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Phase ordering in binary mixtures of active nematic fluids
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We use a continuum, two-fluid approach to study a mixture of two active nematic fluids. Even in the absence
of thermodynamically driven ordering, for mixtures of different activities we observe turbulent microphase
separation, where domains form and disintegrate chaotically in an active turbulent background. This is a weak
effect if there is no elastic nematic alignment between the two fluid components, but is greatly enhanced in the
presence of an elastic alignment or substrate friction. We interpret the results in terms of relative flows between
the two species which result from active anchoring at concentration gradients. Our results may have relevance in
interpreting epithelial cell sorting and the dynamics of multispecies bacterial colonies.
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I. INTRODUCTION

Phase separation is a ubiquitous phenomenon found across
a wide variety of biological systems. Inside cells, membrane-
less organelles such as stress granules and nucleoli phase
separate from their surroundings to allow different chemical
environments for biochemical reactions [1,2]. Different cell
types sort themselves into distinct regions in confluent lay-
ers [3,4] during growth and morphogenesis [5,6]. Bacterial
colonies also undergo segregation, with species of different
phenotypes clustering together [7].

A large body of research has looked at biological phase
separation through the lens of equilibrium thermodynam-
ics, attributing the ordering to the minimization of free
energy. A notable thermodynamic model for cell sorting
is the differential adhesion hypothesis (DAH) [8,9], which
proposes that cells preferentially adhere to other cells of
the same type because of differences in surface tension
between like and unlike cells. Other thermodynamic ap-
proaches include considerations of line tension [3,10] and
surface contraction [3,11] of cells. However, biological
matter is inherently out of thermodynamic equilibrium—
which opens the possibility of phase separation mechanisms
that are outside the realm of free energy minimization
principles [12].

An important class of nonequilibrium systems is active
matter, which deals with the collective behavior of self-motile
particles. Motility-induced phase separation (MIPS) [13,14]
is an example of active phase separation, where self-propelled
particles can become trapped in regions of high density, thus
forming a dense phase and a dilute phase. Many other novel
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mechanisms of ordering in active systems have been reported
in the literature, including aligning torques [15], bond for-
mation and breaking [16], control of boundary conditions
[17], and the hydrodynamic interactions between dumbbell-
shaped swimmers [18]. Continuum models of scalar active
matter have been used to study phase separation in ac-
tive Brownian particles [19], self-propelled particles [20,21],
poroelastic materials [22], and cellular aggregates [23]. These
show steady states that range from bulk phase separation
to bubbles, droplets, elongated filaments, and active foams.
Recent work on active phase field models [24,25] and a ver-
tex model [26] on mixed cell layers have also shown phase
separation.

Active nematics [27–29] comprise rodlike particles with
orientational order, which pump energy into their surround-
ings by generating dipolar stresses along their long axes.
These models have been successfully used to describe the
motility of Madin-Darby canine kidney (MDCK) cells [30],
spontaneous flow in confined cell channels [31], active tur-
bulence in microtubule-kinesin mixtures [32], and topological
defects in growing bacterial colonies [33]. Recently, Assante
et al. [34] showed that coupling concentration and nematic
ordering can lead to spontaneous microphase separation in
inhomogeneous active nematics, and we used a continuum
theory to study active phase separation, driven by flows, in
a mixture of an active nematic and a passive isotropic fluid
[35]. In this paper, we extend this work to discuss mixtures
of two nematics, with different activities, coupled by viscous
drag. This is motivated by recent experiments which demon-
strate cell sorting in mixtures of extensile and contractile cells
[24,36].

The paper is organized as follows: In Sec. II, we extend
the active two-fluid model introduced in Ref. [35] to describe
interacting active nematics. In Sec. III, we discuss the angle
between the orientations of the two active species when they
are coupled only by viscous drag. In Sec. IV, we move on
to phase separation in active-active mixtures. We review the
mechanism discussed in Ref. [35], and show how this applies
when both species are active and how the phase separation

2470-0045/2024/110(2)/024607(10) 024607-1 Published by the American Physical Society

https://orcid.org/0000-0002-2815-981X
https://orcid.org/0000-0001-8268-5469
https://ror.org/052gg0110
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024607&domain=pdf&date_stamp=2024-08-23
https://doi.org/10.1103/PhysRevE.110.024607
https://creativecommons.org/licenses/by/4.0/


SARASWAT BHATTACHARYYA AND JULIA M. YEOMANS PHYSICAL REVIEW E 110, 024607 (2024)

depends on the elastic coupling between nematogens. In
Sec. V, we discuss how changing concentration fractions
and friction affect phase separation in an extensile-contractile
mixture. Finally, in Sec. VI, we conclude with a summary of
our results.

