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Controlled stigmergy in quasi-one-dimensional active particle systems

Gregor Bánó ,1 Cyril Slabý,1 Alena Strejčková ,2 Zoltán Tomori ,3 Andrej Hovan ,1
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In quasi-one-dimensional circularly symmetric systems of active particles, experiments and simulations reveal
an indirect interplay between particles and environmental drag effects, proving crucial in the realm of generalized
parametrically controlled stigmergy. Our investigation goes deeper into understanding how stigmergy manifests
itself, closely examining unconventional, more physically grounded interpretations in contrast to established
concepts. Deeper insights into the complex dynamics of stigmergically interacting particle systems are gained
by systematically studying the transition regions between short- and long-term stigmergic effects. Mechanical
and computational modeling techniques complement each other to provide a comprehensive understanding of
various clustering patterns, oscillatory modes, and system dynamics, where hysteresis may occur depending on
the conditions.
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I. INTRODUCTION

The study of complex systems challenges the traditional
division between physics and biology by highlighting the
interconnectedness of living and nonliving systems, as
evidenced by similarities and differences in the interactions
between their constituent entities. It is now widely
acknowledged that the notion of active matter has surpassed
this division by providing a higher level of abstraction that
transcends the traditional boundaries of disciplines. This
conceptual advance, demonstrated by swarm robotics [1], has
the potential to enable bidirectional knowledge transfer and
improve our understanding of interactions in both natural and
engineered systems.

Stigmergy, a biological interaction and communication
mechanism described, for example, in Ref. [2], provides a
framework for information exchange between organisms via
the environment. The concept of stigmergy, known for its
decentralized nature [3], is elucidating the intricate dynam-
ics of living entities [4]. Collective intelligence, stigmergy,
and collaborative intelligence are interconnected concepts that
highlight how groups of individuals can work together to
achieve more than the sum of their efforts [5]. Stigmergy un-
derscores the pivotal role of the environment in orchestrating
nontrivial effective interactions that shape collective behav-
iors, resulting in nonlinear dynamics and self-organization [2].
It also suggests a means to address bioinspired computing and
optimization challenges by utilizing stigmergic multiagent
systems, with a focus on ant colony optimization [6]. From a
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broad perspective rooted in statistical physics, stigmergy can
be understood as a series of localized interaction events, where
temporal disparities in these events give rise to effective non-
local interaction outcomes. The broader conclusions drawn
from biological examples, like the synchronized behaviors of
bacteria [7] or the dynamic behavior of growth factors [8],
illustrate how alterations in environmental features can affect
the effective interactions among entities.

The geometry of an environment serves as the medium
for stigmergy to operate, and it can greatly influence the
propagation of information. For example, ant colonies rely
on the geometry of tunnels and pheromone trails to coordi-
nate foraging activities. Research on stigmergy and geometry,
such as Ref. [9], shows how these principles can be used to
develop algorithms for architectural biomimicry. The intri-
cate labyrinthine designs of underground termite mounds, as
demonstrated in Ref. [10], further illustrate the importance of
geometric features.

Self-organizing tendencies also emerge in the realm of
active particle systems, as observed in a variety of distinct
situations, including collective robotics [11] or the dynamic
aggregation of self-propelled colloidal particles [12]. The idea
of applying the stigmergy concept to active matter is intrigu-
ing. Within swarm robotics, for example, agents can modify
their environment using stigmergic signals, establishing feed-
back loops that interconnect geometry with agent behavior
[13,14]. The statistical physics [15] of active matter, as well
as studies of the physical aspects of active matter [16], both
provide a strong framework for understanding the principles
of self-organization and possible stigmergy that active parti-
cles exhibit.
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Building on prior discussions, our research seeks to learn
from the stigmergic traits observed in nature. We intend
to apply these principles to active matter systems, which
involve self-propelled particles [17]. However, the inherent
complexity of geometric variations in stigmergy-related envi-
ronments makes systematic study and understanding difficult.
To address this, we adopt a physics-inspired approach, focus-
ing on stigmergy in low-dimensional systems as a possible
solution. As part of our search for sustainable, steady-state
data collection modes, we made a deliberate decision to inves-
tigate stigmergic interactions within a quasi-one-dimensional
circular geometry. The connection between our research and
the circular shape draws inspiration from “ant mills” in ant
colonies [18].

