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Dynamics of magnetization growth and relaxation in ferrofluids
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The dynamics of the growth and relaxation of the magnetization in ferrofluids are determined using the-
ory based on the Fokker-Planck-Brown equation, and Brownian-dynamics simulations. Magnetization growth
starting from an equilibrium nonmagnetized state in zero field, and following an instantaneous application of a
uniform field of arbitrary strength, is studied with and without interparticle interactions. Similarly, magnetization
relaxation is studied starting from an equilibrium magnetized state in a field of arbitrary strength, and following
instantaneous removal of the field. In all cases, the dynamics are studied in terms of the time-dependent
magnetization m(t ). The field strength is described by the Langevin parameter α, the strength of the interparticle
interactions is described by the Langevin susceptibility χL , and the individual particles undergo Brownian
rotation with time τB. For noninteracting particles, the average growth time decreases with increasing α due to the
torque exerted by the field, while the average relaxation time stays constant at τB; with vanishingly weak fields,
the timescales coincide. The same basic picture emerges for interacting particles, but the weak-field timescales
are larger due to collective particle motions, and the average relaxation time exhibits a weak, nonmonotonic field
dependence. A comparison between theoretical and simulation results is excellent for noninteracting particles.
For interacting particles with χL = 1 and 2, theory and simulations are in qualitative agreement, but there are
quantitative deviations, particularly in the weak-field regime, for reasons that are connected with the description
of interactions using effective fields.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of ferromagnetic or
ferrimagnetic nanoparticles in a nonmagnetic carrier liquid
[1]. If the particles are not too large, then each one can be con-
sidered as a single, homogeneously magnetized grain. Further,
if the particles are spherical, then the interactions between
them are equivalent to those between point magnetic dipoles
[2]. Many properties of ferrofluids can be understood in terms
of the interactions between particles, and the aligning effect of
an applied magnetic field. For example, the magnetoviscous
effect is an increase in the suspension viscosity on application
of a field, and it arises from the formation of chains of particles
aligned with the field [3]. The optical properties of ferroflu-
ids are also controlled by the structural organization of the
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constituent particles, which depends on the applied field [4].
Important material properties of a ferrofluid include its mag-
netization curve and initial magnetic susceptibility (static or
dynamic). The dynamic initial magnetic susceptibility χ (ω)
describes how the magnetization of a ferrofluid responds to a
weak ac magnetic field with given angular frequency ω. Based
on the fluctuation-dissipation theorem and linear-response
theory, features in χ (ω) can be connected with character-
istic timescales for equilibrium particle motions within the
ferrofluid [5]. The dynamics of ferrofluids in strong fields
are beyond the linear-response regime, and so these need to
be considered separately [6]. A widely studied example of
such dynamics is magnetic relaxation, where the ferrofluid is
magnetized in a strong magnetic field, the system is allowed to
equilibrate, and then the field is turned off. The decay of the
magnetization is monitored to gain insights on nanoparticle
dynamics. The analytical technique of magnetorelaxometry
[7,8] can be used for characterization of the magnetic nanopar-
ticles themselves [9], as a probe of local rheology [10], and in
biomedical imaging [11–13].

Herein, the discussion is limited to the case of Brownian
rotation of the magnetic nanoparticles. In this case, all types
of magnetization dynamics are a result of body rotations of the
particles, which are affected by particle size, carrier-liquid vis-
cosity, temperature, interparticle interactions, and other fields
[5,14–19]. Néel rotation [1] is not considered here, although
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some interesting effects are to be anticipated in the collective
dynamics [20–24].

The primary focus of this work is the dynamics of magneti-
zation growth, this being what happens when a ferrofluid is at
equilibrium in zero field, and then a field of arbitrary strength
is switched on instantaneously. This case has been studied
much less than the opposite one of magnetic relaxation. In
what follows, growth refers to when a field is turned on,
and relaxation refers to when a field is turned off. Growth
dynamics in suspensions of noninteracting magnetic nanopar-
ticles were studied by Yoshida and Enpuku [25] by numerical
solution of the Fokker-Planck-Brown (FPB) equation de-
scribing the one-particle orientational distribution function
[26–28]. Characteristic timescales describing the magnetiza-
tion growth were computed for various field strengths defined
by the Langevin parameter α that compares the strength of
the field-particle Zeeman interaction to the thermal energy.
The timescales decrease with increasing α as a result of the
increased torque on each particle dipole moment. This has
been observed experimentally, for example, in suspensions of
magnetotactic bacteria [29].

One of the aims of the present study is to determine the
effects of interparticle interactions on the rate of magnetiza-
tion growth. This is done using both theory (with the FPB
equation) and Brownian-dynamics (BD) simulations. The the-
oretical approach is similar to that taken in the study of
magnetization relaxation, in that the effects of interactions are
described in terms of an effective field experienced by any one
particle. Related modified mean-field (MMF) theories have
been shown to be highly successful in describing both the
static and dynamic properties of ferrofluids [30,31].

Another aim of the work is to complete the descrip-
tion of magnetic relaxation by considering weak fields; so
far, studies have been focused on the case of strong align-
ing fields [17,19]. It is important to complete this analysis,
because in the weak-field limit—corresponding to the linear-
response regime—the timescales describing relaxation and
growth should coincide. In fact, the analysis is a quite simple
extension of the approach described in Ref. [17], and so only
brief details are required here.

