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The separation of chiral matter has garnered significant attention due to its wide-ranging applications in
biological and chemical processes. In prior researches, particle interactions were predominantly repulsive, but
the indiscriminate attraction among particles under attractive interactions makes the separation of mixtures
more difficult. The question of whether chiral mixed particles, characterized by attractive effects, can undergo
spontaneous separation, remains unresolved. We study a binary mixture of chiral (counterclockwise or clock-
wise) active particles with attractive interactions. It is demonstrated that attractive chiral particles can undergo
spontaneous separation without the aid of any specific strategies. The key factor driving the separation is the
attractive interactions, enabling the formation of stable clusters of particles with same chirality. There exist
optimal parameters (self-propelled velocity, angular velocity, and packing fraction) at which the separation is
optimal. Our results may contribute to a deeper understanding of the mechanisms behind chiral matter separation
and potentially catalyze further experimental investigations in this field.
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I. INTRODUCTION

In recent years, active matter has garnered significant at-
tention from physicists, as the injection of external energy
drives these systems far from equilibrium [1], leading to a
range of intriguing phenomena such as directional transport
[2–11], mobility-induced phase separation (MIPS) [12–15],
glassy dynamics [16,17], flocking transitions [18–26], and so
on. These findings are of crucial importance for understanding
various biological and chemical scenarios, as well as for de-
signing microscale devices. A fundamental example of active
matter is particles with self-propulsion capabilities, where
changes in their direction of motion are typically driven by
thermal fluctuations and remain unbiased. Interestingly, when
the translational motion with self-propulsion and rotational
motion are coupled in chiral matter (where chirality origi-
nates from chiral shape or propulsion symmetry breaking),
they give rise to trajectories resembling circular motion in
two dimensions (or helices in three dimensions). Such active
chiral motion is widely observed in biological and chemical
matter, such as bacteria [27–30], malaria parasites [31], heli-
cally swimming sperm cells [32–34], chiral microtubules [35],
shape-asymmetric colloidal [7,36,37], and granular ellipsoids
[38,39]. A plenty of peculiar phenomena in chiral matter
systems are becoming increasingly captivating [40], which
includes collective behaviors [41–46], odd viscosity [47–51],
active turbulence and vortices [50–53], hyperuniform states
[54], and separation of mixtures [38,55–67].

*Contact author: aibq@scnu.edu.cn

The separation of chiral mixtures holds significant poten-
tial in various fields such as bioengineering and chemical
engineering. This is particularly true in two-dimensional
space, where opposite chirality results in entirely contrasting
kinetic behaviors (clockwise or counterclockwise rotation),
thus offering a robust basis for mixture separation. Reported
separation of chiral mixtures requires the presence of ex-
tra special interactions or specific external manipulations
[38,55–66]. Examples of the former include the separation
of particles with opposite chirality under explicit alignment
interactions [55–57], the spinodal decomposition of gearlike
particles leading to phase separation [58,59], the self-sorting
of active semiflexible filaments caused by intrinsic curvature
[60], and demixing of binary mixtures induced by hydro-
dynamical interactions [61]. Examples of the latter include
well-designed geometric constraints such as chiral flower
patterns [62], asymmetric pattern arrays [63], polarized wall
currents [64], and periodic potentials [38], as well as external
driving forces like shear flow [65] and convective roll arrays
[66]. In addition, the chiral mixture can be separated with
the assistance of the local alignment effect induced by MIPS
[67]. In the earlier mentioned separation system of chiral
mixed particles, the interactions between particles are purely
repulsive. However, in practical systems, attractive interac-
tions [26,68,69] are also commonly present. Due to these
attractive forces between particles, different types of particles
tend to tightly bind together, thereby making their separation
very difficult. Therefore, whether chiral mixed particles with
attractive interactions can spontaneously separate without
the assistance of external strategies remains an unanswered
question.
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To answer this question, we investigated the segregation
of binary mixture of active chiral particles with attractive
interactions. It is found that particles of opposite chirality
can spontaneously segregate without the need for any special
interactions (such as alignment interactions) or external ma-
nipulation. The core mechanism behind this is the attractive
interactions, which leads to the clustering of particles with
same chirality. The segregation coefficient exhibits a peak
function concerning the self-propelled velocity, angular ve-
locity, and packing fraction, with an optimal parameter range
that maximizes the degree of segregation. Our work proposes
a different mechanism for the spontaneous segregation of
attractive chiral particles, which will provide a theoretical
foundation for the experiments related to the demixing of
chiral matter.