II. MODEL

We study a mixture of two active fluids [22,35,37,38]. Each
fluid component has a local density ρ i, velocity field ui

α , and
chemical potential μi, where Latin superscripts i = 1, 2 index
the different fluids and the Greek subscripts α = 1, 2 denote
the spatial directions. Summation convention is used for the
Greek indices, but will be specified explicitly for the Latin
indices when applicable.

Each component fluid obeys the mass continuity equation,

∂tρ
i + ∇αρ iui

α = 0, (1)

and the momentum balance equation,

∂tρ
iui

α + ∇βρ iui
αui

β = − ρ i∇αμi + F visc,i
α + F body,i

α

− f φiui
α + γφ(1 − φ)

(
u3−i

α − ui
α

)
,

(2)

where

ρc = ρ1 + ρ2, φ1 = φ = ρ1/ρc, φ2 = 1 − φ = ρ2/ρc

(3)

are the total density, concentration fraction of component 1,
and concentration fraction of component 2, respectively. In
Eq. (2), the left-hand side denotes the convective derivative
of the fluid momentum density (ρ iui

α), while the right-hand
side describes the force acting on the fluid per unit vol-
ume. The forces are modeled by a thermodynamic force
(−ρ i∇αμi), a viscous drag between the component fluids,
γφ(1 − φ)(u3−i

α − ui
α ), an internal viscous dissipation for

each fluid F visc,i
α , a substrate friction term − f φiui

α , and a
body force F body,i

α which models the local forces generated
by nematic stresses.

We formulate our equations to treat this system as an in-
compressible fluid with compressible components. In order to
do so, we define new velocity fields,

uc
α = φu1

α + (1 − φ)u2
α, δuα = u1

α − u2
α, (4)

which are the center-of-mass velocity of the total fluid and
relative flow between the fluids, respectively. We reserve
the superscript c to refer to the combined (center-of-mass)
fluid. Moving forward, we will assume that the relative flow
is much smaller than the combined velocity of the fluid,
i.e., |δu| � |uc|.

Adding Eqs. (1) and (2) for each component, and neglect-
ing terms of the order of (δu)2, gives the equations of motion
for the combined fluid [39,40]:

∂tρ
c + ∇αρcuc

α = 0, (5)

∂tρ
cuc

α + ∇βρcuc
αuc

β

=
2∑

i=1

[−ρ i∇αμi + F visc,i
α − f φiui

α + F body,i
α

]
. (6)

Notice that the viscous drag between the components drops
out of the equation for the combined fluid. The combined fluid
conserves mass density and momentum and acts as a typical
incompressible fluid.

We now discuss the terms on the right-hand side of the
momentum balance equation (6) in turn. The first term is the
thermodynamic force, which follows from a Ginzburg-Landau
free energy functional of the form [39,40]

FLG =
∫

d2r
[
ψ (ρ1, ρ2) + 1

2
κ||∇φ||2

]
, (7)

where

ψ = 1

3
ρc ln ρc + ρc

{
a

(
φ − 1

2

)2

+ b

(
φ − 1

2

)4}
. (8)

The first term of (8) promotes incompressibility of the com-
bined fluid, with an isothermal equation of state. The second
term is a Landau free energy which drives the system to a
uniformly mixed configuration if a � 0, b � 0. The chemical
potentials for each fluid are defined as μi = δFLG/δρ i. We
can write [39,40] the chemical potential term for the com-
bined fluid

∑2
i=1 −ρ i∇αμi as the divergence of a stress tensor

−∇βσ thermo
αβ , where

σ thermo
αβ = pδαβ + κ

(
∇α∇βφ − 1

2
||∇φ||2δαβ

)
, (9)

−p = ψ − ∂ψ

∂ρ1
ρ1 − ∂ψ

∂ρ2
ρ2. (10)

Here, p = ρc/3 is an isotropic pressure consistent with an
isothermal equation of state. The term in κ is an anisotropic
stress resulting from the surface tension between the two
component fluids.

