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Statistical mechanics of passive Brownian particles in a fluctuating harmonic trap
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We consider passive Brownian particles trapped in an “imperfect” harmonic trap. The trap is imperfect because
it is randomly turned off and on, and as a result particles fail to equilibrate. Another way to think about this is
to say that a harmonic trap is time dependent on account of its strength evolving stochastically in time. Particles
in such a system are passive and activity arises through external control of a trapping potential, thus, no internal
energy is used to power particle motion. A stationary Fokker-Planck equation of this system can be represented as
a third-order differential equation, and its solution, a stationary distribution, can be represented as a superposition
of Gaussian distributions for different strengths of a harmonic trap. This permits us to interpret a stationary
system as a system in equilibrium with quenched disorder.

DOI: 10.1103/PhysRevE.110.024613

I. INTRODUCTION

A typical active particle system consists of particles that
derive motion from an internal energy source. Standard mod-
els that represent such particles are the run-and-tumble (RTP)
[1–16] and active-Brownian particle models [17,18], one more
suitable to biological and the other to chemical systems. An-
other active scenario arises when a passive Brownian particle
is immersed in a bath of active particles. The model that ad-
dresses this situation is the active Ornstein-Uhlenbeck particle
model [19–24].

A different and somewhat less explored design of active
dynamics is realized by placing passive Brownian particles in
a fluctuating external potential, thereby preventing particles
from equilibrating [25–30]. In this setup, there is no need for
a special type of particles and the only requirement is that
an external potential varies stochastically in time. A possible
experimental realization of such a system could be attained
using tweezer instruments and techniques [31–36].

This work considers passive Brownian particles trapped in
a harmonic potential u = Kr2/2 with time-dependent strength
K ≡ K (t ). We consider a specific evolution in which K (t )
changes discontinuously between two discrete values, so the
trap is either in an off or on state. The amount of time a particle
spends in each state is drawn from an exponential distribution.

A stationary state of this system is governed by a
third-order differential equation. A third-order differential
equation were previously found to describe a stationary state
of run-and-tumble particles in a static harmonic trap in one
and two dimensions [37–39], for which a solution was found
to be a convolution between two distributions. A stationary
solution of the present system can be represented as a su-
perposition of Gaussian distributions for different strengths
of a harmonic trap. This permits us to interpret a stationary
state as a system in equilibrium with quenched disorder. The
superposition of Gaussian distributions has been encountered
in quantum theory and financial markets [40,41]. In nonequi-
librium statistical mechanics, those distributions have been
considered in Ref. [42] in the context of nonextensive statisti-
cal mechanics.

The current work could be viewed in relation to systems
that explore control of external forces and information feed-
back to perform work [43–50]. Although the model that is
analyzed does not involve information feedback and the only
control comes from regulating the time duration when parti-
cles are either trapped or released, it could be considered a
small step in theoretical understanding of this class of prob-
lems.

Previous work done on systems with fluctuating external
potentials include the study of particles in a harmonic trap
with a fluctuating trap center [25] and that was motivated
by an experiment [51]. A system of particles trapped in a
harmonic trap with a fluctuating strength was first investigated
in Ref. [27]. Particles in a fluctuating linear potential were in-
vestigated in Refs. [28,29] as a species of a resetting problem.
The entropy production rate of single particle inside a fluctu-
ating external potential of an arbitrary shape was calculated in
Ref. [30].

This work is organized as follows. In Sec. II we introduce
the model and obtain a third-order differential equation for
a stationary state. In Sec. III we represent the solution as
a superposition of Gaussian distributions for different trap
strengths. In Sec. IV we consider particles trapped in a har-
monic potential with a general time-dependent trap strength.
It is shown that the time-dependent distribution at any given
moment is a Gaussian distribution. This result justifies the use
of the superposition formula. In Sec. V we extend all the exact
results to a system for an arbitrary dimension. In Sec. VI we
consider quantities of physical interest. The work is concluded
in Sec. VII.

II. THE MODEL

The focus of this work is a conceptually simple model: an
ideal gas trapped in an “imperfect” harmonic potential. The
potential is imperfect because it is turned off and on at random
time intervals. The alternate cycle of trapping and releasing
prevents particles from attaining equilibrium and as a result
gives rise to a nonequilibrium situation. The times tp during
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which a particle is either trapped or released are sampled from
the exponential distribution ∼e−tp/τ , where τ is the average
time during which a particle persists in a given state. At the
end of each time tp, a particle switches to another state with
probability one.

Since the times when a trap is either in the “on” or “off”
state are sampled from the same distribution, the system
spends on average the same amount of time in both states.
What changes is the rate, given by τ−1, with which the trap
fluctuates between the two states. The model represents a
specific case of a harmonic potential u = Kr2/2 with the
time-dependent strength K ≡ K (t ).

For a system in one dimension, the Fokker-Planck formu-
lation that describes such a model might be written as

ρ̇+ = μ

(
K

2
+ �

)
[xρ+]′ + Dρ ′′

+ + 1

τ
(ρ− − ρ+)

ρ̇− = μ

(
K

2
− �

)
[xρ−]′ + Dρ ′′

− + 1

τ
(ρ+ − ρ−), (1)

where μ is the mobility, D = μkBT is the diffusion constant,
T is the temperature, and kB is the Boltzmann constant. To
simplify the expressions, we use the dot notation to represent
the time derivative, ρ̇+ ≡ ∂ρ+

∂t , and the prime notation to rep-
resent derivatives with respect to position, [xρ+]′ ≡ ∂

∂x [xρ+]

and ρ ′′
+ ≡ ∂2

∂x2 . ρ+ and ρ− are the distributions of particles in
a harmonic potential with the respective strength K/2 + �

and K/2 − �. The last term on the right-hand side of each
equation represents the conversion of one type of particle into
another and provides coupling between the two equations. The
remaining terms represent the usual flux given by

j± = −μ(K/2 ± �)xρ± − Dρ ′
±.