To summarize, the main outcomes from this study are
the relaxation and growth timescales as functions of α, and
descriptions of how they are affected by interparticle interac-
tions. The growth timescale decreases rapidly with increasing
α, as the field-particle interactions overcome the particle-
particle interactions. The relaxation timescale is only weakly
dependent on α, and as anticipated, it coincides with the
growth timescale with small values of α. In general, all
timescales increase with increasing interaction strength due
to the spatial and orientational correlations between particles
leading to collective motions. While such increases have been
seen before in different situations, including the ac response
in the linear and nonlinear regimes [21,32–34], and relaxation
from the fully magnetized state [17], the effects of interactions
on the growth and relaxation dynamics with arbitrary field
strengths have not yet been analyzed in detail.

The rest of this article is organized as follows. The model
and methods are described in Sec. II, including all the-
oretical and simulation aspects. The results are presented
in Sec. III, which is organized in terms of noninteracting

particles (Sec. III A) and interacting particles (Sec. III B).
Section IV concludes the article.

II. MODEL AND METHODS

The system is modeled as a suspension of N spherical
ferromagnetic particles, each with diameter σ , in a liquid with
viscosity η at temperature T . The total volume of the suspen-
sion is V . If the particles are homogeneously magnetized, then
the net magnetic interaction between two different particles
is the same as that between two point dipoles [2]; the dipole
moment on particle i is denoted by the vector μi, and the
magnitude of the dipole moment μ = |μi| is the same for
each particle. The potential energy of the system in an applied
magnetic field H is

U =
N∑

i=1

N∑
j>i

[us(i, j) + ud (i, j)] − μ0

N∑
i=1

(μi · H ), (1)

where us is a short-range isotropic potential, ud is the
anisotropic dipole-dipole potential, and μ0 is the vacuum
permeability. The short-range potential us is chosen for math-
ematical convenience: for theory, the hard-sphere potential is
the simplest; for simulations, a continuous repulsive potential
is easiest, and this will be defined in Sec. II B. The dipolar
interaction is

ud (i, j) = μ0

4π

[
(μi · μ j )

r3
i j

− 3(μi · ri j )(μ j · ri j )

r5
i j

]
, (2)

where ri j = r j − ri is the separation vector between the parti-
cle centers, and ri j = |ri j |. There are several key parameters
that characterize the system. The number concentration is
ρ = N/V , the particle volume is v = πσ 3/6, and the volume
fraction of the particles is therefore

ϕ = ρv = Nπσ 3

6V
. (3)

The strength of the interactions between the particles is mea-
sured with the dipolar coupling constant, defined by

λ = μ0μ
2

4πσ 3kBT
. (4)

The initial magnetic susceptibility of noninteracting particles
is equal to the Langevin value

χL = ρμ0μ
2

3kBT
= 8ϕλ, (5)

and the presence of interactions increases the static sus-
ceptibility in a known way; the leading-order correction to
the susceptibility gives χ = χL(1 + χL/3) [35]. The strength
of the particle-field interaction is given by the Langevin
parameter

α = μ0μH

kBT
. (6)

The single-particle dynamics are described by the Brownian
rotation time

τB = πησ 3

2kBT
. (7)
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The magnetization of a system at time t is defined by

M(t ) = 1

V

N∑
i=1

μi(t ). (8)

Apart from thermal fluctuations, M is aligned with the field
H , and so it is sufficient to consider a corresponding reduced
scalar magnetization

m(t ) = |M(t )|
ρμ

, (9)

where ρμ is the saturation magnetization, and 0 � m(t ) � 1.

A. Theory

The general theoretical approach is to solve the FPB equa-
tion [26–28] for the time-dependent, one-particle orientational
distribution function (ODF) W (t, z), where t is the time, and
z = cos θ represents the projection of the dipole moment of a
particle with polar angle θ onto the field direction, taken to be
the laboratory z axis. The key difference between growth and
relaxation is reflected in the boundary conditions for solving
the FPB equation: in growth, m(t � 0) = 0, the field is turned
on, and m(∞) reaches the equilibrium magnetization; in re-
laxation, m(t � 0) > 0, the field is turned off, and the system
reaches the equilibrium state of zero magnetization [m(∞) =
0]. The solution of the FPB equation for relaxation starting
from an infinite aligning field [m(t � 0) = 1] has been de-
scribed in detail in earlier publications [17,19]. The solution of
the FPB equation in the case of weak, perturbing, ac fields has
also been carried out [14–16], and because of the fluctuation-
dissipation theorem [18], the characteristic timescales in the
dynamic magnetic susceptibility are also those that control the
response to switching on or off weak fields. The nonlinear
response of the magnetization to a strong ac field has also
been studied, including the effects of interactions through the
introduction of an effective local field [21,33,34].

The organization of this part of the article is as follows:
Sec. II A 1—magnetization growth of noninteracting parti-
cles; Sec. II A 2—analytical approximation to the magneti-
zation growth of noninteracting particles; Sec. II A 3—
magnetization growth of interacting particles; and
Sec. II A 4—magnetization relaxation of interacting particles.