The second term on the right-hand side of Eq. (6) is the
usual viscous stress, defined by

F visc,i
α = ∇β ηi

(∇αui
β + ∇βui

α − δαβ∇γ ui
γ

)
. (11)

The third term describes the friction between each component
fluid and the substrate. The final term in Eq. (6) is the body
force acting locally on the fluid at each point which arises
from passive and active nematic stresses F body,i

α ≡ F Q,i
α . We

next discuss the dynamics of each active nematic species and
the form of F Q,i

α .
Each fluid component i is a nematic liquid crystal [27–29]

described by a symmetric traceless tensor [41],

Qi
αβ = Si

nem

(
2ni

αni
β − δαβ

)
, (12)

in two dimensions (2D), where ni
α is a headless vector de-

noting the orientation of the local nematic order, called the
director field, and Si

nem is the magnitude of the nematic order.
The order parameter relaxes towards the minimum of the
Landau–de Gennes free energy density [29,41],

FLdG,i = Ci

[(
Si

(nem,0)

)2 − 1

2
Qi

αβQi
αβ

]2

+ Ki

2
∇γ Qi

αβ∇γ Qi
αβ,

(13)
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defined so that the minimum free energy corresponds to a
state with an order parameter of magnitude Si

(nem,0), with the
director uniformly aligned in space.

We couple the orientation fields of the two species ex-
plicitly by adding an extra term in the free energy of
the form

FQ1,Q2 = −L12φ(1 − φ) Q1
αβ Q2

αβ. (14)

When both species are mixed together, this term aligns the
director fields parallel to each other for L12 > 0, and per-
pendicular to each other for L12 < 0. When both species are
well aligned, the effect of this term is just to renormalize
the coefficient a in Eq. (7). Thus, we have not consid-
ered this term separately in the chemical potential. From
Eqs. (7), (13), and (14), the total free energy of the system is
given by

F = FLG + FLdG,1 + FLdG,2 + FQ1,Q2 . (15)

We now describe the dynamics of the orientation field.
We expect the director field to not only be advected by the
fluid, but also to be rotated according to the vorticity tensor

i

αβ = (∂αui
β − ∂βui

α )/2. Additionally, the director may tend
to orient along the strain rate tensor Ei

αβ = (∂αui
β + ∂βui

α )/2
of the fluid. The response to gradients of the flow is modeled
by the co-rotation term [29,41,42],

Si
αβ = (

λiẼ i
αχ + 
i

αχ

)(
Qi

χβ + δχβ/2
)

+ (
Qi

αχ + δαχ/2
)(

λiẼ i
χβ − 
i

χβ

)
− 2λi

(
Qi

αβ + δαβ/2
)
Qi

χγ Ẽ i
χγ , (16)

where Ẽ i
αβ is the traceless part of the strain-rate tensor [42],

and λi (known as the flow-aligning or flow-tumbling param-
eter) models the extent to which the director field of species
i explicitly orients with the strain axis of the fluid (the direc-
tion of the positive eigenvalue of Ẽ i

αβ ) [43]. For λi = 0, the
orientation field only rotates with the vorticity, but does not
respond to the strain rate, e.g., isotropic circular particles. As
the value of λi increases, the relative importance of the rate
of strain tensor in Eq. (16) increases, corresponding to more
elongated particles [43].

We also expect that the system will evolve towards the
minimum of the free energy. This is modeled by the molecular
field [27,29],

Hi
αβ = − ∂F

∂Qi
αβ

+ δαβ

2

(
∂F

∂Qi
χγ

)
δχγ . (17)

Combining Eqs. (16) and (17), the dynamics of the nematic
tensor associated with fluid i is [43]

∂t Q
i
αβ + ui

χ∇χQi
αβ − Si

αβ = �Hi
αβ. (18)

The nematic field itself generates stresses, which drive
flows in the fluid. This is modeled by a body force,

F Q,i
α = ∇β · �i

αβ, (19)

where the stress tensor is a sum of the elastic and active
stresses [28,29],

�i
αβ = �i,el

αβ + �i,act
αβ , (20)