In this work we are interested in the situation � = K/2, in
which case the Fokker-Planck equation becomes [27]

ρ̇+ = μK[xρ+]′ + Dρ ′′
+ + 1

τ
(ρ− − ρ+)

ρ̇− = Dρ ′′
− + 1

τ
(ρ+ − ρ−). (2)

The distribution ρ− represents unconstrained particles cor-
responding to the trap being turned off and ρ+ represents
particles subject to a confining potential.

To simplify the notation, we introduce dimensionless pa-
rameters. The position of particles on the x axis and the rate
at which a harmonic trap fluctuates in dimensionless units are
given by

z = x

√
μK

D
, α = 1

τμK
.

At a stationary state and dimensionless parameters Eq. (2)
becomes

0 = [zρ+]′ + ρ ′′
+ + α(ρ− − ρ+)

0 = ρ ′′
− + α(ρ+ − ρ−). (3)

The two equations can be merged into a single differential
equation for a distribution ρ = (ρ+ + ρ−)/2. The result is a

third-order differential equation,

0 = −αz3ρ + 2(1 − αz2)ρ ′ − (2 − z2)zρ ′′ + z2ρ ′′′. (4)

See Appendix A for details.
In the limit of a fast appearing-disappearing trap, α → ∞,

Eq. (4) reduces to

0 = − zρ

2
− ρ ′, (5)

where ρ is a Gaussian function ∼e−z2/4, which can be iden-
tified with passive particles in equilibrium but in a harmonic
trap that is half the strength of the original trap.

Finding a solution to Eq. (4) for an arbitrary α is more
challenging. While first- and second-order differential equa-
tions are relatively common in physics, third-order differential
equations are encountered less frequently [52]. They are also
more challenging to solve and analyze. It is relatively easy,
however, to analyze Eq. (4) by considering its moments.

The moments of a stationary distribution ρ can be obtained
by transforming Eq. (4) into a recurrence relation by operating
on it with

∫ ∞
−∞ dz z2n−3 [37–39]. Followed by the integration

by parts this yields

mn = 4n − 2

α
[(n + α)mn−1 − n(2n − 3)mn−2], (6)

where mn = 〈z2n〉 are even moments of ρ, all odd moments
being zero.

Given the initial condition m0 = 1, all subsequent moments
can be calculated, and the first two terms of the sequence are

〈z2〉 =
(

2 + 1

α

)

〈z4〉 = 6

(
2 + 3

α
+ 2

α2

)
. (7)

In the limit α → ∞, all the moments reduce to the moments
of a Gaussian distribution ∼e−z2/4. The moments increase as
α decreases, indicating the spreading out of ρ.

Moments of distributions corresponding do a different state
can be calculated by operating on the two equations in Eq. (3)
with

∫
dz z2n+2. After some manipulation, the details of which

can be found in Appendix B, we get two coupled recurrence
relations, from which we get

〈z2〉+ = 2

〈z4〉+ = 6

(
2 + 1

α

)
, (8)

for particles in a trapped state, and

〈z2〉− = 2

(
1 + 1

α

)

〈z4〉− = 6

(
2 + 5

α
+ 4

α2

)
, (9)

for particles in a released state. An interesting observation is
that the second moment of trapped particles does not depend
on α, 〈z2〉+ = 2. This feature of a system will have interesting
repercussions on various physical quantities discussed later in
this work.
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III. SOLUTION AS A SUPERPOSITION
OF GAUSSIAN DISTRIBUTIONS

In this section we develop a method that would permit
us to solve a third-order differential equation in Eq. (4). As
mentioned earlier, third-order differential equations are less
common in physics. In the context of active particles, a third-
order differential equation arises for RTP particles in a static
harmonic trap in one and two dimensions [37]. For higher
dimensions, a differential equation of the same system has
a more complex structure and to date it was not possible to
obtain it.

To solve Eq. (4) we represent ρ as a superposition of
Gaussian distributions for different effective strengths,

ρ(z) =
∫ 1

0
dλ p(λ)ρG(z; λ), (10)

where

ρG(z; λ) =
√

λ

2π
e−λz2/2 (11)

is a Gaussian distribution for a dimensionless strength λ. By
representing the stationary distribution ρ as a superposition of
equilibrium distributions (since ρG is an equilibrium distribu-
tion for an effective strength λ), we reinterpret our system as
not out-of-equilibrium but as effectively at equilibrium with
quenched disorder. Thus, whatever features of ρ that make it
deviate from a Gaussian form can be attributed to quenched
disorder.

Other than providing an alternative interpretation of the
original system, there is a certain mathematical advantage
of representing a stationary distribution as a superposition
formula, as this shifts the task from finding ρ to that of finding
p(λ), where it is reasonable to assume that p is less complex
than ρ.

