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Aspect-ratio-dependent void formation in active rhomboidal and elliptical particle systems
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We execute a numerical simulation of active nematics with particles interacting by an excluded-volume effect.
Systems with rhomboidal particles and with elliptical particles are considered in order to investigate the effect of
the direct contact of particles. In our simulation, the void regions, where the local number density is almost zero,
appear in both systems when the aspect ratio of the particles is high. We focus on the relationship between the
void regions and the particle orientation of the bulk. The particle number density, particle orientation, topological
defects, and void regions are analyzed for different aspect ratios in both systems. The systems with rhomboidal
particles have characteristic void sizes, which increase with an increase in the aspect ratio. In contrast, the
distribution of the void-region size in the systems with elliptical particles is broad. The present results suggest
that the void size in the systems with rhomboidal particles is determined by the correlation length of the particle
orientational field around the void regions, while the void size might be determined by the system size in the
systems with elliptical particles.
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I. INTRODUCTION

Active matter has attracted interest since a group of self-
propelled particles, which can transform chemical energy
into kinetic energy, exhibits characteristic ordering in greater
spatiotemporal scales than the characteristic scale of the com-
prising particles [1–3]. Active matter can be classified into
several types with respect to the symmetry of the particles:
scalar, polar, nematic, and chiral active matter [4]. Here we
focus on active nematic systems, in which particles interact
with each other based on dyad rotational symmetry. They
have been studied in both experiments and numerical simula-
tions [5]. Microtubules driven by motor proteins on substrates
[6–9], colonies of rodlike bacteria [10–14], and elongated
cells [15–18] are typical experimental systems for active ne-
matics. In such systems, locally aligned structures of particles
and inhomogeneous density distributions often emerge. Char-
acteristic patterns in coarse-grained orientational fields appear
as vortices or bent bands with topological defects, i.e., singu-
lar points [7,19,20]. It was reported that motion of topological
defects due to particle activity breaks the long-range nematic
order and leads to the spatiotemporal dynamics of the orienta-
tion patterns [21–23]. The emergence of characteristic density
patterns has been reported. In low-density systems, clustering
and phase separation appear [24–27], and in high-density
systems, topological defects induce density inhomogene-
ity through the inflow or outflow of particles around them
[12,28–31]. In a middle-density system, void regions are
observed, where the local particle number density is much
lower than the mean number density of the whole system.
Shi and Ma simulated an active nematic system with elliptical
particles at a middle density and claimed that void regions
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are generated through the collision of two +1/2 topological
defects [32].

In this study we focus on the middle-density system and
investigate the size of void regions, which should be essen-
tial to determine the properties of the whole system. We are
especially interested in whether the size of the void regions
is determined by the system size or by other properties of
the particles and bulk. The effect of the aspect ratio has been
conventionally focused on since the aspect ratio should be the
leading term in the low-density models with hydrodynamic
interaction. However, in our middle-density system, the parti-
cle shape should be another important factor to determine the
size of void regions because particles interact by direct colli-
sions. Actually, it was reported that the pattern dynamics of
active nematics with an excluded-volume effect are changed
by the particle geometry in active nematics. The transition in
the collective behavior was reported by changing the particle
aspect ratio in multiparticle systems with elliptical particles
[33] and with rodlike particles [34]. Moran et al. investigated
the effect of particle anisotropy on the clustering dynamics
by comparing the circular and regular polygonal particle sys-
tems [35,36]. We speculate that details of the geometry, as
well as the aspect ratio, may play an essential role in the
emergence of the spatiotemporal patterns in active nematic
systems. Therefore, we adopt the two different particle shapes,
rhomboidal and elliptical particles, in order to investigate the
effect of the difference in direct contact among particles. We
construct an active nematic model based on the one by Shi and
Ma [32] and perform numerical simulation. The aspect ratio
of particles is changed as a parameter to check the effect of
the magnitude of the nematic interaction. The local nematic
order, the area of void regions, and the winding numbers of
topological defects are analyzed. Through these analyses, the
possible relation between the characteristic void size and the
orientational structure of the void regions is discussed with
geometrical consideration.
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The paper is organized as follows. In Sec. II we explain the
methods of the simulation and the data analyses. In Sec. III
we show the results of the numerical simulation, focusing on
the particle-shape dependence in the local number density, the
local orientation, the topological defects, and the void regions.
In Sec. IV we discuss the mechanism to determine the char-
acteristic size of void regions, considering the orientational
structure around the void regions. In Sec. V we summarize
our study.