II. MODEL AND METHODS

We consider a binary mixture system composed of N chiral
self-propelled particles [50% counterclockwise (CCW) and
50% clockwise (CW) particles] with diameter σ in a two-
dimensional L × L box under periodic boundary conditions.
The dynamics of each particle is characterized by its central
position ri ≡ (xi,yi ) and its polarity vector ni ≡ (cos θi, sin θi ),
where θi is the orientation. The orientation is determined
by rotational diffusion and a constant torque. Therefore, the
dynamics of particle i can be described by the following
equations:

mr̈i = −γ ṙi + Fi + γ v0ni + γ
√

2D0ξi(t ), (1)

θ̇i = qi� +
√

2Drηi(t ), (2)

where m is the mass; γ is the friction coefficient; v0 denotes
the self-propulsion speed; D0 and Dr represent the transla-
tional diffusion coefficient and rotational diffusion coefficient,
respectively; and ξi(t ) and ηi(t ) are Gaussian white noises
with unit variance with zero mean. The constant angular
velocity � originates from the torque suffered by the par-
ticles, which proceeds a circular motion with orbital radius
R = v0/�. The two directions that distinguish chiral motion
are represented by q = ±1, where q = 1 corresponds to the
CCW particles and q = −1 corresponds to the CW particles.

The interactions between particles are modeled by the
Lennard-Jones potential, which reads ULJ(r) = 4ε[(σ/r)12 −
(σ/r)6] for r � 3σ and zero otherwise; ε is the interaction
strength. Note that such a selection of the cutoff distance
allows for the presence of attractive interactions between par-
ticles when the distance exceeds 21/6σ . Thus, the force is
Fi = −∇iU , where U = ∑

i< j ULJ(|ri − r j |).
In order to quantify the degree of demixing between the

two types of particles, a segregation coefficient S based on
the Voronoi tessellation has been introduced [70],

S =
〈
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N

N∑
i=1

2

(
ns

i

nt
i

− 1

2

)〉
t

, (3)

where ns
i represents the number of particles in the

neighborhood of particle i that belong to the same species as
it and nt

i represents the total number of neighbors of particle
i. The brackets 〈...〉t denote a time average. By definition,

S = 1 corresponds to complete demixing, whereas S = 0
corresponds to complete mixing.

To quantify the hidden velocity alignment in a system with
attractive interactions, we define a spatial correlation function
of the velocity direction [71],

Q(r) = 1

N

N∑
i=1

Qi(r), (4)

where Qi(r) = 1 − 2
∑

j di j/(πMk ); di j is the angular dis-
tance between the velocity angle φi (respect to the x axis) of
particle i and the velocity angle φ j of its neighbors within
radius r, obtained by min{|φi − φ j |, 2π − |φi − φ j |}; Mk is
the number of particles in the circle shell with radius r; and
Q(r) = 1, Q(r) = −1 and Q(r) = 0 mean perfect velocity
alignment, antivelocity alignment and no velocity alignment,
respectively.

We numerically integrate Eqs. (1) and (2) using the
stochastic Euler algorithm with a time step 
t = 10−3 and
a total time ttotal = 105. Initially, the two types of particles
are uniformly mixed and randomly distributed within the box,
with their orientational angles selected randomly from the
range [0, 2π ]. The system undergoes such a ttotal sufficient to
reach a nonequilibrium steady state, after which we perform
a time average of the separation coefficient over an additional
1000τ (τ = 2π/�). The packing fraction is defined as � =
Nπσ 2/(4L2). We set ε = 0.6 to get a moderate strength of
attractive interactions. Unless otherwise stated, the following
simulation results are obtained under the parameter sets m =
1.0, γ = 1.0, Dr = 10−4, and D0 = 10−7.