We note that since p(λ) is normalized, it follows that∫ ∞
−∞ dz ρ = 1. Also, p(λ) is defined on λ ∈ [0, 1], since con-

tributions λ > 1 are not physically meaningful given that the
actual system switches between the states λ = 0 and λ = 1.
This means that the superposition should span a continuous
region between those two states, since the distribution itself
does not jump from one state to another but evolves between
the two states in a continuous manner.

To proceed, we distinguish between distributions p+(λ)
and p−(λ), such that ρ± = ∫ 1

0 dλ p±(λ)ρG(z; λ). We then in-
fer a differential equation for each distribtion from Eq. (3). We
use the word “infer” intentionally as there is no standard tech-
nique for obtaining a differential equation for p± from Eq. (3).
Instead, one proceeds using a trial-and-error approach. The
two differential equations determined by this procedure are

0 = ∂

∂λ
[λ(λ − 1)p+] + α

2
(p− − p+)

0 = ∂

∂λ
[λ2 p−] + α

2
(p+ − p−). (12)

Operating on each of the above equations with
∫ 1

0 dλ ρG(z; λ)
recovers Eq. (3), which confirms the accuracy of Eq. (12).
What is important about the result in Eq. (12) is that both
equations are of a lower order than Eq. (3). Merging the two
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FIG. 1. Probability distribution p(λ) given in Eq. (14) for differ-
ent values of α. Distributions on the right-hand side column are for
p+ and p−. Blue distributions represent released particles p− and red
distributions represent trapped particles p+.

equations in Eq. (12) leads to

0 =
(

3λ2 − 2λ − αλ + α

2

)
p + (λ − 1)λ2 p′, (13)

where p = (p+ + p−)/2. See Appendix (C) for details. Equa-
tion (13) is a first-order differential equation that can be easily
solved. The solution is

p(λ) = 1

2

(α/2)α/2eα/2

	(α/2)

(
1

λ
− 1

) α
2 −1 e− α

2
1
λ

λ3
, (14)

and the solution for separate distributions p± are

p+ = 2λp

p− = 2(1 − λ)p, (15)

with p given in Eq. (14). Both solutions can be verified by
inserting into Eq. (12).

Examining the expression in Eq. (14) we note that for
α = 2 the factor (1/λ − 1)

α
2 −1 reduces to unity, indicating

some sort of crossover for this value of α. To better see how
this crossover manifests itself, in Fig. 1 we plot p(λ), given
in Eq. (14), for different values of α. We recall that p(λ) is
defined on λ ∈ [0, 1], the reflection of the fact that the system
fluctuates between the states λ = 0 and λ = 1. The fact that
p(0) = 0 implies that the sate λ = 0 is inaccessible since for
any finite α particles remain confined to a finite region. To
reach the state λ = 0 the system would require an infinite
amount of time.
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FIG. 2. The first moment of p+(λ) and p−(λ) as a function of α.

The behavior at λ = 1 is more interesting. The probability
at λ = 1 exhibits a crossover at α = 2 such that

p(1) =

⎧⎪⎪⎨
⎪⎪⎩

0 α > 2
1
2 α = 2

∞ α < 2

. (16)

If fluctuations of a trap strength are rapid enough, such that
α > 2, then the state λ = 1 is never attained and p(1) = 0. For
a slower rate of fluctuations, such as α < 2, particles remain
trapped for a sufficiently long time. This permits a system to
come very close to λ = 1, giving rise to a divergence at λ =
1. The divergence, however, is integrable, indicating that the
state λ = 1 is being approached but never truly attained.

Note that although we analyze a stationary distribution,
we talk about a system as evolving between two states. The
system is stationary when it is averaged over time, or over
many independent ensembles. We will discuss the aspect of
time dependence in more detail in Sec. IV.

Separate distributions p±(λ) are displayed on the right-
hand side in Fig. 1. The distributions p+ and p− become
increasingly similar with increasing α and converge in the
limit α → ∞. On the other hand, the two distributions be-
come increasingly distinct as α becomes smaller. The two
distributions shift toward a different side of the domain and
evolve into very different shapes. The released particles move
toward the state λ = 0 and the trapped particles concentrate
around λ = 1.

Despite very different shapes, the first moment of each
distribution, shown in Fig. 2, are symmetric around λ = 1/2,
and as a result the average value of λ of the total distribution
p = (p+ + p−)/2 is fixed at 〈λ〉 = 1

2 and is independent of α.
There is no symmetry between higher moments.

Using the superposition formula in Eq. (10) together with
the formula for p(λ) in Eq. (14), the solution of the third-order
differential equation in Eq. (4) can be expressed as

ρ(z) = (αe/2)α/2

2	(α/2)

(
1

2π

) 1
2
∫ 1

0
dλ

(
1

λ
− 1

) α
2 −1 e− α

2λ e− λz2

2

λ3− 1
2

.