II. METHOD

A. Simulation model

We consider a two-dimensional squared system with a
periodic boundary condition, where the length of the sides
is L(sys) and the area is thus (L(sys) )2. The system includes N
self-propelled nematic particles with the same shapes. As the
shape of the nematic particles, two cases, i.e., rhomboid or
ellipse, are considered. We denote by xi,t the coordinates of
the center of mass (c.m.) of the ith (i = 1, . . . , N) particle at
a discrete time step t and by θi,t the angle of the traveling
direction, which meets one of the two long-axis directions
of the particle. We also introduce the variable �i,t , which
represents the memory of the overlap with other particles at
the last step.

The dynamics of the particles is described as follows. The
particles interact with each other only by the excluded-volume
effect. The trial motion is described with a tentative position
x′

i,t and angle θ ′
i,t as

x′
i,t = xi,t + D(t )

(
1 + η

(t )
i,t

)
e(θi,t )

+ �i,t D
(r)

(
1 + η

(r)
i,t

)
e
(
πη

(ϕ)
i,t

)
, (1)

θ ′
i,t = θi,t + πζi,t + �i,tπD(θ )η

(θ )
i,t (2)

and then the overlap with other particles is checked. The trial
motion is rejected if any overlap is detected, while it is ac-
cepted if overlap is not detected. In other words, the position,
the angle, and the memory at the next time step are determined
as

(xi,t+1, θi,t+1, �i,t+1)

=
{

(xi,t , θi,t , 1) if overlaps are detected at the trial,

(x′
i,t , θ

′
i,t , 0) otherwise.

(3)

In Eqs. (1) and (2), η
(t )
i,t , η

(r)
i,t , η

(ϕ)
i,t , and η

(θ )
i,t are stochastic

variables that obey the uniform distribution in [−1, 1]; 2D(t )

corresponds to the maximum distance of the motion in the
traveling direction of the particle; 2D(r) and πD(θ ) correspond
to the maximum distance of the motion in a random direction
and the maximum angle of a random rotation, respectively,
in the case that the overlap is detected at the last time step;
e(θ ) = (cos θ, sin θ ) is a unit vector in the direction of θ ; and
ζi,t is a stochastic variable representing the switching of the
traveling direction with a characteristic time τ ,

ζi,t =
{

1 probability of 1/τ

0 probability of 1 − 1/τ.
(4)

In this study the aspect ratio of the particle a is varied
from 1.5 to 6.0 as a parameter under the constraint that the
particle area s is constant and common for rhomboidal and
elliptical particles, that is to say, the long-axis lengths l (r) and
l (e) for rhomboidal and elliptical particles are determined by
s = (l (r) )2/2a and π (l (e) )2/4a, respectively. The area of the
particles is fixed to be s = π/23. The other parameters are
fixed as N = 4140, L(sys) = 30, D(t ) = 0.006, D(r) = 0.002,
D(θ ) = 0.015, and τ = 6. The time-evolution processes are
repeated up to t = 2 × 107. Ten numerical simulations are
performed for each parameter set, with different initial condi-
tions and different stochastic noise series. Statistic quantities
are calculated from the data every 104 time steps for t �
1 × 107 in the ten numerical results.