1. Magnetization growth: Noninteracting particles

The FPB equation for an isolated particle i in an applied
magnetic field is [26–28]

2τB
∂W0

∂t
= ∂

∂zi

[(
1 − z2

i

)(∂W0

∂zi
− αW0

)]
, (10)

where τB is the Brownian rotation time, zi = cos θi, and W0 ≡
W0(t, zi ) is the one-particle ODF. The subscript “0” in W0

signifies the ideal, noninteracting case, as this specific func-
tion will be required later when including interactions. W0

is normalized, and it determines the reduced magnetization

m(t ):

1

2

∫ 1

−1
W0(t, zi )dzi = 1, (11a)

1

2

∫ 1

−1
W0(t, zi )zidzi = m(t ). (11b)

The initial condition for the problem (10) is the fully de-
magnetized state, i.e., m(0) = 0 and W0(0, zi ) = 1. The FPB
equation therefore describes the evolution of the probability
density from the uniform orientation distribution to the equi-
librium one, which is established at infinite time:

W0(∞, zi ) =
(

α

sinh α

)
exp (αzi ), (12a)

m(∞) = coth α − 1

α
≡ L(α). (12b)

This solution follows from the FPB equation (10) with the
stationarity condition (∂W0/∂t ) = 0; the Langevin function
L(α) describes the equilibrium magnetization of an ensemble
of noninteracting magnetic particles.

The common approach to the solution of Eq. (10) is based
on an expansion of the ODF in terms of Legendre polynomials
Pk (z) [36],

W0(t, zi ) =
∞∑

k=0

Ak (t )Pk (zi ), (13)

where Ak (t ) is the time-dependent amplitude of the kth har-
monic. Evidently, the magnetization is defined by the first
harmonic, m(t ) = A1(t )/3. Using expansion (13), Eq. (10) is
transformed into an infinite set of ordinary differential equa-
tions for the amplitudes with k � 1:

2τB

k(k + 1)

dAk

dt
+ Ak = α

(
Ak−1

2k − 1
− Ak+1

2k + 3

)
. (14)

The initial conditions are A0(t ) = 1 and Ak (0) = 0 (k � 1).
Obviously, this set of equations can only be solved for a
finite number of equations K , the value of which is chosen
to provide a desired accuracy. Some general comments on the
behavior of m(t ) at short, intermediate, and long times are as
follows.

The initial rise of the magnetization curve is given by the
simple expression

m(t → 0) ≈ m(0) + t

3

(
dA1

dt

)
t=0

= α

3

t

τB
, (15)

and so it is controlled by both the individual Brownian time
τB and the dimensionless magnetic field strength α, which
provides the “driving force” of the magnetization dynamics.

The complete solution is expressed as a sum of exponential
functions [37]:

m(t ) = C0 +
K∑

k=1

Ck exp (γkt/τB). (16)

024610-3



SUBBOTIN, IVANOV, AND CAMP PHYSICAL REVIEW E 110, 024610 (2024)

From the initial condition m(0) = 0, and matching the first
derivatives of Eqs. (15) and (16), the coefficients must satisfy
the following rules:

C0 +
K∑

k=1

Ck = 0, (17a)

K∑
k=1

Ckγk = α

3
. (17b)

For m(t ) to be finite, the values of γk must all be neg-
ative. Hence, by taking the long-time limit, the equilibrium

magnetization is m(∞) = C0 = A1(∞)/3. At equilibrium,
when dAk/dt = 0, the complete set of coefficients Ak satisfies
the equations

Ak = α

(
Ak−1

2k − 1
− Ak+1

2k + 3

)
, (18)

which follows from Eq. (14). It is emphasized that the so-
lutions all depend on the number of equations K . In the
long-time limit, the first amplitude approaches the value A1 =
3L(α) as K → ∞, and hence the magnetization m(∞) ap-
proaches the expected Langevin value (12b).

The parameters γk are equal to the roots of the determinant
of a K × K matrix:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−1 − γ −α
5 0 0 0 . . . 0 0 0

α −3 − γ − 3α
7 0 0 . . . 0 0 0

0 6α
5 −6 − γ − 2α

3 0 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . 0 K (K−1)α
2(2K−3) −K (K−1)

2 − γ K (K−1)α
2(2K+1)

0 0 0 0 . . . 0 0 K (K+1)α
2(2K−1) −K (K+1)

2 − γ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 0. (19)

An important feature is that all K roots γk are real and
negative. Hence, they can be put in descending order 0 >

γ1 > γ2 > . . . > γK , the exponential functions in Eq. (16) are
all decreasing functions of time, and exp (γ1t/τB) decreases
slowest.

In general, γk and the corresponding coefficients Ck can
only be calculated numerically, and once more, all values
depend on the truncation level K . Figure 1 shows the con-
vergence of the longest timescale γ1 with increasing K .
Figure 1(a) shows the value of γ1 as a function of K , and
the results indicate that K = 30 is sufficient to achieve full
convergence even at high values of α. Moreover, the higher
the value of α, the more negative the value of γ1, and hence
the faster the growth rate. Figure 1(b) shows the value of K
required to achieve convergence within a tolerance of 1 part in
103. Something like K = 30–40 is enough to give sufficiently
well converged results with α � 50.