(17)

The integral in Eq. (17) can be evaluated exactly for specific
values of α corresponding to α = 2n where n is the pos-
itive integer [27]. For α = 2, which according to Eq. (16)
corresponds to a crossover, the term ( 1

λ
− 1)

α
2 −1 in Eq. (17)

becomes unity and p(λ) evaluates to the following analytical
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FIG. 3. Distributions ρ(z) calculated using Eq. (17) for different
values of α. Red data points are obtained from a simulation based on
numerical integration of the Langevin equation.

form

ρ = 1

2

e−z2/2

√
2π

+ 1

8
√

2

[
(1 −

√
2z2)erfc

[
1 +

√
2z2

2

]
e1+√

2z2

]

+ 1

8
√

2

[
(1 +

√
2z2)erfc

[
1 −

√
2z2

2

]
e1−√

2z2

]
. (18)

In Fig. 3 we plot ρ(z) for different values of α. For those
values of α where no analytical expression is available, the
integral in Eq. (17) is evaluated numerically. All probabil-
ity distributions are in addition compared with distributions
obtained from simulation based on numerical integration of
the Langevin equation to confirm the correctness of analytical
results. The Langevin equation is integrated using the Euler
method,

x+(t + �t ) = x+(t ) − μKx+(t ) + ξ+(t )
√

2D�t

x−(t + �t ) = x−(t ) + ξ−(t )
√

2D�t, (19)

where ξ±(t ) is the white noise with zero mean and unity
variance and x+ and x− is the position of a particle in a trapped
and released state, respectively. An individual particle changes
from x+ to x− and vice versa at the end of the time tp drawn
from the exponential distribution ∼e−tp/τ .

The primary non-Gaussian feature of the distributions is
that particles spread out beyond the trap boundaries. This
feature becomes more pronounced for small values of α where
particles are permitted to remain in a given state for a longer
time. By allowing particles to be released for a longer time,
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FIG. 4. Distributions of trapped and released particles, ρ+ and
ρ−, obtained from the superposition formula in Eq. (10) and the
distributions p± in Eq. (15) for different parameters α.

distributions become more spread out. What is interesting is
that we did not observe any distinct features in ρ that would
signal the crossover at α = 2. The crossover appears to be the
feature of p(λ).

We can get a better sense of what is happening by plotting
distributions for separate states ρ±. In Fig. 4 we plot distribu-
tions ρ± calculated using the superposition formula in Eq. (10)
and the distributions p± in Eq. (15).

ρ+ and ρ− respond quite differently to the reduction of α.
While ρ+ converges to a Gaussian distribution for the strength
λ = 1, ρ− becomes more spread out and deviates increasingly
from a Gaussian form. Thus, the spread of particles seen in
Fig. 3 is primarily attributed to released particles.

Characteristic function

Even though the integral in Eq. (17) cannot be evalu-
ated for an arbitrary α, the characteristic function ρ̂(q) =∫ ∞
−∞ dz e−iqzρ(z) has a relatively simple algebraic form

given by

ρ̂(q) = e−q2/2

[
2α + q2

2α

(
α

α + q2

) α
2 +1

]
. (20)

Since the factor e−q2/2 is the characteristic function of the
Boltzmann distribution, we can represent ρ̂(q) as

ρ̂(q) = ρ̂eq (q)ρ̂neq(q),

where ρ̂eq (q) = e−q2/2 and ρ̂neq(q) captures nonequilibrium
contributions. As the product of two Fourier transformed
function corresponds to the convolution in the real space, we
could represent ρ as

ρ(z) =
∫

dz′ ρeq(z − z′)ρneq(z′), (21)

and because the convolution construction implies the presence
of two independent random processes, we could interpret ρneq

as some type of random process, although it is not clear how to
identify such a process. At the crossover α = 2, ρneq is found
to have a simple form given by

ρneq = e−|z|√2

8
(3

√
2 + 2z), (22)

and the convolution formula in Eq. (21) smears out this result
into the formula in Eq. (18). Despite Gaussian smearing,
the asymptotic behavior of ρ should be dominated by the

exponential form of ρneq, which indicates that ρ has different
asymptotic behavior than that of a Boltzmann distribution.

IV. TIME-DEPENDENT HARMONIC TRAP

In this section we provide justification for the superposition
formula in Eq. (10). The system we study is time dependent
due to constant evolution of the trap strength over time. How-
ever, if we average this distribution over long times, we obtain
a stationary distribution.

We start by considering a harmonic potential with a general
time-dependent strength,

u(x, t ) = K (t )x2

2
. (23)

We next assume that the time-dependent distribution of such
a system is a Gaussian function at all times,

ρ(x, t ) =
√

μKeff

2πD
exp

[
−μKeff

D

x2

2

]
, (24)

where the only parameter that changes in time is the time-
dependent effective strength Keff (t ) such that Keff (t ) �= K (t )
[unless K (t ) varies very slowly]. The only constraint we
introduce is that at t = 0, ρ(x, t ) is a Gaussian function corre-
sponding to some initial effective strength K0 = Keff (0).

To calculate Keff , we insert the Gaussian distribution
in Eq. (24) into the corresponding time-dependent Fokker-
Planck equation,

ρ̇ = μK (t )[xρ]′ + D∇2ρ, (25)

which yields the following equation:

μK − μKeff = 1

2

d ln Keff

dt
, (26)

for which the solution is

Keff (t ) = K0

e−2
∫ t

0 dt ′ μK (t ′ ) + 2μK0
∫ t

0 dt ′ e−2
∫ t

t ′ dt ′′ μK (t ′′ )
. (27)

The fact that Eq. (26) can be solved implies that the Gaussian
distribution in Eq. (24) is a correct time-dependent distribu-
tion and the solution of Eq. (25).