B. Data analysis

To measure the local number density, the local nematic
order, and the local mean orientation, Mx × My measure-
ment points are set on a regular grid, where Mx and My

are even numbers and we set Mx = My = 64 in the present
analysis. The measurement points are indexed as j = ( jx, jy)
( jx = 1, . . . , Mx and jy = 1, . . . , My) and the corresponding
positional vectors are y j = (L(sys) jx/Mx, L(sys) jy/My). Under
a given particle configuration {xi,t }, the local number density
ρ j,t at the measurement point j at the time step t is defined as

ρ j,t =
∫ ∑N

i=1 δ(r − xi,t )W (r − y j )dr∫
W (r − y j )dr

�
∑N

i=1 W (xi,t − y j )∫
W (r − y j )dr

. (5)

Here W (r) is a kernel function

W (r) =
{

0, |r| > 1

1 − |r|, |r| � 1
(6)

and δ(·) represents the Dirac delta function.
The local nematic order Pj,t at the measurement point j at

the time step t is defined as

Pj,t = |det Q j,t |. (7)

Here Q j,t is defined as

Q j,t =
(

H (cos)
j,t H (sin)

j,t

H (sin)
j,t −H (cos)

j,t

)
, (8)

where

H (cos)
j,t =

∫ ∑N
i=1 δ(r − xi,t )W (r − y j ) cos 2θi,t dr∫

W (r − y j )dr

�
∑N

i=1 W (xi,t − y j ) cos 2θi,t∫
W (r − y j )dr

, (9)

H (sin)
j,t =

∫ ∑N
i=1 δ(r − xi,t )W (r − y j ) sin 2θi,t dr∫

W (r − y j )dr

�
∑N

i=1 W (xi,t − y j ) sin 2θi,t∫
W (r − y j )dr

. (10)
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The local mean orientation φ j,t at the measurement point j at
the time step t is defined as

H0e2
√−1φ j,t = H (cos)

j,t + √−1H (sin)
j,t (H0 > 0). (11)

It should be noted that φ j,t cannot be defined at the measure-
ment points with H (cos)

j,t = H (sin)
j,t = 0.

Next, to characterize topological defects and void re-
gions, (Mx/2) × (My/2) coarse measurement points are
set on a regular grid. The coarse measurement points
are indexed as k = (kx, ky) [kx = 1, . . . , (Mx/2) and ky =
1, . . . , (My/2)] and the corresponding positional vectors are
zk = (2L(sys)kx/Mx, 2L(sys)ky/My). It should be noted that
y2k = zk holds.

A coarse measurement point indexed by k is referred to
as a void point if the minimum of the nine values ρ j,t for
jx = 2kx, 2kx ± 1 and jy = 2ky, 2ky ± 1 is less than 0.3ρ (sys),
where ρ (sys) = N/(L(sys) )2. A void region is defined as the
eight neighboring connected void points. The number of void
regions at the time step t is represented as N (void)

t . The area of
the mth void region at the time step t is defined as S(void)

m,t =
χm,t (L(sys) )2/(MxMy/4) (m = 1, . . . ,N (void)

t ), where χm,t is
the number of void points belonging to the mth void region.
The mean area of void regions weighted by the void region
area at the time step t is defined as

S̄(void)
t =

∑
m

(
S(void)

m,t

)2∑
m S(void)

m,t

. (12)

Then 〈S̄(void)〉 is defined as the mean of S̄(void)
t with respect to

t and the ten trials.
The winding number k,t at the coarse measurement point

indexed by k is calculated as follows. First, the indices of
the surrounding eight measurement points around the focused
coarse measurement point are set as j = J (k)

1 , . . . , J (k)
8 so that

they surround the focused point counterclockwise. The wind-
ing number of the void region indexed by m at the time step t is
calculated almost in the same manner except for the choice of
the path. The indices of the measurement points surrounding
the focused void region are set as jt = J (m)

1,t , . . . , J (m)
g,t (g =

νm,t ) so that they surround the focused void region indexed
with m counterclockwise. Here νm,t is the number of the
surrounding measurement points around the mth void region.
We define the local orientation difference between the neigh-
boring coarse measurement points J′ and J′′ as

�φJ′,J′′,t = φJ′,t − φJ′′,t

(
−π

2
< �φJ′,J′′,t <

π

2

)
. (13)

Then the winding number is calculated as

k,t = 1

2π

8∑
�=1

�φJ (k)
�

,J (k)
�−1

(14)

for coarse measurement points and that of the void regions is
calculated as

�m,t = 1

2π

νm,t∑
�=1

�φJ (m)
�,t ,J (m)

�−1,t
(15)

for void regions. Here it should be noted that we set J (k)
0 =

J (k)
h and J (m)

0,t = J (m)
g,t , and islands of the coarse measurement

points with ρ j,t � 0.3ρ (sys) inside void regions are ignored
and only the coarse measurement points along the peripheries
of the void regions are considered.