III. RESULTS AND DISCUSSION

To effectively separate two types of particles, two general
conditions need to be met. First, there must be noticeable
distinctions in the motion behaviors between the two particle
types. In our system, consisting of particles with different chi-
rality, they move in circular paths in opposing directions, thus
satisfying the first condition. Second, particles of the same
type gather while those of different types disperse, resulting
in the formation of stable clusters for each particle type. This
often requires explicit alignment interactions [55–57], which
are absent in our system.

However, a recent study has found that active Brown-
ian particle systems with attractive interactions can undergo
a flocking transition without explicit alignment interactions
[26]. The mechanism involves the attractive interactions in-
ducing active particles to form stable pairs, leading to local
velocity alignment, and, subsequently, the attractive inter-
actions between aligned small clusters give rise to aligned
large clusters. This phenomenon nicely satisfies the second
condition required for particle separation, making particle
separation achievable in our system.

To specifically investigate the separation mechanism of
binary chiral attractive particles, we explore the separation dy-
namics under variations in self-propulsion speed v0, angular
velocity �, and packing fraction �.

Figure 1 illustrates the typical snapshots of the binary
mixture consisting of 1000 CCW particles and 1000 CW
particles for different angular velocity � at v0 = 2.5 and
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FIG. 1. Typical snapshots of the binary system of 1000 CCW particles (blue disks) and 1000 CW particles (red disks) for different � at
v0 = 2.5 and � = 0.27.

� = 0.27. When � = 0, the chirality difference is absent,
and the two types of particles are indistinguishable, making
demixing impossible [as shown in Fig. 1(a)]. The presence
of attractive interactions leads to local alignment of active
particles within a very small range [as shown in Fig. 2(a)].
Note that the flocking state reported by Ref. [26] has vanished
at v0 = 2.0, so only very weak local alignment is present in
our system with v0 = 2.5. When the angular velocity takes a
relatively small value (e.g., � = 0.5), although there is chi-
rality difference, the attractive interaction cannot take effect
under large-radius circular motion (R > 3σ ), leading to the
disappearance of local alignment [as shown in Fig. 2(b)].
This prevents particles of the same chirality from forming
stable clusters [as shown in Fig. 1(b)], and the two types of
particles remain inseparable. When the angular velocity takes
an intermediate value (e.g., � = 0.9), the radius of circular
motion satisfies 21/6σ < R < 3σ , for which the attractive in-
teractions are significant and local alignment is strong [as
shown in Fig. 2(c)]. Particles within the range 21/6σ < r <

3σ , regardless of whether they have the same chirality, will
form pairs due to attraction and exhibit local alignment. If
particles of the same type come into contact, then they cluster
and rotate in the same direction due to local alignment [as
shown in Figs. 3(a) and 3(b)]. If particles of different types
collide, then their opposite chirality causes them to rotate in
opposite directions, leading to spatial separation [as shown
in Fig. 3(c)]. With both distinct chirality and the ability of

same-type particles to form stable local clusters, we observe
the separation of the two types of particles, each forming small
clusters that collectively undergo circular motion [as shown in
Fig. 1(c)]. The process of cluster formation described above
readily evokes the concept of odd viscosity [49], which results
in radial compression and increased density of particles of the
same chirality. We propose that odd viscosity enhances the
binding of particles of the same chirality, thereby promoting
the separation of particles of opposite chirality. Due to con-
straints imposed by the single-particle circular motion radius,
it is challenging for clusters of the same type to combine
into stable larger clusters. In other words, as the cluster size
increases, outer particles require greater linear velocity to
remain within the cluster. However, particle linear velocity is
limited (�v0). When the cluster size significantly exceeds the
radius R of circular motion of particles in their free state, outer
particles cannot stably follow the cluster. To demonstrate this,
we included a probability distribution plot of cluster sizes rc

(as shown in Fig. 4), where the curve exhibits a sharp decline
at rc ≈ R. When the angular velocity takes a relatively large
value (e.g., � = 2.5), particles undergo circular motion with
a very small radius, for which self-propulsion is neglectable
and the generation of local alignment is hindered [as shown in
Fig. 2(d)]. Consequently, the two types of particles are mixed
[as shown in Fig. 1(d)].