If K (t ) changes in some periodic, quasiperiodic, or any
other repetitive fashion, then it should be possible to obtain
a stationary distribution by averaging ρ over a long time,

ρ(x) = lim
t→∞

1

t

∫ t

0
dt ′ ρ(x, t ′). (28)

And since it was determined that the distribution at all times
has a Gaussian form, we could alternatively represent ρ(x) as
a superposition of Gaussian distributions,

ρ(x) = lim
t→∞

1

t

∫ t

0
dt ′ ρG(z, t ′) =

∫ 1

0
dλ p(λ)ρG(z; λ), (29)

where the probability distribution p(λ) depends on a specific
evolution of Keff (t ). The superposition formula in Eq. (10) is
simply a consequence of this relation.

In the case that K (t ) changes discontinuously as K0 → K1,
Eq. (27) reduces to

Keff (t ) = K0K1

K0 − (K0 − K1)e−2μK1t
. (30)
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FIG. 5. Keff of a fluctuating trap for different α = 1/μKτ . The
initial value is Keff (0) = K/2 for all figures.

In the model considered in this work, the strength of the
harmonic potential changes between two discrete values, 0
and K , corresponding to the strength of the actual trap.

Using Eq. (30), we could calculate the evolution of Keff (t ),
where K (t ) fluctuates between two values and remains in
each value for the stretch of time drawn from the exponential
distribution. The resulting evolution of Keff is shown in Fig. 5
for different values of α.

For α = 4, which is above the point of crossover, Keff fails
to come close to K due to rapid fluctuations of a trap. This
explains why the probability distribution p(λ) in Fig. 1 for the
same value of α is zero at Keff/K = λ = 1. For α = 1, which
is below the crossover, Keff can approach K and then remain
close to it for extended periods of time. This gives rise to a
divergence in p(λ) at λ = 1 seen in Fig. 1 for the same value
of α.

One can obtain the distribution p(λ) from the evolution of
Keff (t ) using p(λ) ∼ limt→∞ 1

t
dt
dλ

, where λ(t ) = Keff (t )/K .

V. EXTENSION TO HIGHER DIMENSIONS

It is rather straightforward to extend the results in Sec. IV
to an arbitrary dimension d . Given a time-dependent harmonic
potential,

u(r, t ) = K (t )r2

2
, (31)

where r2 = ∑d
i=1 x2

i is the radial distance from a trap center
for a system in dimension d . We next assume that the time-
dependent distribution has a Gaussian form at all times,

ρ(r, t ) =
(

μKeff

2πD

)d/2

exp

[
−μKeff

D

r2

2

]
. (32)

To obtain an expression for Keff (t ), we insert the Gaus-
sian distribution above into the corresponding Fokker-Planck
equation,

ρ̇ = μK (t )∇ · (rρ) + D∇2ρ. (33)

Such a procedure recovers the relation in Eq. (26) for which
the solution is the expression in Eq. (27). This proves that
Keff (t ) in Eq. (27) is valid for any dimension.

Other results in this work can also be extended to an
arbitrary dimension. The Fokker-Planck equation for the fluc-
tuating potential model, analogous to Eq. (2) but for an
arbitrary dimension, is given by

ρ̇+ = μK∇ · [rρ+] + D∇2ρ+ + 1

τ
(ρ− − ρ+)

ρ̇− = D∇2ρ− − 1

τ
(ρ− − ρ+). (34)

For a stationary state and in reduced units the two equa-
tions become

0 = ∇ · [sρ+] + ∇2ρ+ + α(ρ− − ρ+)

0 = ∇2ρ− − α(ρ− − ρ+), (35)

where s = r
√

μK
D .

The moments of stationary distributions can be obtained
by operating on both equations in Eq. (35) with

∫
dr rd−1 r2n.

The resulting expressions for the second moment are

〈s2〉+ = 2d

〈s2〉− = 2d

(
1 + 1

α

)
(36)

〈s2〉 = d

(
2 + 1

α

)
.

By combining the two equations in Eq. (35) we obtain a
third-order differential equation,

0 = −αs3ρ + [3 − d − (2α + 1 − d )s2]ρ ′

− [3 − d − s2]sρ ′′ + s2ρ ′′′. (37)

Note that by setting d = 1 we recover Eq. (4). To find the
solution of the above equation, we represent a stationary dis-
tribution as a superposition of Gaussian distributions,

ρ(s) =
∫ 1

0
dλ p(λ)ρG(s; λ), (38)

where

ρG(s; λ) =
(

λ

2π

)d/2

e−λs2/2. (39)

Since it was determined that Keff (t ) is independent of d ,
and since it is possible to obtain the probability distribution
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FIG. 6. Flux for particles released from the trap. Flux for parti-
cles in a trapped state, not shown in the figure, is j+ = − j−.

p(λ) from the evolution of Keff (t ), we conclude that the ex-
pression for p(λ) in Eq. (14) is valid for all d . This means that
any dependence on d comes from the Gaussian distribution
in Eq. (39), and the solution of the third-order differential
equation in Eq. (37) is given by

ρ(s) = (αe/2)α/2

2	(α/2)

(
1

2π

) d
2
∫ 1

0
dλ

(
1

λ
− 1

) α
2 −1 e− α

2λ e− λs2

2

λ3− d
2

.

(40)

We note that the solution is not limited to integer values of d
and applies to any value of d .