III. RESULTS

Figure 1 shows the results of the numerical simulation.
Snapshots at t = 1.9 × 107 for the systems with rhomboidal
and elliptical particles, with the aspect ratios a = 3.0, 4.0, and
5.0, are shown in Figs. 1(a) and 1(b). Figures 1(c)–1(f) show
the corresponding local number density ρ j,t/ρ

(sys) [Figs. 1(c)
and 1(d)] and the local nematic order Pj,t [Figs. 1(e) and
1(f)]. In both systems with rhomboidal particles and systems
with elliptical particles, the void regions that are shown as
the white regions in Figs. 1(e) and 1(f) are observed for the
higher aspect ratio. In addition, the particles are more aligned
for the higher aspect ratio, as shown in Figs. 1(e) and 1(f).
The void regions are observed for rhomboidal particles with
a = 4.0 and 5.0 and elliptical particles with a = 5.0. Multiple
small void regions are observed in the systems with rhom-
boidal particles, while a single large void region is observed
in the systems with elliptical particles. Figures 2(a) and 2(b)
show the local mean orientations φ j,t with the positions of the
topological defects in the systems with rhomboidal [Fig. 2(a)]
and elliptical [Fig. 2(b)] particles for a = 5.0. In these rep-
resentative results, most of topological defects appear with
the winding number ±1/2 and the void regions appear with
the winding number 1. Figure 3 shows the number density
of defects depending on the aspect ratio a for both systems
with rhomboidal particles and systems with elliptical par-
ticles. It decreases with an increase in a, and the systems
with rhomboidal particles include more defects than those
with elliptical particles for the same aspect ratio. Almost all
topological defects have the winding number +1/2 or −1/2,
and the defects with the winding numbers more than +1/2
or less than −1/2 are rarely observed. Figure 4 shows the
number density of void regions with various winding numbers
for both systems with rhomboidal particles and systems with
elliptical particles. Void regions are not observed for a � 3
in the systems with rhomboidal particles and for a � 4 in
those with elliptical particles. Nonmonotonic changes of the
number density of void regions with an increase in a are
observed. The number density of void regions is higher in
systems with rhomboidal particles than in systems with ellip-
tical particles. Almost all void regions have positive or zero
winding numbers. The fraction of the winding number +1
increases with an increase in a. The void regions with winding
numbers over +1 are rarely observed and those with negative
winding number are not observed. Figure 5(a) shows the mean
size of void regions 〈S̄(void)〉 against a in both systems with
rhomboidal particles and systems with elliptical particles. The
mean size 〈S̄(void)〉 increases with an increase in a for higher
aspect ratio for both systems. In addition, for these a, the
standard deviation of S̄(void) in systems with rhomboidal par-
ticles is smaller than that in systems with elliptical particles.
The distribution of the void region area for both systems with
a = 5.0 is shown in Figs. 5(b) and 5(c). The distribution is
weighted by the void region area S(void). The distribution is
narrower in systems with rhomboidal particles than in systems
with elliptical particles.
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FIG. 1. Representative results of the numerical simulations for the systems with (a), (c), and (e) rhomboidal and (b), (d), and (f) elliptical
particles at t = 1.9 × 107 for aspect ratio (i) a = 3.0, (ii) a = 4.0, and (iii) a = 5.0. (a) and (b) Snapshots. The particle shape is illustrated on
the upper side. (c) and (d) Local number density ρ j,t/ρ

(sys). (e) and (f) Local nematic order Pj,t , where white areas indicate the void regions in
(e) and (f).

