimental evidence for our main theoretical
result: the prediction of oscillating-in-time two-dimensional
patterns. We hope that the direction of search suggested by
our analysis in terms of the parameters (12) and applicability
conditions (7), (10), and (11) enables one to find a suitable
materials where this type of the instability will be observed.
The phase diagrams presented in our work can be useful for
search of materials where oscillating-in-time 2d structures
will be observed.

We should admit that there are some physical ingredients
missed in our approach. Note, as an example, the external,
injected from electrodes charges, leading to the local vio-
lation of the electroneutrality [40]. Note to the point that
a finite electric current limits the overall thermalization of
the NLCs, and in such that the instantaneous values of the
material parameters can additionally be position-dependent
across the sample. Another missing in our publication ingre-
dient is the possible nonuniformity of the director surface
anchoring. This ingredient has been introduced recently
[55,56] to simulate numerically localized and propagating
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excitations in the NLCs. However in this works the hydro-
dynamic degrees of freedom and finite conductivity were
disregarded. Keeping everything said above in mind, we
should admit that further theoretical and experimental work
is required before a full understanding of dynamical flexo-
electric instability in NLCs is reached. Nevertheless we do
believe that the physics behind our simplified model has to
be understood before adding the additional ingredients. The
same concerns nonlinear effects. The solution of the nonlinear
dynamic equations is needed to identify the structure above
the threshold. The analysis is a subject of future works.
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APPENDIX A: TECHNICAL DETAILS OF CALCULATIONS

First of all, let us note that the equations following from
Eqs. (13)–(17) for the periodic BC case are written as

∂t ny = iqxvy + 1

γ
[−Kk2ny − iζqynzE − ζqxqy�], (A1)

∂t nz = iqxvz + 1

γ
[−Kk2nz + iζqynyE + ε0	εE2nz

− iε0	εEqx� − ζqxqz�], (A2)

ρ∂tvy = −ηk2vy − iqy� + iKk2qxny, (A3)

ρ∂tvz = −ηk2vz − iqz� + iKk2qxnz − ε0ε⊥Ek2�, (A4)

− ∂t
[ − ε0ε‖q2

x� − ε0ε⊥
(
q2

y + q2
z

)
�

+ iqx(ε0	εnzE + iζqyny + iζqznz )
]

= −σ‖q2
x� − σ⊥

(
q2

y + q2
z

)
� + i	σEqxnz, (A5)

where solutions of the system (13)–(17) are proportional to
exp(iqzz), and k2 = q2 + q2

z = q2
x + q2

y + q2
z . In this case the

“pressure” � figuring in the equations is expressed as

−� = iζEq3
xnz/k2 + ζq4

x�/k2 − Kqx(qyny + qznz )

+ iε0ε⊥Eqz�, (A6)

as a consequence of Eq. (18).
In the next step let discuss the technical details for realistic

boundary conditions Analyzing the uniform film it is conve-
nient to make Fourier transform in terms of the longitudinal
coordinates x and y. Doing so, one can rewrite Eq. (A5) in the

form

∂t
[
ε‖ε0q2

x� + ε⊥ε0
(
q2

y − ∂2
z

)
�

]
+ qx∂t [	εε0E (t )inz + ζ (−qyny + i∂znz )]

= −σ‖q2
x� + σ⊥

(−q2
y + ∂2

z

)
�−(σ‖−σ⊥)E (t )qxinz,

(A7)

in turn, equation for the “pressure” � takes the form

(−q2 + ∂2
z

)
�

= ζE (t )q3
x inz + ζq4

x� − K
(−q2 + ∂2

z

)
qx(−qyny + i∂znz )

− ε⊥ε0E (t )∂z
(−q2 + ∂2

z

)
�, (A8)

where q2 = q2
x + q2

y . Equations for the velocity components
can be rewritten as

[
ρ∂t − η

(−q2 + ∂2
z

)]
ivx = qx� + ζE (t )q2

x inz + ζq3
x�,

(A9)[
ρ∂t − η

(−q2 + ∂2
z

)]
ivy = qy� + K

(−q2 + ∂2
z

)
qxny,

(A10)[
ρ∂t − η

(−q2 + ∂2
z

)]
vz

= −∂z� − K
(−q2 + ∂2

z

)
qxinz − ε⊥ε0E (t )

(−q2 + ∂2
z

)
�,

(A11)

and equations for ny, nz take the form

∂t ny = qxivy + γ −1
[
K

(−q2+∂2
z

)
ny−ζqyinzE (t )−ζqxqy�

]
,

(A12)

i∂t nz = −qxvz + γ −1
[
K

(−q2 + ∂2
z

)
inz − ζqynyE (t )

+ 	εε0E (t )inz + 	εε0E (t )qx� − ζqx∂z�
]
. (A13)

Let us emphasize, that Eqs. (A7), (A9)–(A13) constitute the
transformed complete set for �, vy, vz, ny, nz with � as
defined in Eq. (A8).