VI. QUANTITIES OF PHYSICAL INTEREST

A. Potential energy

In this section we look into physical quantities of the
model, starting with the average potential energy 〈u〉± =
K〈r2〉±/2. Using the moments in Eq. (36), the potential en-
ergy for particles in each state is found to be

〈u〉+ = dkBT,

〈u〉− = 0. (41)

The potential energy of particles in a released state is zero
since the trap is switched off. Another interesting observation
is that the potential energy of particles in a trapped state does
not depend on the rate parameter α. Adding the two contribu-
tions, the total potential energy is found to be the same as that
for a system in equilibrium,

〈u〉 = dkBT

2
. (42)

The fluctuating harmonic potential might considerably alter
stationary distributions but the average potential energy is
unaffected. The mathematics of this result can be traced to the
fact that the second moment of trapped particles, see Eq. (36),
does not depend on α.

B. Flux

We next consider flux, which for particles in each state and
for d = 1 is given by

j− = −Dρ ′
−, j+ = −μKxρ+ − Dρ ′

+. (43)

Also note that the total flux is zero everywhere, j = j+ +
j− = 0.

In Fig. 6 we plot flux for particles in a released state, j−, in
dimensionless units given by j−(z) = −ρ ′

−(z). (No insight is

-20 0 20z
-2

0

2

v -

α=2
α=1/2
α=1/4

-20 0 20z
-2

0

2

v +
  +

  z

α=2
α=1/2
α=1/4

FIG. 7. Local velocity for different values of α. For trapped par-
ticles we plot v+ + z to subtract contributions of an external force,
as a result, both quantities represent diffusional component of a local
velocity. In both cases this corresponds to plotting −[ln ρ±]′.

gained by plotting j+ since j+ = − j−). The first observation
is that released particles move away from the trap center,
which is expected because particles are released. The second
observation is that the magnitude of the flux increases with
increased α. This makes sense since released particles tend to
be more compressed when α is large and so diffusion away
from the trap center should be greater.

As both fluxes have the same functional form, a better
insight could be gained by looking into the local velocity, in
dimensionless units given by

v+ = j+
ρ+

= −[ln ρ+]′ − z, v− = j−
ρ−

= −[ln ρ−]′. (44)

Note that the velocity in a trapped state has an additional linear
term resulting from an external force. The other term in each
expression comes from diffusion.

Local velocities are shown in Fig. 7. For particles in a
trapped state we plot v+ + z to subtract contributions of an ex-
ternal force. Consequently, the two plots amount to −[ln ρ±]′
and represent diffusional component of a local velocity.

The most striking feature is that the local velocity does not
vanish at infinity but saturate at a nonzero constant. Since the
quantity that is plotted is −[ln ρ±]′, this implies that distri-
butions ρ± decay exponentially. Such an asymptotic behavior
has been hinted at in Sec. III A and was proven for α = 2 in
Eq. (22).

C. Entropy production rate

One feature of an active system is that it generates heat that
is dissipated into reservoir. In the case of active particles, it is
the internal energy of a particle that is converted to heat. In
the case of a present system, the heat is generated when the
work done by an external potential to compress particles is
converted to heat.

By measuring the rate of heat that is dissipated, we could
quantify a distance of how far from equilibrium a system is,
since the rate of heat dissipation, 〈q̇〉, is related to the entropy
production rate � via the relation T � ≡ 〈q̇〉, where T is the
temperature [53].

There are different ways one can obtain an expression
for the entropy production rate [30]. Here we are going
to follow an intuitive approach. A particle that is moving
through a dissipating medium experiences the drag force Fd =
−μ−1v, where v is the velocity vector. An instantaneous rate
of heat dissipation is then given by q̇ = μ−1v2. However,
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when calculating the average rate of heat dissipation, we need
to subtract the equilibrium contributions, 〈q̇〉 = μ−1〈v2〉 −
μ−1〈v2〉eq, since these contributions are not truly dissipated
but are recovered at some point in time in the form of thermal
fluctuations as a consequence of the fluctuation-dissipation
relation. And since 〈v2〉eq = dkBT/m, we can write

〈q̇〉 = 1

μ

[
〈v2〉 − dD

τr

]
, (45)

where τr = mμ is the inertial relaxation and m is the mass of
a particle. For overdamped dynamics there is no inertia and
τr = 0.

To calculate the average velocity 〈v2〉 we formulate our
model in the underdamped regime. The formulation and sub-
sequent derivations are carried out in Appendix D. Here we
write down the end result,

〈v2〉 − dD

τr
= dμKD

2

(1 + τr/τ )

1 + 3τr/τ + τ 2
r /τ 2(2 − μKτ/2)

,

(46)

and remind that τ is the average time during which a system
remains in a given state. Inserting the above expression in
Eq. (45) yields

T � ≡ 〈q̇〉 = dKD

2

(1 + τr/τ )

1 + 3τr/τ + τ 2
r /τ 2(2 − μKτ/2)

. (47)

For the overdamped regime τr = 0, the expression above re-
duces to

T � ≡ 〈q̇〉 = dDK

2
. (48)

The entropy production rate for a fluctuating harmonic trap
in the overdamped regime has been previously obtained in
Ref. [30]. Equation (48) is in agreement with that result.

The main difference between the result in Eq. (48) and
the dissipation of heat of typical systems of active particles
in a harmonic trap, such as run-and-tumble and active Brow-
nian particles, is that 〈q̇〉 in these systems depends on α as
〈q̇〉 ∝ α/(1 + α) [53], where α represents the rate at which
an active particle changes direction of motion. According to
this relation, 〈q̇〉 is maximal in the limit α → ∞ and then
decreases monotonically to zero as α → 0. The reason that 〈q̇〉
vanishes as α → 0 is that the direction of motion in this limit
changes very seldom and there is sufficient time for a system
to attain equilibrium. In the current system, the attainment of
equilibrium even in the limit α → 0 is not possible—since for
particles in a released state equilibrium corresponds to parti-
cles that are spread out into infinity. Attaining this distribution
would require an infinite amount of time. As a result, particles
in a fluctuating harmonic trap remain agitated even in the limit
α → 0.