The local alignment can be quantified by the corresponding
spatial velocity correlation function Q(r) which is displayed

FIG. 2. The velocities of particles for typical snapshots in Fig. 1. The color on the velocity vector represents the mapping of velocity
direction angles.
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FIG. 3. Sketch of the mechanism of the segregation. (a) Parti-
cles within the attraction range attract each other and undergo local
velocity alignment. (b) Particles with the same chirality maintain
alignment and collectively perform circular motion. (c) Particles
with opposite chirality perform circular motion with opposite angular
velocities after align, leading to alignment disruption and separation
of the two particles.

in Fig. 5(a). The Q(r) for � = 0 is slightly stronger than the
Q(r) for both smaller (e.g., � = 0.5) and larger (e.g., � =
2.5) angular velocities, indicating that the local alignment for
� = 0 is slightly stronger than in the latter two cases. It should
be noted that when a tailored intermediate value of angular
velocity (e.g., � = 0.9) is chosen, the velocity correlation
function and correlation length noticeably increase, suggest-
ing the presence of significant local alignment in the system.
Figure 5(b) shows the number of clusters 〈Ncluster〉 and max
size of clusters 〈rc,max〉 versus angular velocity � at v0 = 2.5.
When � increases, 〈rc,max〉 undergoes twice decrease followed
by increase, corresponding to 〈Ncluster〉 experiencing twice

FIG. 4. Probability distribution of cluster sizes rc at v0 =
2.5, � = 0.9, and � = 0.27.

FIG. 5. (a) The spatial velocity correlation function Q(r) versus
the distance r for typical snapshots shown in Figs. 1(a)–1(d). (b) The
number of clusters and size of max cluster as functions of angular
velocity � at v0 = 2.5.

increase followed by decrease. The first phase occurs because
the particle’s circular motion radius R is significantly larger
than the range where attraction dominates, enhancing chiral
motion and weakening local alignment, thereby reducing clus-
ter stability. If � continues to increase, then R approaches and
falls within the dominance range of attraction, leading to pro-
nounced separation where particles of the same chirality form
stable clusters. The second phase occurs because R is smaller
than the dominance range of attraction, weakening both local
alignment and separation phenomena. Further increasing �

renders self-propulsion negligible, local alignment completely
disappears, and particles aggregate to form a large circular
cluster resembling attractive passive particles.

Figure 6(a) plots the separation coefficient S as a function
of angular velocity � for different values of v0 at � = 0.27,
which quantifies the degree of separation between the two
types of particles. S initially increases with increasing � and
then decreases. There exists an optimal angular velocity �op

that maximizes the degree of demixing. When � → 0, both
types of particles exhibit infinite radii (i.e., linear motion), and
their dynamic behaviors become identical. Consequently, they
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FIG. 6. (a) The dependence of separation coefficient S on angular velocity � for different v0 at � = 0.27. (b) Self-prolusion speed v0 as a
function of the optimal angular velocity �op, which is a linear function with slope = 0.9.

cannot separate and S → 0. When � → ∞, the radii of par-
ticle circular motion approach zero, rendering self-propulsion
almost ineffective, and causing the loss of local alignment.
Thus, neither type of particles is able to form stable clus-
ters and S → 0. When � takes an appropriate intermediate
value, the two types of particles exhibit significant dynamic
differences, with attractive interactions dominating within the
radius range of particle circular motion (21/6σ < R < 3σ ).
Therefore, under the contribution of local alignment, the two
types of particles can separate and form clusters, even re-
sulting in the maximum value of S (� = �op). Furthermore,
we observe that with an increase in v0, the position of peak
shifts towards higher values of angular velocity. Figure 6(b)
illustrates the dependence of self-propulsion speed v0 on the
optimal angular velocity �op, revealing an approximate linear
relationship (slope = 0.9). The linear relationship between
v0 and �op arises from the necessity for the optimal sep-
aration state to occur when the particle’s circular motion
radius (R = v0/�) aligns with the value where interparti-
cle attractive interactions dominate. Thus, as v0 increases,
�op must also approximately increase linearly to ensure
the resulting radius matches the dominance of attractive
forces.