After Fourier and (27) transformations of the velocity
equations we obtain

(ρ∂t − η∇2)(qyvz + i∂zvy) = qy fz + i∂z fy,

(ρ∂t − η∇2)(i∂zvx + qxvz ) = i∂z fx + qx fz, (A14)

(ρ∂t − η∇2)(qxivy − qyivx ) = iqx fy − iqy fx,

where transformations of f components have the following
form:

fx = −i
[
ζE (t )q2

x inz + ζq3
x�

]
,

fy = −i
[
Kqx

(−q2 + ∂2
z

)
ny

]
, (A15)

fz = Kqx
(
q2 − ∂2

z

)
inz + ε⊥ε0E (t )

(
q2 − ∂2

z

)
�.

Then using the continuity equation we can exclude vx as

ivx = −(qyivy + ∂zvz )/qx. (A16)
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TABLE I. Amplification factor of the critical mode �(qx, qy ) in the vicinity of the main maximum for the case of periodic boundary
conditions and for the film of finite thickness under realistic BCs (19) (Realistic BC). The case of oscillatory two-dimensional director pattern
at ζ = 2.79 × 10−11 C m−1, η = 0.023 Pa s.

E0 (qx, qy ) � |�| � |�|
(V µm−1) (µm−1, µm−1) Periodic BC Periodic BC Realistic BC Realistic BC

(0.99, 1.87) 0.997 ± i0.075 1.00012 1.00085 ± i0.0789509 1.00396
(1.155, 1.98) 0.993 ± i0.088 0.997 0.997 ± i0.092 1.0014
(0.924, 1.81) 0.997 ± i0.07 0.9997 1.0007 ± i0.071 1.0032

3.75 (0.924, 1.923) 0.996 ± i0.071 0.998 0.999 ± i0.075 1.00195
(0.924, 2.036) 0.992 ± i0.072 0.995 0.996 ± i0.0726 0.9988
(0.957, 1.753) 0.997 ± i0.0716 0.9999 1.0007 ± i0.0746 1.0035
(0.957, 1.81) 0.9975 ± i0.0721 1.0001 1.0012 ± i0.073 1.0039
(0.924, 1.75) 0.9974 ± i0.0693 0.9998 1.0012 ± i0.073 1.0039
(1.12, 1.92) 0.994 ± i0.085 0.998 0.998 ± i0.087 1.002
(1.12, 2.205) 0.99 ± i0.088 0.994 0.994 ± i0.092 0.998
(0, 0.34) 0.982 0.982 0.982 0.982
(0, 1.923) 0.982 0.982 0.982 0.982
(1.55, 0.396) 0.981 0.981 0.985 0.985

Thus we arrive to the following system of the equations for
the velocity components vy and vz:

ρq2∂tvz − ρ∂t∂
2
z vz = η

(−q4vz + 2q2∂2
z vz − ∂4

z vz
) + q2 fz

+ iqy∂z fy + iqx∂z fx, (A17)

iq2ρ∂tvy = iη
(−q2 + ∂2

z

)
q2vy − qy

[
ρ∂t − η

(−q2 + ∂2
z

)]
∂zvz

+ qx(iqx fy − iqy fx ). (A18)

The third-order derivative of ny over z appears from the
term ∂z fy in Eq. (A17). To exclude this term it is possible to
express it from Eq. (A12) as

γ −1K∂3
z ny = ∂t∂zny − qx∂zivy + γ −1∂z

× [Kq2ny + ζqyinzE (t ) + ζqxqy�] (A19)

and to substitute the obtained expression in Eq. (A17). As a
result, we obtain the following equations for vy and vz:

iρq2∂tvy = iη
(−q2 + ∂2

z

)
q2vy

− qy
[
ρ∂t − η

(−q2 + ∂2
z

)]
∂zvz

− ζq3
xqy[E0 cos (2πτ )inz + qx�]

+ K2q3
x∂

2
z ny − q3

x

(
K1q2

y + K3q2
x

)
ny

+ (K1 − K2)q3
xqyi∂znz, (A20)

ρ
(
q2 − ∂2

z

)
∂tvz

= −η
(
q2 − ∂2

z

)2
vz + q2

{
qx

(
K2q2

y + K3q2
x − K1∂

2
z

)
inz

− qx(K1 − K2)qy∂zny + ε⊥ε0E0 cos (2πτ )
(
q2 − ∂2

z

)
�

}
+ qx{γ qy∂t∂zny + ζE0 cos (2πτ )q2i∂znz

+ ζqxq2∂z� − γ qxqyi∂zvy}, (A21)

where we account for, with three different Frank moduli, we
have to replace the nematic elasticity terms in all equations as

follows:

K∇2ny → (
K1∂

2
y + K2∂

2
z + K3∂

2
x

)
ny + (K1 − K2)∂y∂znz,

(A22)

K∇2nz → (
K1∂

2
z + K2∂

2
y + K3∂

2
x

)
nz + (K1 − K2)∂y∂zny.