We next look into the formula for the dissipation of heat in
the underdamped regime τr > 0 in Eq. (47). The first observa-
tion is that 〈q̇〉 is no longer independent of τ (or α = 1/τμK).
Even for cases where inertia is negligible but nonvanishing,
and the formula in Eq. (48) accurately predicts the dissipation
of heat for a significant range of τ , the dependence on τ be-
comes important in the limit τ → 0 (or α → ∞) where 〈q̇〉 is
found to vanish. This is a drastically different limiting behav-
ior than that deduced from the overdamped regime. Since the

vanishing dissipation of heat indicates equilibrium, it means
that the system in the limit α → ∞ is in equilibrium; however,
we only reach this conclusion when we incorporate inertia
into a theoretical description. Since underdapmed dynamics
represents a more complete description, we conclude that the
limit α → ∞ indeed represents a true equilibrium. This claim
is supported by the fact that a stationary distribution in this
limit converges to a Gaussian distribution, see Eq. (5).

VII. CONCLUSION

This work considers an ideal gas confined to a harmonic
trap u = Kr2/2 with time dependent strength K ≡ K (t ). It
is demonstrated that the time dependent distribution of such
a system ρ(x, t ) has a Gaussian form at all times, corre-
sponding to some effective strength of the harmonic potential,
Keff (t ) �= K (t ).

We are interested in a specific time evolution of K (t ) such
that it changes discontinuously between two discrete values,
0 and K , and where the time during which a trap remains in a
given state is drawn from an exponential distribution ∼e−tp/τ .

A stationary distribution of this system can be obtained
from a third-order differential equation, the solution of
which is represented as a superposition of Gaussian distri-
butions for different strengths of a harmonic trap, ρ(x) =∫ K

0 dK ′ p(K ′)ρG(x; K ′). The reason for the superposition can
be traced back to the fact that a time-dependent distribution at
all times has a Gaussian form.

The probability distribution p(K ) can be obtained and an-
alyzed. The resulting algebraic expression for p(K ) exhibits a
crossover at τ = 2/μK . For τ > 2μK , the distribution p(K ′)
diverges at K ′ = K , indicating that a fraction of particles
comes close to an equilibrium-like behavior. The divergence
disappears for τ < 2/μK . For very small τ , a stationary dis-
tribution converges to a Gaussian form for a trap with the
strength which is half the strength of the physical trap, K/2.

The primary feature of a resulting stationary distribution
ρ(x) = ∫ K

0 dK ′ p(K ′)ρG(x; K ′) is the spread-out caused by the
periods during which a trap is turned off. Since the period
during which a trap is turned off increases with τ , the distri-
butions tend to be more spread out for larger τ . The spreading
component of distributions is dominated by an exponential
decay.

The spreading-out feature of the current model is very
different from the behavior of active particles. Active particles
are known to accumulate near the trap boundaries rather than
penetrate these boundaries [32,54]. For example, in the case
of active particles trapped in a harmonic trap, the accumula-
tion of particles at trap borders leads to bimodal stationary
distributions, with excess of particles close to boundaries and
depletion of particles near a trap center, [2,6,37]. These mod-
els exhibit crossover when a stationary distribution changes
from a bimodal to unimodal distribution.

The data that support the findings of this study are available
from the corresponding author on reasonable request.

ACKNOWLEDGMENTS

D.F. acknowledges financial support from FONDECYT
through Grant No. 1241694.

024613-8



STATISTICAL MECHANICS OF PASSIVE BROWNIAN … PHYSICAL REVIEW E 110, 024613 (2024)

APPENDIX A: DERIVATION OF EQ. (4)

In this section we show how the two coupled differential
equations in Eq. (3), which we reproduce below:

0 = [zρ+]′ + ρ ′′
+ + α(ρ− − ρ+),

(A1)
0 = ρ ′′

− + α(ρ+ − ρ−),

are combined to yield a single differential equation in Eq. (4).
The two equations can be either added or subtracted, where
each procedure yields

0 = 1
2 [zρ]′ + 1

2 [zσ ]′ + ρ ′′,
(A2)

0 = 1
2 [zρ]′ + 1

2 [zσ ]′ + σ ′′ − 2ασ,

where ρ = (ρ+ + ρ−)/2 and σ = (ρ+ − ρ−)/2. From the
first equation we get zσ = −zρ − 2ρ ′ + const, where const =
0 as a result of the even symmetry of ρ(z). From this we can
generate a sequence of expressions

σ = −ρ − 2

z
ρ ′,

σ ′ = −ρ ′ + 2

z2
ρ ′ − 2

z
ρ ′′,

σ ′′ = −ρ ′′ − 4

z3
ρ ′ + 4

z2
ρ ′′ − 2

z
ρ ′′′. (A3)

Inserting these expressions into the second equation in
Eq. (A2) recovers Eq. (4).