Figure 7 displays the function of the separation coefficient
S versus the self-propulsion speed v0 for different � at � =
0.27. One can observe that S is a peak function with respect to
v0. When v0 is small, the particles have smaller motion radii,
resulting in insignificant self-propulsion and weak local align-
ment [as shown in Fig. 8(a)], so S is small. When v0 is very
large, on the one hand, both types of particles tend towards
linear motion, leading to a less pronounced chirality differ-
ence; on the other hand, larger self-propulsion force makes
it easier for them to break away from clusters and break the
local alignment [as shown in Fig. 8(a)], which is detrimental
to separation, thus causing S to tend towards zero. Moreover,
the position of the peak shifts to the right with increasing
angular velocity �. Figure 8(b) plots the number of clusters

〈Ncluster〉 and size of the max cluster 〈rc,max〉 as functions of
self-propulsion speed v0 at � = 1.0. Around v0 = 2.8, the
separation coefficient S sharply decreases accompanied by a
sudden decrease in 〈rc,max〉 (or a sharp increase in 〈Ncluster〉).

We plot the phase diagram of the separation coefficient
S in the � − v0 representation at � = 0.27 in Fig. 9. Both
excessively large or small self-propulsion speed v0 and angu-
lar velocities �, are unfavorable for demixing to occur, and
particles with larger � require larger v0 to realize separation.
This is because, on the one hand, the two types of particles re-
quire a noticeable chirality difference, and on the other hand,
they also need appropriate motion radii (i.e., a combination
of appropriate v0 and �) for local alignment to take place,
thereby enabling the formation of stable clusters.

FIG. 7. Separation coefficient S as a function of self-propulsion
speed v0 for different � at � = 0.27.
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FIG. 8. (a) The spatial velocity correlation function Q(r) versus
the distance r for different self-propulsion speed v0 at � = 1.0.
(b) The number of clusters and size of max cluster as functions of
self-propulsion speed v0 at � = 1.0.

FIG. 9. Phase diagram of the separation coefficient S in the
� − v0 representation at � = 0.27.

The typical snapshots of the binary mixture consisting of
1000 CCW particles and 1000 CW particles for different
packing fraction � at v0 = 2.5 and � = 0.9 are shown in
Fig. 10, where � is altered by changing the size of the box
L, and the snapshots are all scaled from their actual sizes to
a standardized image dimension. When the packing fraction
is very small (e.g., � = 0.03), the particles are widely spaced
apart [shown in Fig. 10(a)], resulting in weak interactions and
therefore limited local alignment [shown in Fig. 11(a)]. Con-
sequently, even if the two types of particles exhibit significant
dynamical differences, they are unable to form distinct clus-
ters individually, thus hampering demixing. Furthermore, the
particles can only form small clusters with nearby neighbors
under the influence of attraction, and these small clusters can
only undergo circular motion within a small range, thus even
with prolonged time, they cannot merge with other clusters
whose distance is much greater than the circular motion ra-
dius. To prove that the cluster evolution has reached a steady
state, we calculated the evolution of cluster number and maxi-
mum cluster size over time, which shows in Appendix. When
the packing fraction is at an intermediate value (e.g., � =
0.21 and � = 0.27), the distance between particles is moder-
ate [as shown in Fig. 10(b) and 10(c)], promoting strong local
alignment due to prevailing attractive interactions [shown in
Figs. 11(b) and 11(c)]. As a result, clusters of the same type
of particles are formed when encountering each other due to
the alignment effect, while particles of different types sep-
arate when their rotation directions are opposite, leading to
a clear separation of the two types of particles. When the
packing fraction is very large (e.g., � = 0.5), the distance
among particles becomes too small [shown in Fig. 10(d)],
leading to predominant repulsive interactions and limited oc-
currence of local alignment [shown in Fig. 11(d)]. Thus,
clusters of the same type of particles cannot form stably, pre-
venting demixing from occurring. Furthermore, in mixtures,
particles of opposite chirality counteract each other, leading
to the alternation of tiny vortices forming and dissipating
over time, with weak spatial correlation, resembling turbulent
phenomena.