(A23)

APPENDIX B: COMPARISON

Here we present the comparison of the computation re-
sults of the flexoelectric instability for the case of periodic
boundary conditions (periodic BC) and for the film of finite
thickness (as an illustrative example we chose d = 7.62 µm)
under realistic boundary conditions (19). The wave vector
qz for the periodic BC approach was equal to qz = π/d .
These two cases have been studied with identical mate-
rial parameters. The following parameters were the same
in all calculations: ω = 2π × 500 s−1, σ⊥ = 10−9 �−1 m−1

(10 s−1), 	σ = −0.2σ⊥, K1 = 7 pN, K2 = 5 pN, K3 = 5 pN,
ε⊥ = 14, 	ε = −3, γ = 0.066 Pa s. Parameters ζ and η were
different; the corresponding values are presented in the head-
ers of the tables. The results presented in Tables I–III and were

TABLE II. Amplification factor of the critical mode �(qx, qy ) in
the vicinity of the main maximum for the case of periodic boundary
conditions (Periodic BC) and for the film of finite thickness under
the realistic BC (19) (Realistic BC). The static stripes case at ζ =
2.79 × 10−11 C m−1, η = 0.055 Pa s.

E0 (qx, qy ) � �

(V µm−1) (µm−1, µm−1) Periodic BC Realistic BC

(0, 1.56) 1.00031 1.00022
(0, 1.18) 0.995 0.995
(0, 1.8) 0.998 0.998

4 (0.052, 1.84) 0.9965 0.9964
(0.052, 1.39) 0.9987 0.9987
(0.21, 1.53) 0.9905 0.9906
(0.21, 1.84) 0.989 0.989
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TABLE III. Amplification factor of the critical mode �(qx, qy ) in
the vicinity of the main maximum for the case of periodic boundary
conditions and for the film of finite thickness under realistic BCs (19)
(Realistic BC). The case of static periodic two-dimensional director
pattern at ζ ≈ 6.23 × 10−11 C m−1, η = 0.055 Pa s.

E0 (qx, qy ) � �

(V µm−1) (µm−1, µm−1) Periodic BC Realistic BC

(1.53, 5.25) 1.0002 0.9993
(1.51, 5.25) 0.9998 0.9986
(1.52, 5.25) 1.00009 0.9991

4 (1.52, 5.27) 1.00014 0.999
(1.53, 5.32) 0.9995 0.9982
(1.544, 5.20) 0.9999 0.9988
(1.544, 5.31) 0.9996 0.99865
(1.56, 5.22) 1.0001 0.99915
(1.56, 5.34) 0.9982 0.9971
(1.76, 5.86) 0.99 0.9907

obtained at calculation during a period, whereas for Table IV
calculation was done for 150 periods of external field.

The tables illustrate the correspondence between the results
for the case of periodic boundary conditions and for the film

TABLE IV. Amplification factor of the critical mode �(qx, qy ) in
the vicinity of the main maximum for the case of periodic boundary
conditions and for the film of finite thickness under realistic BC (19)
(Realistic BC). The case of static periodic two-dimensional director
pattern for the solution for the film at ζ ≈ 6.23 × 10−11 C m−1, η =
0.055 Pa s.

E0 (qx, qy ) � �

(V µm−1) (µm−1, µm−1) Periodic BC Realistic BC

(1.53, 5.25) 1.0002 1.0001
(1.51, 5.25) 0.9998 0.9996
(1.52, 5.25) 1.00009 0.9999

4 (1.52, 5.27) 1.00014 0.99997
(1.53, 5.32) 0.9995 0.9994
(1.544, 5.20) 0.9999 0.9998
(1.544, 5.31) 0.9996 0.99955
(1.56, 5.22) 1.0001 1.00008
(1.56, 5.34) 0.9982 0.998
(1.76, 5.86) 0.99 0.99

of finite thickness under realistic boundary conditions (19) for
all possible types of the instability. The obtained practically
perfect agreement is a result of the smallness of qz in compar-
ison with the lateral wave vector.
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