The magnetization dynamics described by Eq. (16) are
controlled by various characteristic timescales, which can be
conveniently described with the help of an effective, instanta-
neous time τ (t ). If at any time t

m(t ) = m(∞)

{
1 − exp

[
− t

τ (t )

]}
, (20)

then

τ (t ) = −
{

d

dt
ln

[
1 − m(t )

m(∞)

]}−1

. (21)

Substituting Eq. (16) into this expression gives

τ (t )

τB
= −

∑K
k=1 Ck exp (γkt/τB)∑K

k=1 γkCk exp (γkt/τB)
. (22)

Using Eq. (17) and C0 = m(∞), the initial effective time is

τ (0)

τB
= 3m(∞)

α
, (23)

and hence at short times, from Eq. (20) with t → 0,

m(t → 0) ≈ m(∞)

[
t

τ (0)

]
= α

3

t

τB
, (24)

as per Eq. (15). It may be surprising that the initial effective
time depends on the equilibrium value m(∞), but this arises
naturally from the definition in Eq. (21), the expansion in
Eq. (16), and the sum rules in Eq. (17). The effect is that in
weak fields τ (0) ≈ τB, and in strong fields τ (0) ≈ 3/α.

At long times, the magnetization dynamics is controlled by
the slowest-decaying exponential, and hence

τ (∞)

τB
≈ − 1

γ1
. (25)

Finally, an average growth time can be computed, which is
more easily compared to the results from BD simulations:

τ (on) =
∫ ∞

0

[
1 − m(t )

m(∞)

]
dt . (26)

With m(t ) given by Eq. (16), the result is

τ (on)

τB
= 1

C0

K∑
k=1

Ck

γk
. (27)

2. Magnetization growth: Noninteracting particles
in the K = 2 approximation

Although an accurate solution can only be obtained nu-
merically, it is useful to illustrate the qualitative behavior by
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FIG. 1. (a) The root γ1 as a function of the number of equations
K with different Langevin parameters in the range 1 � α � 20.
Symbols show the values calculated from Eq. (19), and the lines are
guides to the eye. (b) The number of equations K required to reach
convergence of γ1 to within 0.1%.

solving the simple case with K = 2 analytically. The two roots
γ1 and γ2 are given by

γ1 = −2 + b, (28a)

γ2 = −2 − b, (28b)

where b =
√

1 − α2/5. Hence, this analysis is restricted to
small values of α, and certainly less than

√
5. The magneti-

zation dynamics are given by

m(t ) = α

4 − b2
− α(1 + b)

6b(2 − b)
exp [(−2 + b)t/τB]

+ α(1 − b)

6b(2 + b)
exp [(−2 − b)t/τB]. (29)

The equilibrium magnetization

m(∞) = α

4 − b2
= α

3 + α2/5
(30)

is close to the exact value L(α) only for α � 2. The instanta-
neous growth time is

τ (t )

τB
= 3b + (2 + b2) tanh (bt/τB)

(4 − b2)[b + tanh (bt/τB)]
. (31)

The initial growth time is

τ (0)

τB
= 3

4 − b2
= 1

1 + α2/15
, (32)

which satisfies Eqs. (23) and (30). This function is approx-
imately equal to the exact value 3L(α)/α with α � 2. The
longest growth time is

τ (∞)

τB
= − 1

γ1
= 1

2 − b
= 1

2 −
√

1 − α2/5
. (33)

Hence, the dynamics of magnetization growth are controlled
by two characteristic timescales. At the beginning of the pro-
cess, the growth time is given approximately by Eq. (32) and
exactly by 3[L(α)/α]τB. With K = 2, the asymptotic growth
time toward equilibrium is controlled by Eq. (33). With small
values of α, τ (0) and τ (∞) are both approximately equal to
τB, and hence the growth time is approximately constant. As α

increases, τ (∞) decreases faster than τ (0), and so a crossover
in timescales takes place during the magnetization process:
the initial growth is slow, and the asymptotic growth is fast.
At the K = 2 level of approximation, the average growth
time is

τ (on)

τB
= 8 + b2

3(4 − b2)
= 3 − α2/15

3 + α2/5
, (34)

and this starts at 1, and is a decreasing function of α.

3. Magnetization growth: Interacting particles

For interacting particles the FPB equation can be
written [31]

2τB
∂W

∂t
= ∂

∂zi

{(
1 − z2

i

)[∂W

∂zi
− αW + W

∂ueff (i)

∂zi

]}
,

(35)

where ueff (i) is the effective interaction energy between parti-
cle i and all of the other N − 1 particles in the system. Each
particle interacts with a total magnetic field composed of the
external field H and an extra field HMMF produced by all of
the other particles in the system. Within the first-order MMF
model [30], ueff (i) is approximated by an expression which
is linear in the particle concentration ρ, and no spatial or
orientational correlations between the particles are taken into
account. Within this approximation,

ueff (i) = −μ0(μi · HMMF)

kBT
, (36)

with the effective field given by

HMMF = ρ

4π

∫
r�σ

dri j

∫
de jW0(t, z j )

×
[

3ri j (μ j · ri j )

r5
i j

− μ j

r3
i j

]
, (37)

where μ j = μe j . In this term, the integration over all possible
positions and orientations of particle j is weighted by the ODF
for noninteracting particles, i.e., W0 from Eq. (10). Carrying
out the integration gives

ueff (i) = −χL

3
A1zi, (38)
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and so Eq. (35) becomes

2τB
∂W

∂t
= ∂

∂zi

{(
1 − z2

i

)[∂W

∂zi
− αeff (t )W

]}
, (39)

with a time-dependent effective Langevin parameter

αeff (t ) = α + 1
3χLA1(t ). (40)