�i,el
αβ = 2λi

(
Qi

αβ + δαβ/2
)

Qi
χγ Hi

χγ − λiH i
αχ

(
Qi

χβ + δχβ/2
)

− λi
(
Qi

αχ + δαχ/2
)
Hi

χβ − ∇αQi
χγ

∂FLdG

∂∇βQi
χγ

+ Qi
αχHi

χβ − Hi
αχQi

χβ, (21)

�i,act
αβ = −ζiφ

iQi
αβ. (22)

Now, we return to the equation of motion for the first
compressible fluid component. Using Eqs. (1) and (4), the
momentum equation (2) for the first component can be written
as

ρ1
[
∂t u

1
α + u1

β∇βu1
α

] = − φ∇βσ thermo
αβ + F visc,1

α + F body,1
α

− f φu1
α + [

γφ
(
uc

α − u1
α

)
+ φ(1 − φ)∇αδμ

]
, (23)

where δμ = −δF/δφ [39,40] and σ thermo is defined in Eq. (9).
Defining an internal force density acting between the fluids,

Gα = γ
(
uc

α − u1
α

) + (1 − φ)∇αδμ, (24)

Eq. (23) can then be rewritten as

ρ
[
∂t u

1
α + u1

β∇βu1
α

] = − ∇βσ thermo
αβ + Gα − f u1

α

+ F visc,1
α + F body,1

α

φ
. (25)

The equation of the second compressible fluid component
follows by symmetry.

We numerically solve the combined fluid, described by
Eqs. (5) and (6), using the lattice-Boltzmann (LB) method
[44]. We simultaneously calculate the evolution of the first
component fluid, described by Eqs. (1) and (23), using a LB
method modified to account for compressibility [39,40]. The
dynamics of the nematic fields and stresses [Eqs. (18)–(22)]
are solved using a finite difference approach [45].

We used the parameters ρC = 40, γ = 4, κ = 5, a =
0.0001, b = 0.0001, η1 = η2 = 10/3, S1

(nem,0) = S2
(nem,0) = 1,

C1 = C2 = K1 = K2 = 0.1, L12 = 0.1, λ1 = λ2 = 0, f = 0,
and �1 = �2 = 0.1, unless otherwise specified. ζ1, ζ2 were
varied in the range [−0.1, 0.1]. We simulated the equations for
50 000 time steps on a 200 × 200 grid with periodic boundary
conditions. The initial condition was chosen to be ρ1 = ρ2 =
20, with the initial director and velocity field configurations
obtained by simulating 500 LB time steps from a randomly
initialized director configuration without active forcing.

III. ACTIVE FLOWS INTRODUCE DIRECTOR
ALIGNMENT BETWEEN NEMATIC FLUID COMPONENTS

In this section, we argue that there is parallel or perpendic-
ular alignment between the two components of the nematic
mixture due to the director fields aligning with the rate of
strain tensor in the combined fluid. Throughout this section,
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FIG. 1. Alignment between nematic director fields. (a) Probability density function shows that for λ1 = λ2 = 0, contractile nematics tend to
align perpendicular to the extensional strain axis (blue), while extensile nematics align parallel (red) (ζ1 = −0.10, ζ2 = 0.067). (b) Contour plot
showing nematic alignment between the different components for different activities for λi = 0. The colorbar shows 〈cos[2(θ1 − θ2)]〉, which
is +1 (yellow) for parallel and −1 (blue) for perpendicular. Circles denote individual simulations, while the contour plot shows the interpolated
values. (c) Probability density function shows that for λ1 = λ2 = 1.6, contractile nematics have a bimodal distribution preferentially aligning
either parallel or perpendicular to the extensional strain axis (blue), while extensile nematics tend to align parallel (red) (ζ1 = −0.10, ζ2 =
0.05). (d) Cross section of nematic alignment while varying ζ1, with ζ2 = −0.10. The λi = 0 cross section is marked by the black dotted line
in the contour plot. Changing to λi = 1.6 changes the nematic alignment significantly in both contractile-contractile (ζ1 < 0) and contractile-
extensile (ζ1 > 0) mixtures.

we set L12 = 0 and a = 0.2 to study flow-induced director-
director coupling in the absence of imposed elastic alignment
or phase separation. We first consider the flow-aligning pa-
rameter λi = 0 and then discuss the effects of a nonzero λi.