IV. DISCUSSION

Here we focus on the emergence of the void regions de-
pending on the particle shape and the aspect ratio. To discuss
the character of the void regions quantitatively, we define the
variance σ 2

t of the local number density ρ j,t with respect to j
at the time step t as

σ 2
t =

∑
j (ρ j,t − ρ̄t )2

MxMy
, (16)

where ρ̄t is the mean of ρ j,t with respect to j at the time step
t and 〈σ 2〉 is defined as the mean of σ 2

t with respect to t and
the ten trials. Figure 6(a) shows that the local density variance

+1/2
−1/2

  +1

(a)

defect

(b)

FIG. 2. Local mean orientations φ j,t with the positions of the
topological defects in the systems with (a) rhomboidal and (b) el-
liptical particles for a = 5.0 at t = 1.9 × 107. White areas indicate
the void regions.

〈σ 2〉 changes from 〈σ 2〉 ∼ 0 to finite values at a = 3.0 and
4.0 in systems with rhomboidal and elliptical particles, respec-
tively. The transition in 〈σ 2〉 corresponds to the emergence of
the void regions as shown in Fig. 4. Figure 6(b) shows the
total area of void regions 〈∑m S(void)

m 〉, which shows almost
the same aspect ratio dependence as 〈σ 2〉. To discuss the
relationship between the emergence of void regions and the
particle orientational order, we define the mean local nematic
order 〈P̄〉 as the mean of P̄t with respect to t and the ten
trials, where P̄t is the mean of Pj,t with respect to j for the
region with ρ � 0.3ρ (sys). Figure 6(c) shows that the local
nematic order 〈P̄〉 gradually increases with an increase in a
both in systems with rhomboidal particles and in systems
with elliptical particles, even at the aspect ratio 3.0 � a � 4.0,
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FIG. 3. Number density of the topological defects depending on
the aspect ratio a for the systems with (a) rhomboidal and (b) ellipti-
cal particles. The colors indicate the winding numbers. The fractions
of the defects with winding numbers more than +1/2 or less than
−1/2 are too small to recognize.
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FIG. 4. Number density of the void regions depending on the
aspect ratio a for the systems with (a) rhomboidal and (b) elliptical
particles. The colors indicate winding numbers.

where 〈σ 2〉 and 〈∑m S(void)
m 〉 sharply increase. This suggests

that void regions can emerge without the drastic change in the
orientation order.

The number density of void regions in systems with el-
liptical particles is smaller than that in the systems with
rhomboidal particles, as shown in Fig. 4. We consider that
the remarkable difference between the systems with rhom-
boidal particles and those with elliptical particles is the size
and stability of the void regions. In the systems with rhom-
boidal particles, the voids have a characteristic size, which
is an increasing function of the aspect ratio, as indicated in
Fig. 5. Actually, it shows that the distribution of S(void) with
rhomboidal particles for a = 5.0 is narrower than that with
elliptical particles. The total area of void regions is saturated
around a = 5.0, as shown in Fig. 6(b). The combination of
the aspect-ratio-dependent characteristic size and the satura-
tion of the total void area should lead to the nonmonotonic
dependence of the number density of void regions shown in
Fig. 4. In contrast, in the systems with elliptical particles, the
void regions do not exist stably for the lower aspect ratio.

150
(a)

S(v
oi

d)

0

_

S(void)

fr
ac

tio
n

fr
ac

tio
n

0.0

0.1

0.0

0.1

0 50 100 150

0.1

0.00 150

(b) (c)

0 50 100 150
S(void)

rhomboid
ellipse

a
2.0 6.04.0

0.1

0.00 150

FIG. 5. (a) Ensemble and time average of the void area 〈S̄(void)〉.
Error bars indicate standard deviation. Histograms of the void area
S(void) are shown for the systems with (b) rhomboidal and (c) ellipti-
cal particles. The aspect ratio is a = 5.0. The fraction is weighted by
the void region S(void). The fraction with respect to the count is shown
in the insets.
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FIG. 6. Ensemble and time average of (a) the local number den-
sity variance 〈σ 2〉, (b) the total area of void regions 〈∑m S(void)

m 〉,
and (c) the local nematic order 〈P̄〉. Error bars indicate standard
deviation.