The equilibrium solution of this equation gives the well-
known expression of the MMF static magnetization [30]:

αeff (∞) ≡ α∗
eff = α + χLL(α), (41a)

m(∞) = L(α∗
eff ). (41b)

Turning to the time dependence, the one-particle ODF is
written

W (t, zi ) =
∞∑

k=0

Bk (t )Pk (zi ), (42)

and the amplitudes Bk (k � 1) are determined by the set of
ordinary differential equations

2τB

k(k + 1)

dBk

dt
+ Bk = αeff (t )

(
Bk−1

2k − 1
− Bk+1

2k + 3

)
, (43)

with the initial conditions B0(t ) = 1 and Bk (0) = 0 (k �
1). This set of equations is much more complicated than
Eq. (14) because the coefficient αeff (t ) is time-dependent, and
so the general solution can only be found numerically. Since
A1(0) = 0 and αeff (0) = α,

m(t → 0) ≈ α

3

t

τB
. (44)

This coincides with Eq. (15) for noninteracting particles, but
the initial growth time is

τ (0)

τB
= 3m(∞)

α
, (45)

which is dependent not only on the applied field strength, but
also on χL through m(∞) (41).

An analytical solution for interacting particles can be found
only for very weak magnetizing fields, α � 1. Here, only the
first equations in the sets (14) and (43) are solved, giving

m(t ) = α

3

[(
1 + χL

3

)
(1 − e−t/τB ) − χL

3

t

τB
e−t/τB

]
. (46)

The time-dependent growth time is

τ (t )

τB
= 1 + χL

3 + χLt/τB
, (47)

which decreases monotonically from τ (0) = (1 + χL/3)τB to
τ (∞) = τB. The average growth time is also independent
of α:

τ (on)

τB
= 3 + 2χL

3 + χL
≈ 1 + 1

3
χL + . . . (48)

These times are only independent of α because of the ap-
proximation of solving only for A1 and B1 (K = 1). The field
dependence is manifested even for K = 2, as shown by the
solution (31) for noninteracting particles, in which the growth
time is determined to leading order (by symmetry) in α2.

4. Magnetization relaxation: Interacting particles

The analysis of relaxation in Ref. [17] was restricted to the
case of a completely magnetized initial state, i.e., α → ∞.
The MMF approach can be extended straightforwardly to the
case of finite α, and the result for the magnetization is

m(t ) =
{

L(α∗
eff ) + 1

3
χLL(α)

×
[

t

τB
+ 1

3
L3(α∗

eff )(e−3t/τB − 1)

]}
e−t/τB , (49)

where the function L3(z) = 1 − 3L(z)/z. In general, m(0) =
L(α∗

eff ) as per the MMF magnetization curve [30]. When χL =
0, α∗

eff = α, and m(t ) = L(α) exp (−t/τB), and so the Brown-
ian rotation time is the only relevant timescale [17]. With a
completely magnetized initial state, as studied in Ref. [17],
L(∞) = L3(∞) = 1, and so

m(t ) =
{

1 + χL

3

[
t

τB
+ 1

3

(
e−3t/τB − 1

)]}
e−t/τB . (50)

The initial and asymptotic relaxation times are
τ (0)

τB
= α∗

eff

α
, (51a)

τ (∞)

τB
= 1. (51b)

The MMF theory predicts that the relaxation time first
increases, reaches a local maximum, and then decreases. For
noninteracting particles, or for interacting particles in the
strong-field limit, τ (0) = τB [17]. That τ (∞) does not depend
on χL is an artifact of the MMF approximation; at least with a
fully magnetized initial state, τ (∞) is (1 + χL/3)τB to leading
order in χL [17]. The average relaxation time is defined by

τ (off ) =
∫ ∞

0

[
m(t )

m(0)

]
dt . (52)

With the MMF result (49), this gives

τ (off )

τB
= 1 + χLL(α)

3L(α∗
eff )

[
1 − 1

4
L3(α∗

eff )

]
. (53)

With small values of α, this approaches

τ (off )

τB
= 3 + 2χL

3 + χL
≈ 1 + 1

3
χL + . . . , (54)

whereas in the strong-field limit, it approaches

τ (off )

τB
≈ 1 + 1

4
χL. (55)

The behavior between these limits of α will be discussed
below.

B. Brownian dynamics simulations

BD simulations were carried out using LAMMPS [38,39].
N = 163 = 4096 identical particles were simulated in all
cases with the volume fraction equal to ϕ = 0.125, and the
dipolar coupling constant equal to λ = 1 (with and without
interactions) or λ = 2 (with interactions). The choices of ϕ

and λ were arbitrary for the noninteracting system. These
parameters give Langevin susceptibilities of χL = 1 and 2,
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and are physically relevant for real ferrofluids. The simulation
box was cubic, periodic boundary conditions were applied in
all three directions, and the long-range dipolar interactions
were handled using the particle-particle particle-mesh method
with a relative error in the forces of 10−4. A soft-core, short-
range potential is most convenient for these calculations, and
the Weeks-Chandler-Andersen [40] interaction with energy
parameter ε and particle diameter σ was used here:

us(i, j) =

⎧⎪⎨
⎪⎩

4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6

+ 1

4

]
ri j � 21/6σ,

0 ri j > 21/6σ.