A. Zero flow-aligning parameter (λi = 0)

Assuming that the momentum balance in each fluid
[Eq. (2)] is dominated by viscous and active stresses, then,
for λi = 0, Eqs. (11) and (22) give a force balance,

∇β · ηiEc
αβ = ζi∇β · Qi

αβ, (26)

for each of the fluid components. Here, we have assumed that
both component fluids have approximately the same strain rate
Ec

αβ .

If ζi > 0 (extensile), Qαβ has the same sign as Eαβ , and
the nematic orientation θdirector aligns along the stretching
direction of the combined fluid θstrain (θdirector ‖ θstrain). θstrain is
the direction corresponding to the (largest) positive eigenvalue
of the matrix Eαβ . If ζi < 0 (contractile), Qαβ and Eαβ have
opposite signs and the nematic aligns along the compres-
sion direction of the combined fluid (θdirector ⊥ θstrain). This
is shown in Fig. 1(a). The spread in the distribution is due to
elasticity in the nematic field of each component and the effect
of the passive backflow terms in the Navier-Stokes equations,
which are neglected in Eq. (26).

When two active fluids are strongly coupled through vis-
cous drag, the alignment of each nematic with the combined
fluid velocity gradient induces an effective alignment between
the two director fields. Both species orient in the same (per-
pendicular) direction if they have the same (opposite) sign of
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activity. The overall degree of alignment can be characterized
by calculating the average value of cos[2(θ1 − θ2)], where
θi is the angle of the ith director field. This quantity is +1
for parallel alignment and −1 for perpendicular alignment, as
shown in Fig. 1(b).

The alignment of the director fields increases with increas-
ing the activity of the fluids. The alignment is strongest when
both fluids have the same magnitude of activity [see Figs. 1(b)
and 1(d)].

B. Effect of the flow-aligning parameter λ

We now consider the effects of having a large flow-aligning
parameter λ1 = λ2 = λ. The flow-alignment term in Eq. (18)
tends to align the nematic director field with the extensional
strain axis, regardless of activity. For an extensile fluid, this
merely slightly enhances the alignment along the strain axis
caused by the activity. However, the angle between contractile
nematogens and the strain axis forms a bimodal distribution,
with some regions aligning parallel to the strain, due to elastic
flows, and others perpendicular to the strain, due to active
flows, with the relative fraction of each alignment dependent
on λ [Fig. 1(c)]. This is consistent with force balance [Eq. (2)]
since there are now both flow-aligning and elastic terms to
account for.

The flow alignment can, in turn, affect the effective align-
ment between the director fields of the two components.
For extensile-extensile mixtures, there is just a small de-
crease in 〈θ1 − θ2〉. For an extensile-contractile mixture, some
contractile directors align with the extensional strain axis,
leading to an increase in alignment between the two species.
For a contractile-contractile mixture, both director fields are
frustrated and 〈θ1 − θ2〉 depends on the fraction of director
fields which align parallel or perpendicular to the strain. In
Fig. 1(d), we plot the average nematic alignment 〈cos[2(θ1 −
θ2)]〉 along a cross section varying ζ1, keeping ζ2 = −0.10
fixed, for both λ = 0 (flow tumbling) and λ = 1.6 (flow align-
ing).

IV. PHASE SEPARATION IN ACTIVE-ACTIVE MIXTURES

In previous work, we showed that an active nematic fluid
mixed with a passive isotropic fluid spontaneously orders to
form microphase-separated domains [35], even in the absence
of any terms in the free energy favoring phase separation.
The equilibrium state in the absence of activity is the ho-
mogeneously mixed state, with φ = const everywhere. In
the presence of activity, this equilibrium state is unstable to
spontaneous phase separation, leading to a dynamical steady
state with phase-separated domains. The domains form and
disintegrate chaotically in an active turbulent background, in
a state we term “turbulent microphase separation.”

In this section, we first review the phase-separation mecha-
nism and then apply it to the case of two active nematic fluids
of different activities. Second, we determine how the strength
of phase separation depends on the activities of each species.
Finally, we look at how the results change when the nematic
species are constrained to align with each other through elastic
interactions.