APPENDIX B: RECURRENCE RELATION

In this section we show how to obtain even moments,
defined as

〈z2n〉± =
∫ ∞

−∞
dz z2nρ±(z),

from the two equations in Eq. (3), which we repeat below for
clarity:

0 = [zρ+]′ + ρ ′′
+ + α(ρ− − ρ+)

0 = ρ ′′
− + α(ρ+ − ρ−). (B1)

To convert the two equations into the recurrence relation, we
operate on both equation with

∫ ∞
−∞ dz z2n+2. This results in the

following two coupled recurrence relations:

0 = −(2n + 2)m+
n+1 + (2n + 2)(2n + 1)m+

n

+α(m−
n+1 − m+

n+1)

0 = (2n + 2)(2n + 1)m−
n + α(m+

n+1 − m−
n+1), (B2)

where m+
n = 〈z2n〉+ and m−

n = 〈z2n〉−. After rearrangement,
the two equations become

m+
n+1 = (2n + 1)(m+

n + m−
n )

m+
n+1 = (2n + 1)(m+

n − m−
n ) − 2α

(2n + 2)
(m+

n+1 − m−
n+1).

The initial terms of both sequences are m+
0 = m−

0 = 1. The
remaining terms can be obtained from the recurrence relations
above.

APPENDIX C: DERIVATION OF EQ. (12)

In this section we demonstrate how combining the two
equations in Eq. (12), which we reproduce below:

0 = [λ(λ − 1)p+]′ + α

2
(p− − p+)

(C1)
0 = [λ2 p−]′ + α

2
(p+ − p−),

yields Eq. (15). Adding and subtracting the two equa-
tions yields

0 = [λ(2λ − 1)p]′ − λσ ′
(C2)

0 = 2[λ2σ ]′ − λp′ − λσ ′ − 2ασ,

where p = (p+ + p−)/2 and σ = (p+ − p−)/2. From the
first equation we get σ = (2λ − 1)p and from which we gen-
erate the consecutive expressions

σ = (2λ − 1)p,

σ ′ = 2p + (2λ − 1)p′, (C3)

Inserting these expressions into the second equation in
Eq. (C2) recovers Eq. (15).

APPENDIX D: DERIVATION OF 〈v2〉
In Sec. (VI C) in Eq. (45) we provide an expression for

the dissipation of heat which includes the quantity 〈v2〉. To
calculate 〈v2〉 we formulate the problem within underdamped
dynamics, which will take us slightly beyond the objectives of
the present work.

To begin with, we formulate the problem within the
Kramer’s equation, which is the type of a Fokker-Planck equa-
tion but that includes inertia [53],

∂ρ+
∂t

= −v · ∇rρ+ + 1

τr
∇v · [(μKr + v)ρ+]

+ D

τ 2
r

∇2
vρ+ + 1

τ
(ρ− − ρ+)

∂ρ−
∂t

= −v · ∇rρ− + 1

τr
∇v · [vρ−]

+ D

τ 2
r

∇2
vρ− + 1

τ
(ρ+ − ρ−),

where ρ± ≡ ρ±(r, v, t ), and we recall that τr = mμ is the
inertial relaxation, m is a particle mass, and the overdamped
regime is recovered for τr = 0.

To calculate 〈v2〉, or other average quantities of interest, we
operate on the stationary Kramer’s equation, ρ̇ = 0, with an
integral operator Ôg = ∫

dv
∫

dr g(r, v), where the function
g is going to be defined later. Using integration by parts, the
terms of a transformed Kramer’s equation can be represented
as average quantities, designated by the angular brack-
ets 〈. . . 〉 = ∫

dv
∫

dr (. . . ). The resulting two equations
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are

0 = 〈v · ∇rg〉+ − 1

τr
〈(μKr + v) · ∇vg〉+ + D

τ 2
r

〈∇2
vg〉+

+ 〈g〉−
τ

− 〈g〉+
τ

0 = 〈v · ∇rg〉− − 1

τr
〈v · ∇vg〉− + D

τ 2
r

〈∇2
vg〉−

+ 〈g〉+
τ

− 〈g〉−
τ

.

Using g = v2, g = r2, and g = r · v, we generate from the
relation above six equations involving six unknown average
quantities,

0 = − 2

τr
〈v2〉+ + 2dD

τ 2
r

− 1

τ
〈v2〉+ + 1

τ
〈v2〉− − 2μK

τr
〈r · v〉+

0 = − 2

τr
〈v2〉− + 2dD

τ 2
r

− 1

τ
〈v2〉− + 1

τ
〈v2〉+

0 = 〈v2〉+ + 1

τr
〈v · r〉+ − 1

τ
〈v · r〉+ + 1

τ
〈v · r〉−

− μK

τr
〈r2〉+

0 = 〈v2〉− − 1

τr
〈v · r〉− − 1

τ
〈v · r〉− + 1

τ
〈v · r〉+

0 = 2〈v · r〉+ − 1

τ
〈r2〉+ + 1

τ
〈r2〉−

0 = 2〈v · r〉− − 1

τ
〈r2〉− + 1

τ
〈r2〉+. (D1)

After solving the above system of coupled equations, we get

〈v2〉 − dD

τr
= − dτDμK (τr + τ )

μKτ 2
r τ − 4τ 2

r − 6τrτ − 2τ 2
, (D2)

which for the overdamped regime τr = 0 reduces to

〈v2〉 − dD

τr
= dDμK

2
. (D3)

Since 〈v2〉eq = dD
τr

, and since 〈v2〉 is proportional to the
kinetic energy, we can think of the above quantity as repre-
senting the excess kinetic energy that arises due to fluctuations
of a harmonic trap.
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