(56)

The temperature was set equal to T ∗ = kBT/ε = 1. As ex-
plained in detail several times before [14,15], a Langevin
thermostat with a large friction coefficient can be used to
produce overdamped, and hence Brownian, dynamics. In
Lennard-Jones units (indicated by ∗), the damp parameter in
LAMMPS was set equal to 0.05, which results in a Brownian
rotation time of τ ∗

B = 1/6T ∗damp = 3.3333 [14,15] and no
discernible inertial motion.

Each system was first equilibrated with α = 0 for nt = 2 ×
104 time steps with δt∗ = 0.005, corresponding to t = 30τB.
Then a field corresponding to the desired Langevin parameter
α was switched on, and another nt time steps were carried
out to simulate the magnetization growth process. Finally,
relaxation in zero field was simulated over nt time steps.
The value of nt was chosen so that the magnetization fully
equilibrated during each stage of the growth and relaxation
processes. The growth-relaxation procedure was repeated 200
times for the noninteracting system, and 100 times for the
interacting systems, and the magnetization for each type of
process was averaged. Despite the averaging, it was not pos-
sible to get very reliable results for the instantaneous growth
or relaxation times from the magnetization by direct numeri-
cal differentiation. Instead, and as noted in Sec. II A, it was
more convenient to compare the theoretical and simulated
average times, defined by Eq. (26) for growth and Eq. (52) for
relaxation.

III. RESULTS

The simulation protocol is illustrated in Fig. 2(a), which
shows the magnetization m(t ) during the equilibration stage
(t < 0), followed by growth with α = 5 (0 � t < 30τB), and
then relaxation (30τB � t � 60τB). The average results are
shown in the figure. The equilibrium magnetization with the
field on increases with increasing interaction strength due to
the effective field felt by each particle being larger than the ap-
plied field. This is captured accurately by the first-order MMF
theory (41). By eye, the initial growth rate in a strong field is
not strongly affected by interactions, whereas the relaxation
rate decreases with increasing interaction strength [17–19].

The equilibrium magnetization curves are shown in
Fig. 2(b). The BD simulations results for noninteracting par-
ticles of course agree with the exact formula. The first-order
MMF theory which accounts for interactions (41) is in excel-
lent agreement with the BD simulation results.

0 10 20 30 40 50 60
t / τB
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0.7

0.8

0.9

m
(t)

field on field off
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χL = 1
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10−2 10−1 100 101 102

α
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0.2

0.4

0.6

0.8

1.0

m
(∞

)

χL = 2
χL = 1
NI

FIG. 2. (a) BD simulation results for systems with ϕ = 0.125
and α = 5 illustrating the growth and relaxation processes. Each
stage lasts for 30τB. The dashed lines show the predictions from
first-order MMF theory (41). (b) Magnetization curves from BD
simulations (points) and MMF theory (41) (lines). NI means the
noninteracting system.

A. Magnetization growth and relaxation
of noninteracting particles

The growth of the magnetization with noninteracting parti-
cles is illustrated in Fig. 3(a) for Langevin parameters α =
0.5, 1, 2, 3, 5, and 10. The BD simulation results are com-
pared with the theoretical predictions from Eq. (16) with
K = 30 (numerical), and from Eq. (29) with K = 2 (ana-
lytical) for α � 2 only. On that scale, the analytical K = 2
result is hardly distinguishable from the numerical results with
K = 30, which can be considered practically exact.

The results are shown on a linear-log plot in Fig. 3(b).
The quantity 1 − m(t )/m(∞) is plotted on the y axis, and
its roughly straight-line behavior at long times indicates an
asymptotic quasi-exponential decay controlled by γ1. At short
times, the decay is less rapid but increases with α according to
Eq. (15). The agreement between the BD simulations and the
numerical evaluation of the theory is excellent, as expected.
The K = 2 approximation is already quite poor with α = 2.

To illustrate the changes in growth rate during the growth
process, the instantaneous time τ (t ) (21) from the FPB theory
for noninteracting particles is plotted in Fig. 4; the same
results are shown in Figs. 4(a) and 4(b) for subsequent com-
parison with results for interacting particles. With very small
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α = 10

FIG. 3. (a) Magnetization growth in systems of noninteracting
particles with various values of α. The points are from BD simula-
tions, the solid lines are from Eq. (16) with K = 30 (numerical), and
the dashed lines for α � 2 are from Eq. (29) with K = 2 (analytical).
(b) The function 1 − m(t )/m(∞) from the same data sets as in panel
(a). The meanings of the points and lines are the same in panels
(a) and (b). For clarity, only every 10th point of the simulation results
is shown.

values of α, τ (t ) is very close to τB. With increasing α, there
is a more pronounced decrease in τ (t ) before leveling off at a
value much less than τB. This is consistent with the comments
made in Sec. II A 2 in the framework of the K = 2 solution.