A. Mechanism

Active phase separation begins when the two component
species generate a flow fluctuation which locally moves them
in different directions, setting up a small concentration gradi-
ent in the fluid. This difference in concentration leads to an
imbalance in active stress across the interface, which drives
active flows normal and tangential to the interface in each
fluid.

Consider how each active fluid component i be-
haves at an interface. This fluid generates tangential
and normal active forces per unit volume given by
Ftangential,i = 2ζi|∇(Si

nemφi )| (m · n)(l · n) l and Fnormal,i =
−ζi|∇(Si

nemφi )| [2(m · n)2 − 1] m, respectively [35,45].
Here, m and l are unit vectors normal (pointing away from
the more active region) and tangential to the interface,
respectively, and n is a unit vector along the nematic director,
as shown in Fig. 2(a).

The tangential flows acting on the fluid component tend
to orient its director parallel to the interface for extensile
nematics and perpendicular to the interface for contractile
nematics [45]. Due to this active anchoring, the active stresses
generated by each fluid component, and acting on that com-
ponent, tend to point normal to the interface and towards the
region of higher concentration, as shown by the black arrows
in Fig. 2(b) for a contractile nematic and Fig. 2(c) for an ex-
tensile one. Since both species are active, each fluid generates
its own active stresses and flows. If the sum of the active
forces is stronger than the passive restoring forces, this creates
relative flows between the two components, magnifying the
concentration difference across the interface further, leading
to phase separation.

We numerically verify this mechanism by looking at the
active anchoring and flow alignment at concentration gradi-
ents (see the Supplemental Material (SM) [46], Fig. A3, for
typical values of concentration φ and the concentration gra-
dient |∇φ| across an interface). We define the director angle
of species i as θi, the orientation of the relative flow velocity
δu as θv , and the direction of the gradient of φ as θφ . θφ is
normal to the interface and points towards increasing φ. We
quantify anchoring by measuring 〈cos 2(θi − θφ )〉, the angle
between the director field and concentration gradient, which
ranges from +1 for homeotropic anchoring to −1 for planar
anchoring. At interfaces, the contractile fluid tends to align
normal to the interface [Fig. 2(d)], while the extensile fluid
prefers to align tangentially [Fig. 2(e)]. We also check the
orientation of the relative flow δu with respect to the normal
to the interface by measuring 〈cos(θv − θφ )〉, which is +1 for
relative flows pointing towards higher φ and −1 for relative
flows towards lower φ. Figure 2(f) shows that the net flow
between the fluid components tends to orient normal to the
interface, in the direction of increasing concentration gradient.
Finally, Fig. 2(g) confirms that the magnitude of the relative
flow 〈|δu|〉 is stronger at interfaces. (See the SM [46], Fig. A1,
for a similar figure confirming the same mechanism for im-
posed parallel alignment between the nematogens, L12 	= 0.)

B. No imposed alignment between directors

In this section, we look at phase separation when there is
no imposed elastic alignment between the nematic director
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FIG. 2. Mechanism of phase separation: (a) Interface normal m, tangent l, and nematic director n at an interface. Schematic representation
of the mechanism of phase separation for (b) a contractile component 1 (blue) and (c) an extensile component 2 (yellow). Red arrows show
the forces at the interface created by each nematogen, and black arrows show the net direction of the active force. (d)–(g) Simulation
data demonstrating the mechanism for ζ1 = −0.10, ζ2 = 0.067, and L12 = 0: (d) Contractile species align homeotropically at interfaces.
(e) Extensile species align parallel to the interface. (f) The relative flow between the fluid components tends to orient normal to the interface,
in the direction of increasing concentration gradient. (g) Relative flows between the fluids are stronger at the interface. The trend lines show
the mean, combining data from 50 measurements taken in intervals of 1000 time steps. The error bars indicate the standard deviation of the
mean. The shaded region shows the standard deviation in the spread of the measured quantities.

fields of the two components (L12 = 0). Viscous drag between
the fluids aligns the director fields parallel (perpendicular)
to each other if the two species have the same (opposite)
sign of activity. In all cases, we observe chaotic turbulent
microphase separation, with phases forming and dissociating
rapidly, similar to Ref. [35]. A snapshot of the concentra-
tion field is shown in Fig. 3(a) (see, also, Movie 1 in the
SM [46]).