Figure 12(a) depicts the corresponding spatial velocity cor-
relation function Q(r/L) for different packing fraction � at
v0 = 2.5 and � = 0.9, which quantitatively assess the de-
gree of local alignment. For cases where particle distribution
is sparse (e.g., � = 0.03) or dense (e.g., � = 0.5), local
alignment is weak, resulting in a smaller and faster decay-
ing Q(r/L). However, for an appropriate packing fraction
(e.g., � = 0.21 and � = 0.27), particles exhibit stronger local
alignment capability, leading to a larger Q(r/L). Figure 12(b)
shows the number of clusters Ncluster and size of the max clus-
ter 〈rc,max〉 as functions of packing fraction � at v0 = 2.5 and
� = 0.9. It can be observed that 〈rc,max〉 initially increases and
then decreases with increasing �, while 〈Ncluster〉 decreases
initially and then increases. This phenomenon arises because
increasing � initially facilitates easier interactions between
particles, but as � becomes very large, the interparticle dis-
tances become small such that attractive interactions no longer
dominate. This increases the difficulty for particles to form
large clusters.

Figure 13 illustrates the dependence of the separation
coefficient S on the packing fraction � for different
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FIG. 10. Typical snapshots of the binary system of 1000 CCW particles (blue disks) and 1000 CW particles (red disks) for different � at
v0 = 2.5 and � = 0.9. The snapshots are all scaled from their actual sizes to a standardized image dimension.

self-propulsion speed v0 at � = 0.9. It is found that S
first increases and then decreases with the increase in �,
and there is a optimal packing fraction where separation
coefficient gets its maximum. When � → 0, the particle
distribution is so sparse that their interactions are not
significant, for which the local alignment is weak and the
particles cannot form stable clusters. Therefore, the demixing
of the two type of particle and S is small. An increase in v0

can improve this situation, because a larger persistence length
can provide sparse particles with more opportunities to come
into proximity, enhancing interactions between particles
and subsequently strengthening local alignment. When �

is large, the significantly small distance between particles
leads to the dominance of their repulsive interactions, for
which the particles are difficult to align. Thus, the same
type of particles cannot gather stably and S → 0. Note that
the position of the peak of S moves towards left when v0

increases. This is because a large self-propulsion velocity
implies a large circular motion radius, and the particle
distribution must correspondingly become more sparse to
match it, causing the particle spacing to approach the range
of attractive interactions, thus favoring dominant attractive
interactions.

Figure 14 displays the separation coefficient S as a func-
tion of interaction strength ε at v0 = 2.5 and � = 0.9. The
separation coefficient is found to be a peak function of the
interaction strength. When ε is small, the attractive interaction

is not significant, so the two types of particles are difficult to
separate. When ε is large, the attractive force is very sig-
nificant, and the two types of particles are indiscriminately
attracted closely together, making separation impossible.
Therefore, there exists an intermediate value of interaction
strength at which the separation coefficient reaches its max-
imum value. Regarding the cutoff radius rcut, it is permissible
to choose a value larger than 3σ , for example, choosing 4σ .
However, when rcut = 3σ , the interaction between particles is
already very small, ∼10−3ε. Even if the range of attraction
is slightly increased, it can still be predicted that the results
will not differ significantly in essence. If rcut is set to be 21/6σ

(only repulsive force exists), then MIPS may occur. Moreover,
as the angular velocity increases from zero to a large value,
MIPS may first strengthen and then weaken, potentially un-
dergoing transitions from the homogeneous state to a MIPS
state to the dynamic clustering state, ultimately returning to
the homogeneous state [72].

Finally, we assessed the finite-size effects of this system,
as shown in Fig. 15. When the angular velocity � 	 1 (i.e.,
R → ∞) or very large � → ∞ (i.e., R → 0), the influence
of size effects on the separation coefficient is not significant,
and the separation coefficient is very small. However, when
the angular velocity takes appropriate intermediate values (in
the range of 21/6σ < R < 3σ where attraction dominates), the
separation coefficient takes its maximum, and initially in-
creases with increasing system size and then stabilizes.