Also shown in Fig. 4 are some BD simulation results for
τ (t ) with large values of α and at short times. The results
with small values of α and/or at long times are too noisy,
with the scatter along the whole y axis. With small values of
α, the statistical fluctuations in m(t ) are significant, and these
are magnified when trying to extract τ (t ) as an instantaneous
numerical derivative from Eq. (21). Similarly, at long times,
the term in square brackets in Eq. (21) is very small, and the
statistical noise in τ (t ) obscures the results. Nonetheless, the
limited BD simulation results are in good agreement with the
theoretical predictions.

The average growth time is shown in Fig. 5. This was
estimated from the BD simulation results in two different
ways: from the integral in Eq. (26); and as the time τe(on)
it takes for 1 − m(t )/m(∞) to reach 1/e. The error bars are
the statistical uncertainties estimated from the 200 repeats.
First, there is very little difference between τ (on) and τe(on).
Second, both parameters decrease with increasing Langevin

0 1 2 3 4 5 6 7 8
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

τ(
t) 

/ τ
B

(a) χL = 1

0 1 2 3 4 5 6 7 8
t / τB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

τ(
t) 

/ τ
B

(b) χL = 2

FIG. 4. The instantaneous growth time in systems with various
values of α and (a) χL = 1 and (b) χL = 2. Theoretical predictions
are shown for interacting systems (solid lines) and noninteracting
systems (dashed lines). BD simulation results for large values of α

and at short times are shown for interacting systems (filled points)
and noninteracting systems (unfilled points); for clarity, only every
10th point of the simulation results is shown.

FIG. 5. The average relaxation and growth times as functions of
α for the noninteracting system. The unfilled points are given by
Eqs. (26) and (52) using BD simulation results, the lines are the
corresponding results from theory, and the filled points are 1/e times
from BD simulations. Y&E (2009) refers to the work of Yoshida and
Enpuku [25].
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parameter α and hence the torque acting on the dipoles. The
BD simulation results with α = 0.1 show some scatter and
have large error bars because the statistical fluctuations are
significant as compared to the small values of m(t ) in Eq. (26).
With α � 0.2 the simulation results are adequate.

Figure 5 also shows the theoretical results with K = 30
and K = 2, and an expression determined by Yoshida and
Enpuku by fitting an ad hoc function to the growth time from
a numerical solution of the FPB equation [25]:

τ (on)

τB
= 1√

1 + 0.21α2
. (57)

The K = 2 approximation is only valid for α � 2, whereas
the K = 30 results, and the Yoshida and Enpuku expression,
are in excellent agreement with the BD simulation results.
The asymptotic behavior with large values of α appears to be
similar to 2/α, which is also shown in Fig. 5. The equilibrium
relaxation time of magnetization fluctuations parallel to a
static field is [41,42]

τ‖
τB

= αL1(α)

L(α)
, (58)

where L1(α) = dL/dα. With large values of α, this ap-
proaches 1/α. Apart from the constant of proportionality, the
growth time in strong fields is the same.

The average relaxation time from BD simulations and
theory is also shown in Fig. 5. These results confirm that
for noninteracting particles, there is only one relaxation time
equal to τB, and this is independent of α. This is because
the relaxation mechanism in zero field (when switched off) is
purely Brownian, and with no additional torques arising from
the coupling between the particles. As before, the BD simu-
lation results with α = 0.1 are too noisy, but with α � 0.2,
they are adequate. The integral time τ (off ) (52) and 1/e time
τe(off ) are in good agreement with one another.

Finally, the comparison between τ (on) and τ (off ) confirms
that with small values of α, there is only one characteristic
timescale, equal to τB. The growth time of the magnetization
in a weak field is the same as the relaxation time of a small
magnetization.

B. Magnetization growth and relaxation of interacting particles

From here on, “the theory” refers only to the numerical
solutions of the FPB equation with interactions described at
the first-order MMF level. The magnetization growth in sys-
tems of interacting particles with χL = 1 is shown in Fig. 6.
With small and large values of α, the agreement between the
theory and BD simulations is good. With intermediate values
of α = 1–5, there are clear deviations between them at times
in the region of t 
 τB; the theory predicts more rapid growth.

This discrepancy is reflected in the instantaneous growth
times τ (t ) shown in Fig. 4(a). The theory correctly predicts
that the initial growth times are larger in the presence of
interactions (45), but the available simulation results for α = 2
show that the theory underestimates the value. In stronger
fields, the results for interacting and noninteracting particles
coincide, because the field-particle interaction dominates the
particle-particle interaction. The theory also predicts some
interesting nonmonotonic behavior for intermediate values of
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FIG. 6. Magnetization growth in systems of interacting particles
with ϕ = 0.125, λ = 1, χL = 1, and various values of α. The lines
are from the FPB theory, and the points are from BD simulations. For
clarity, only every 5th point of the simulation results is shown.

α, with the growth time dipping below that for noninteracting
particles, before rising again and converging. This particu-
lar prediction could be an artifact of the MMF approach,
as similar unusual behavior is predicted for the relaxation
dynamics [17].