We characterize the magnitude of phase separation by
calculating �, the standard deviation of the concentration
field, which quantifies the variation from the uniformly mixed
state. For a mixture with equal concentration fraction of
each fluid component, � varies between 0 (no ordering)
and 1/2 (complete phase separation). A contour plot show-
ing how � depends on the activities ζ1 and ζ2 is shown in
Fig. 3(b). The magnitude of phase separation depends on
the difference in magnitude of the activities, but not on their
signs.

This is because, although changing the sign of activity
changes the relative alignment of the directors, the flow fields
in both fluids remain in the same direction. Thus the highest
phase separation is observed when an active species is mixed

with a passive one, corresponding to the maximum relative
flows between the two fluids.

C. Imposing director alignment

We next impose L12 	= 0, so that the director fields of the
two nematic components are strongly aligned. A contour plot
showing the magnitude of phase separation on varying the
activities ζ1 and ζ2 is shown in Fig. 3(d).

If both species have the same sign of activity, the imposed
parallel alignment merely reinforces the flow-induced align-
ment discussed in Sec. III. The resultant phases look very
similar to Fig. 3(a), but the magnitude of phase separation is
slightly lower because the active flows are better aligned.

However, the magnitude of the phase separation increases
very significantly if the fluid components have opposite signs
of activity. The relative flow between the two components
is much higher in the extensile-contractile case because
each fluid generates active forces in opposite directions at a
concentration gradient. The strongest phase separation, cor-
responding to the largest spread of concentration, max(φ) −
min(φ) ≈ 1, is observed when a highly extensile fluid is
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FIG. 3. Phase separation in active-active mixtures: (a) Snapshot of the concentration field for a turbulent microphase separated state without
imposed parallel alignment, L12 = 0 [corresponding to the point marked by ♣ in (b)]. The colorbar shows local concentration φ. (b) Magnitude
of the phase separation, �, for different activities. Circles denote individual simulations, while the contour plot shows the interpolated values.
(c) Snapshot of the concentration field for a turbulent microphase separated state with imposed parallel alignment, L12 = 0.1 [corresponding
to the point marked by ♠ in (d)]. (d) Magnitude of the phase separation, �, for different activities. Circles denote individual simulations, while
the contour plot shows the interpolated values. Note the increase in the magnitude of phase separation when there is elastic alignment between
the director fields of the fluid components. Variation of (e) the magnitude of phase separation, �, and (f) the relative flow magnitude, |δu|,
with ζ1 for ζ2 = 0.067 [i.e., along the red dotted lines in (b) and (d)], comparing L12 = 0 and L12 	= 0.
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FIG. 4. Changing concentration fraction: (a) Concentration field for a 30-70 mixture which phase separates into circular droplets (ζ1 =
0.02, ζ2 = −0.005, and φ̄ = 0.3). The colorbar shows local concentration φ. (b) Normalized magnitude of phase separation, �/�max, as a
function of concentration fraction, φ̄, for three different activities ζ2, while holding ζ1 = 0.05 fixed. Inset: �/�max plotted as a function of
effective activity ζeff = ζ1φ̄ + ζ2(1 − φ̄) is highest at low effective activity.

mixed with a highly contractile one. The fluids form elon-
gated droplet networks with large differences in concentration
between the different regions, as shown in Fig. 3(c) (see, also,
Movie 2 in the SM [46]).

To directly compare the flow-alignment and imposed par-
allel alignment cases, the variation of the magnitudes of phase
separation, �, and the relative flow between the fluid com-
ponents, δu, with ζ1 for a fixed ζ2 are plotted in Figs. 3(e)
and 3(f). A large flow-aligning parameter can be used instead
of an elastic free energy to align extensile and contractile
director fields (see Sec. III B). The effect of changing the
flow-aligning parameter for an extensile-contractile mixture
is shown in Fig. A4 of the SM [46].

V. VARYING OTHER PARAMETERS IN THE SYSTEM

A. Concentration fractions

We consider the effect of changing φ̄, the average of φ

(concentration fraction of species 1), to study how the phase
separation is affected if the system is not a 50-50 mixture of
each species. On reducing φ̄, the elongated droplet network
of Fig. 3(a) is replaced by small droplets of fluid 1 in a
background of fluid 2, as shown in Fig. 4(a) (and Movie 3
in the SM [46]). At lower activities or higher surface tensions,
the droplets are rounder and the flows are less turbulent.