FIG. 11. The velocities of particles for typical snapshots in Fig. 10. The color on the velocity vector represents the mapping of velocity
direction angles. The snapshots are all scaled from their actual sizes to a standardized image dimension.
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FIG. 12. (a) The spatial velocity correlation function Q(r/L) versus the distance r for typical snapshots shown in Figs. 10(a)–10(d). (b) The
number of clusters and size of max cluster as functions of packing fraction � at v0 = 2.5 and � = 0.9.

Separation arises from local alignment caused by attractive
interactions, and hence the optimal circumferential radius
for achieving the largest separation coefficient does not sig-
nificantly vary with size. When the system size is small,
clusters are prone to boundary effects, where cluster parts can
easily break away due to influence from one end far from
the cluster center, resulting in instability. As size increases,
the possibility of such effects decreases. Once the size is
large enough that boundary effects on cluster stability can
be disregarded, the separation coefficient no longer increases
with size.

IV. CONCLUDING REMARKS

In this work, we numerically investigate the separation
of a binary mixture of active chiral Brownian particles with

FIG. 13. Separation coefficient S as a function of packing frac-
tion � for different v0 at � = 0.9.

attractive interactions. It is found that the two types of parti-
cles can spontaneously separate without any explicit aligning
interactions or other interventions. This is attributed to the
ability of active Brownian particles to spontaneously generate
local alignment or even global alignment under attractive in-
teractions [26]. Particles of different chirality can form stable
clusters under the aligning effect, finally leading to demix-
ing. At very low angular velocities, the dynamical differences
between the two types of particles are not significant, while
particles tend to rotate in place at very high angular velocities,
resulting in the separation coefficient being a peak function
of angular velocity. There exists an optimal separation angu-
lar velocity, which increases with the self-propulsion speed.
The separation coefficient first increases and then decreases
with the self-propulsion speed, because intermediate self-
propulsion speeds lead to significant dynamical differences

FIG. 14. Separation coefficient S as a function of interaction
strength ε at v0 = 2.5 and � = 0.9.
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FIG. 15. Separation coefficient S as a function of radius of
circular motion R at v0 = 2.5 and � = 0.9 for different size (cor-
responding to N = 100, 500, 2000, 5000, 10 000, respectively).

between the particles without them easily escaping from clus-
ters. The dominance of attractive forces requires moderate
particle distance, and a intermediate packing fraction satisfies
this condition, thereby making the separation coefficient a
peak function of the packing fraction.

The chiral mixtures with attractive interaction is challeng-
ing to separate because of the indiscriminate attraction among
particles. We propose a new mechanism for the spontaneous
separation of chiral active particles with the attractive in-
teractions between particles, which contributes to a deeper
understanding of the mechanism for chiral matter separation.
It is of interest that the attractive interaction among particles
is incorporated into experiments [38,73,74] concerning the
separation of chiral mixtures.
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FIG. 16. The number of clusters and the size of max cluster as
functions of simulation time for v0 = 2.5, � = 0.9, and � = 0.03.

APPENDIX: THE CALCULATION OF CLUSTERS

We only analyze clusters formed by particles of the same
type (taking CCW particles as an example). There are two
reasons for this: First, our primary focus is on segregation
phenomena; second, the distinction between CCW and CW
particles lies only in their rotational direction and does not
affect the formation of their respective clusters. The number
of clusters and size of the max cluster are calculated by the
following steps: (i) Calculate the distance rCCW

i j between each
pair of CCW particles and (ii) judge whether rCCW

i j satisfies
rCCW

i j � 1.5σ . If so, then particles i and j are considered to be
in the same cluster and (iii) calculate the size of each cluster
that each particle belongs to by using depth-first search (DFS)
algorithm.

To verify that our simulation time are sufficiently long to
achieve equilibrium in cluster evolution, particularly at low
densities (e.g., � = 0.03), we computed the temporal evo-
lution of the number of clusters Ncluster and the size of the
max cluster rc,max, as shown in Fig. 16. It is observed that
both rc,max and Ncluster stabilize when simulation time more
than 104, indicating steady state in cluster evolution in our
simulations. Note that angle brackets 〈...〉 added to rc,max and
Ncluster elsewhere in the main text denote the average over time
after steady state.
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