We consider that the density fluctuation becomes greater for
the higher-aspect-ratio and the lower-density regions because
the fluctuations are counted as the void regions. This reflects
that the fraction of voids with zero winding number is higher
for systems with elliptical particles, as shown in Fig. 4(b).
For the higher aspect ratio a � 5.0, the void size should be
bounded by the system size. This results in the saturated
behavior of the number density of the void regions in the
systems with elliptical particles.

Figure 4 shows that some void regions have winding num-
ber +1. Seeing particle orientation around the void regions,
many void regions with winding number +1 are surrounded
by particles whose long axes are directed along the periph-
eries of these void regions, as shown in Fig. 7. We consider
that the size of the void regions may be associated with the
particle orientation around them. To discuss the characteristic
void area, we evaluate the orientational correlation lengths.
They are calculated from a spatial correlation function C(r)
of particle orientation, which is defined as

C(r) = 〈cos 2(θi,t − θi′,t )〉r<|xi−xi′ |<r+�r . (17)

)b()a(

+1/2
−1/2

  +1

defect

FIG. 7. Enlarged views around a void region with winding num-
ber +1 for the systems with rhomboidal particles for a = 5.0, which
are taken from (a) Fig. 1(a) and (b) Fig. 2(a). The area with 10 × 10
is shown.
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FIG. 8. (a) and (b) Spatial correlation of the particle orientation
C(r) in the whole region for the systems with (a) rhomboidal and
(b) elliptical particles. (c) and (d) Spatial correlation of the particle
orientation for particle pairs located around the same void regions
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ticles. (e) and (f) Correlation lengths in the whole region λ(C) and
those for particle pairs located around the same void regions λ

(void)
(C)

depending on the aspect ratio a for the systems with (e) rhomboidal
and (f) elliptical particles.

Here 〈·〉r<|xi−xi′ |<r+�r denotes the mean with respect to pairs
of the ith and i′th (i, i′ = 1, . . . , N) particles with distances
r < |xi − xi′ | < r + �r and with respect to t and the ten tri-
als. The correlation length of the particle orientation λ(C) is
defined as the minimum length r that satisfies C(r) < e−1. The
spatial correlation of the particle orientation for the particle
pairs located around the same void regions C(void)(r) is also
defined as

C(void)(r) = 〈cos 2(θi,t − θi′,t )〉{r<|xi−xi′ |<r+�r|i,i′∈Pm,t }. (18)

Here Pm,t is the set of indices of the two particles whose dis-
tances from void points belonging to the mth void region are
both less than 1 at the time step t and 〈·〉{r<|xi−xi′ |<r+�r|i,i′∈Pm,t }
denotes the mean of the values for the particle pairs, both
of which are the elements of Pm,t and whose distances are
r < |xi − xi′ | < r + �r, and with respect to t and the ten
trials. The correlation length λ

(void)
(C) of particle orientation is

defined as the minimum length r that satisfies C(void)(r) <

e−1. Figure 8 shows C(r), C(void)(r), λ(C), and λ
(void)
(C) for both

systems with rhomboidal particles and systems with elliptical
particles. The correlation lengths λ(C) and λ

(void)
(C) increase with

an increase in a in both systems. We also evaluate the ori-
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void c.m.

FIG. 9. (a) Schematic illustration for the angle difference
ϑ

(void)
m,i′′,t − θm,i′′,t . (b) Ensemble and time average of the orienta-

tional correlation functions of particles and void peripheries 〈β̄〉.
(c) Schematic illustration for the estimation of void sizes S(void)

(C)

from λ
(void)
(C) . The void region is considered as a circumscribed cir-

cle surrounded by edges whose length is given as the orientational
correlation length. The radius R of the void region is calculated as
in Eq. (21). (d) Ratio S(void)

(C) /〈S̄(void)〉 against a. The data for a < 3.0
in the systems with rhomboidal particles and a < 4.0 in the systems
with elliptical particles could not be evaluated because the number of
voids was too small.

entational correlation between particles and void peripheries,
which is defined as

βm,t = 〈
cos 2

(
ϑ

(void)
m,i′′,t − θi′′,t

)〉
{i′′∈Em,t }. (19)