For a given pair of activities ζ1 and ζ2, different concentra-
tion fractions φ̄ give different magnitudes of phase separation
�. The maximum possible � for a perfectly phase-separated
system with infinitely sharp interfaces is �max =

√
φ̄(1 − φ̄).

Since this is dependent on φ̄, we quantify the magnitude of
phase separation at different φ̄ using the normalized �/�max.

A plot of �/�max for three different values of ζ2 is shown
in Fig. 4(b) (ζ1 = 0.05). We note that stronger phase sep-
aration is achieved when the effective activity ζeff = ζ1φ̄ +
ζ2(1 − φ̄) is small [see inset, Fig. 4(b)] as this suppresses the

active turbulence, which leads to droplets breaking up. This
implies that the highest phase separation is observed when the
more active component has a smaller concentration fraction.

B. Friction

Finally, we look at the effect of adding substrate friction
f . On increasing friction, the active flows are weaker and less
turbulent. The elongated droplet networks tend to aggregate
to form more strongly phase-separated regions that are larger
in size. A snapshot of the concentration profile is shown in
Fig. 5(a) (see, also, Movie 4 in the SM [46]). Figure 5(b)
shows the increase in the magnitude of phase separation upon
increasing the substrate friction. The typical length scales of
the phase-separated domains, Lφ , also increase with higher
substrate friction [Fig. 5(c)].

At first glance, it might appear surprising that high sub-
strate friction facilitates phase separation driven by active
flows. However, although the overall dynamics are slower, the
active turbulent flows are smaller in magnitude and dissoci-
ation by active instabilities is very rare. Moreover, the force
balance condition changes and the velocity is now directly
proportional to the applied force vi ≈ Fi/ f , instead of ∇2vi ≈
Fi/η. As a result, although the velocity field is weaker, it
is better aligned at the interface, as shown in Fig. A2 in
the SM [46].

VI. DISCUSSION

To summarize, we have extended a two-fluid model to
study mixtures where both species are active nematics. We
argued that even in the absence of any externally imposed
elastic ordering between components, active nematics cou-
pled by viscous drag tend to align parallel or perpendicular,
depending on the relative signs of the activities and the value
of the flow-aligning parameter.
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FIG. 5. Changing substrate friction: (a) Concentration field for high substrate friction (ζ1 = 0.05, ζ2 = −0.05, f = 4), showing large,
well-separated domains. The colorbar shows local concentration φ. (b) Magnitude of phase separation, �, increases with higher substrate
friction. (c) Size of phase-separated regions, Lφ , increases significantly with higher substrate friction.

We observed turbulent microphase separation in mixtures
of two active nematic fluids, each with a different activity.
Imposing an elastic director alignment between the two active
species plays a major role in determining the magnitude of the
phase separation. In the absence of imposed parallel align-
ment, there is weak segregation, which is most pronounced
for a mixture of a highly active and a passive component.
However, in the presence of imposed parallel alignment,
coexisting domains comprised almost entirely of one com-
ponent can be achieved with an extensile-contractile fluid
mixture.

The magnitude and morphology of phase separation are
also affected by other parameters in the system. As expected,
varying the concentration fraction can change the morphology
from elongated droplet networks to isolated circular drops.
Perhaps more surprisingly, increasing substrate friction leads
to stronger phase separation and a considerable increase in the
size of the phase-separated domains.

Our results add to a growing body of work describing
the possibility of phase separation driven by activity, here
focusing on active flows in fluid mixtures. Cell ordering and

sorting in embryogenesis, and compartmentalization into dif-
ferent cell types, are important biological processes where
activity may play a role [12,24–26,36]. Our work may also
be relevant in understanding organization and movement in
multispecies bacterial colonies [33,47], or the intracellular
liquid-liquid phase separation [1,48] which results in mem-
braneless organelles.

With biological examples in mind, in future work, it will be
interesting to consider nematic mixtures above the nematic-
isotropic transition temperature, compare phase ordering in
the vertex model or multiphase-field description of cells, and
study the interplay between confinement, wetting, and phase
separation in active materials.
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