The average growth and relaxation times are shown in
Fig. 7. As before, BD simulations results for both τ and τe

are shown, and these are in good agreement. τ (on) is sig-
nificantly larger than τB in weak fields, but then decreases
with increasing α. τ (off ) is close to τ (on) in weak fields, and
seems to show a weak maximum with increasing α, before
approaching its initial value. The theory at the MMF level
predicts the low-α average times to be 5τB/4 [Eqs. (48) and
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 / 
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f)
 / 

τ B

τ−(on) (FPB)
2 / α
τ (on) (BD)
τ−(on) (BD)
τ−(off) (FPB)
τ
τ (off) (BD)
τ−(off) (BD)

FIG. 7. The average relaxation and growth times as functions of
α for the system with ϕ = 0.125 and λ = 1 (χL = 1). The unfilled
points are given by Eqs. (26) and (52) using BD simulation results,
the lines are the corresponding results from theory, and the filled
points are 1/e times from BD simulations.
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FIG. 8. Magnetization growth in systems of interacting particles
with ϕ = 0.125, λ = 2, χL = 2, and various values of α. The lines
are from the FPB theory, and the points are from BD simulations.
For clarity, only every 5th point of the simulation results is shown.

(54)], which is smaller than the apparent simulation values. In
fact, the simulation results are closer to (1 + χL/3)τB, labeled
as τMMF in Fig. 7; this is the same as the aforementioned
theoretical predictions evaluated to linear order in χL [14,32].
The theory for τ (on) approaches the simulation results with
increasing α due to the field-particle interaction becoming
dominant, and the same asymptotic behavior being reached as
with noninteracting particles. The theory for τ (off ) shows a
small hump in the region of α = 5, but then approaches 5τB/4
as per Eq. (55). Overall, the theory and simulations are in
good qualitative agreement, with the difference in apparent
timescales being comparable to the error in evaluating the
limiting theoretical values [Eqs. (48) and (54)] to linear order
in χL.

The magnetization growth in systems with χL = 2 is
shown in Fig. 8. The picture is the same as before, with there
being good agreement between theory and simulation with
very small and vary large values of α, but in between, the
theory overestimates the growth rate. This overestimation is
much more pronounced than with χL = 1.

Similarly, the instantaneous growth times τ (t ) shown in
Fig. 4(b) follow the same kinds of trends as with χL = 1,
but the predicted differences between interacting and nonin-
teracting systems are obviously larger. The deviation between
the theory and the small number of simulation results is also
significant.

The average growth and relaxation times in systems with
χL = 2 are shown in Fig. 9. The same picture emerges as with
the weaker interactions, except that the deviations between
theory and simulation are larger. From theory, in the weak-
field limit, τ (on) = τ (off ) = 7τB/5 [Eqs. (48) and (54)], and
in the strong-field limit, τ (off ) = 3τB/2 (55). The theoretical
relationship between the values of τ (off ) in these two limits is
not reflected in the simulation results, and therefore, this could
be a mathematical artifact. The linearized approximation of
Eq. (54) is closer to the simulation results.
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FIG. 9. The average relaxation and growth times as functions of
α for the system with ϕ = 0.125 and λ = 2 (χL = 2). The unfilled
points are given by Eqs. (26) and (52) using BD simulation results,
the lines are the corresponding results from theory, and the filled
points are 1/e times from BD simulations.

IV. CONCLUSIONS

The dynamics of magnetization growth and relaxation
in ferrofluids were studied using theory and Brownian-
dynamics simulations. Growth occurs when an applied field
is switched on, and relaxation occurs when an applied field is
switch off. The theoretical approach is based on solving the
Fokker-Planck-Brown equation for a single particle, with an
approximate “modified mean-field” treatment of interactions
based on an additional field arising from the magnetization
of the other particles. The particle dynamics were restricted
to Brownian rotations. For noninteracting particles, the theory
matches essentially exactly with the simulations. With weak
fields, the average growth and relaxation times are the same,
and equal to the Brownian rotation time. The average growth
time decreases rapidly with increasing field due to the extra
torque acting on the particles, while the average relaxation
time remains constant at its Brownian value. Including in-
teractions increases the average growth and relaxation times
with weak fields, but the changes are less significant with
increasing field, because the field-particle interactions domi-
nate the particle-particle interactions. The agreement between
theory and simulation is qualitative. The theory also pro-
vides insights on the evolution of the dynamics during the
growth and relaxation processes, but it is difficult to test
those predictions because of statistical noise in the simulation
results.

As noted before in applications of the modified mean-
field approach to equilibrium and nonequilibrium dynamics
[14,17], the predictions are only accurate to first order in the
Langevin susceptibility. Moreover, there can also be some
characteristic artifacts in the associated dynamical functions
such as the magnetization relaxation curve m(t ). In earlier
work, it was found that related approaches based on the Weiss
mean-field theory can provide much more accurate predic-
tions [15,17]. Unfortunately, it has not yet been possible to
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adapt Weiss-like approaches to the current problem of magne-
tization growth dynamics, but hopefully this can be resolved
soon. This might extend the range of validity of theoretical
predictions to include moderately strong interactions, mean-
ing larger values of χL. It would also be interesting to examine
the magnetization growth dynamics in strongly interacting
systems, where chain and ring formation can occur [43].

Finally, this study has been restricted to monodisperse
ferrofluids, although the magnetization relaxation in polydis-
perse ferrofluids has been tackled before [19]. This should
also be possible for magnetization growth because the

fundamental principles are understood, and it is just a case of
applying the methods to model systems that are representative
of real ferrofluids.
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