Here Em,t is the set of indices for the particles whose distances
from void points belonging to the mth void region are less
than 1 at the time step t , which indicates the particles at
the void periphery; 〈·〉{i′′∈Em,t } denotes the mean of the values
for the particles which are the elements of Em,t ; and ϑ

(void)
m,i′′,t

is the angle of the line perpendicular to the line connecting
xi′′,t and the c.m. of the mth void region at the time step t .
The schematic illustration of the definition ϑ

(void)
m,i′′,t − θm,i′′,t is

shown in Fig. 9(a). Then 〈β̄〉 is defined as the mean with
respect to m, t , and the ten trials. The orientational correlations
〈β̄〉 in the systems with rhomboidal particles are higher than
those in the systems with elliptical particles, as shown in
Fig. 9(b). The particles around void regions are more oriented
along the void peripheries in the systems with rhomboidal
particles than in the systems with elliptical particles. The
data for a < 3.0 in the systems with rhomboidal particles and
a < 4.0 in the systems with elliptical particles could not be
evaluated because the number of voids was too small. We
expect that the lower mobility due to the almost close-packed
structure in the systems with rhomboidal particles leads to the
difference in the orientation around void regions. Considering
the alignment of the particles surrounding the void regions,
we estimate void areas S(void)

(C) from λ
(void)
(C) for each a. Fig-

ure 9(c) shows the schematic illustration for the definition of
S(void)

(C) . Here we expect that the angle difference between two
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particles with a distance of λ
(void)
(C) along the void periphery is

(arccos (e−1))/2 considering the definition of the correlation
length. If the void regions have circular shapes, the void areas
S(void)

(C) are estimated as

S(void)
(C) = π

(
R(void)

(C)

)2
, (20)

where

R(void)
(C) = 2πλ

(void)
(C)

arccos (e−1)/2
. (21)

Figure 9(d) shows S(void)
(C) /〈S̄(void)〉 against a for the compari-

son between the observed mean void area and the estimated
one. The ratio for rhomboidal particles is almost constant,
while that for elliptical particles greatly varies depending on
a. In addition, it should be mentioned that the systems with
rhomboidal particles include more void regions with winding
number +1 than those with elliptical particles, as shown in
Fig. 4. These results suggest that the void areas in the systems
with rhomboidal particles could be directly determined by the
orientational correlation length. Since the circularity of the
void regions is important for the success in this estimation,
the systematic analysis of the void shapes should be focused
on in future work.

Our results show that not only the particle aspect ratio but
also the particle shape changes the number and size of void
regions through direct collisions among particles. In many
studies on active nematics with hydrodynamic models, only
the aspect ratio of the particles is included in their models
[37,38]. Our study clearly shows that the details of both the
particle shapes and the aspect ratio of the particles influence
the macroscopic collective motion in a system of dry active
nematics in which particles directly collide with each other.

Previously, Großman et al. reported the spatiotemporal
pattern formation based on a model similar to the present one
[39]. They introduced a noise term in the angular motion in

their model, while the particles change their motion directions
only by the collision with the other particles in our model. We
leave for future work the consideration of obtaining a char-
acteristic dimensionless parameter such as the Péclet number
by varying the characteristic reversal time τ from the direct
numerical simulation.

V. CONCLUSION

We simulated a model of active nematics, in which rhom-
boidal or elliptical particles interact by direct collision, and
investigated it, by varying the particle aspect ratio, to observe
the correlation between the collective pattern and the parti-
cle shape. The local density variance and the local nematic
orientation increase with an increase in the aspect ratio both
in systems with rhomboidal particles and in systems with
elliptical particles. Void regions, where the particle number
density is almost zero, appear only for the higher aspect ratio
in both systems. The systems with rhomboidal particles have
the characteristic void size, which has a positive correlation
with the aspect ratio, while the systems with elliptical particles
do not have the clear characteristic void size and show a
broad size distribution. Most void regions are surrounded by
particles whose long axes are along the peripheries of the void
regions in the systems with rhomboidal particles. Considering
the proportionality between the observed void area and the
void area estimated from the orientational correlation length,
the size of the void regions might be determined by the par-
ticle shape and the aspect ratio through the difference in the
orientational correlation length.
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