To extend the original biological picture of stigmergy, we
investigated the feasibility of some alternative physical en-
vironmental factors (different from chemical signaling) for
transmitting interparticle signals. A successful candidate, lo-
cal drag reduction, has been identified [19]. The implications
of the principle can also be observed at a macroscopic level in
active matter. Its relevance becomes apparent in the deliberate
positioning of cyclists in pelotons, as quantified in the paper
[20]. Let us consider a hypothetical situation where active
particles move in a manner reminiscent of cyclists. To meet
this possibility, it is essential to replace the air medium around
the cyclist with a tailored-drag environment. Assume that the
presence of an active particle modifies the environment in
such a way that reduced drag conditions are created behind
the moving particle and last for a certain time. Then the move-
ment of particles will be influenced by the movement of neigh-
boring ones, representing a form of mechanical communi-
cation and interaction. Appropriately designed drag environ-
ment can be used to map the unexplored regimes between the
two extremes: long-term (pheromone-like) interparticle inter-
actions and short-term (cyclist-type) environmental signals.

In the context of our efforts to model drag-induced styl-
ized stigmergy, we employed two distinct methodological
strategies. The primary approach involved a physical imple-
mentation, characterized by the use of hexbug robotic toys
[21–25]. Hexbugs were confined in a circular geometric struc-
ture, moving along its perimeter. The necessary modulation of
the local drag conditions was mimicked by a set of movable
obstacles slowing the hexbug’s motion. The second, computa-
tional approach, involved a hybrid lattice-particle simulation,
which was supported by an extended model of active Brow-
nian particles. Even though hexbugs had previously been
successfully modeled as active Brownian particles [26], repro-
ducing the exact experimental conditions, created by moving
obstacles in our first approach, was not our goal here. Instead,
the modulation of local drag conditions was easily imple-
mented in the simulations by altering the viscosity values.
The model was coupled to cellular automaton concept [27],
to dynamically read and rewrite viscosities assigned to nodes.
In addition, the inclusion of periodic boundary conditions in
the framework played a significant role in achieving a steady
state and in establishing a link between the simulation and
mechanical approaches. The modeling approach was used to
simulate parametrical domains, primarily more active parti-
cles, that the mechanistic model was unable to explore at
the moment. Our results revealed a wide variety of stable

FIG. 1. Mechanical model for studying stigmergy with two
hexbugs: (a) hexbug with 3D printed plastic frame, (b) side view of
the complete device, (c) photo of the experimental setup, and (d) an
overhead view shows obstacle rings shaping the environment. The
black arrows indicate obstacle relaxation toward the arena walls.

and dynamic clustering regimes that were characterized by
detailed statistical measurements and evaluations.

The structure of the paper is as follows: In Sec. II we
describe the construction of the mechanical stigmergic model
based on hexbugs. The focus of Sec. III is on an extended
theoretical model of active Brownian particle dynamics. This
model integrates additional functions for reading and writing
information into a system of cellular automata nodes, cre-
ating a discretized field characterized by local viscosity. In
Sec. IV, the focus is on presenting statistical measures and
explaining the conditions necessary for their determination to
characterize the behavior of the system. Section V presents the
results, encompassing statistical properties for configurations
with a small particle count, specifically those with fewer than
four particles. This section also includes the monitoring of
the interparticle distances and links to the numerous videos
illustrating the different types of behavior. Within Sec. V B,
we emphasize the four-particle problem, renowned for its
high complexity. Consequently, there is an opportunity and
importance in unveiling new qualitative properties. A classifi-
cation of the states and a statistical analysis of the classified
results have been carried out for this system. In Sec. VI, we
complemented the study with simulations involving 8 and 16
particles, incorporating corresponding cases with double and
even quadruple system lengths for a more appropriate com-
parison. Finally, we present the discussion and conclusions.

II. MECHANICAL MODEL WITH HEXBUGS

Modified hexbugs, which are battery-powered self-
propelled toy robots, were used in the experiments to study
the stigmergic effects induced by modulating the environment
drag. On the parabolic surface illustrated in Fig. 1, the inner
wall of a circular arena served as the path for the motion
of one to two hexbugs. Each hexbug was equipped with a
three-dimensional- (3D) printed plastic frame [as shown in
Fig. 1(a)]. An angle value in the 0-2π range was used to
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describe the hexbug position along the quasi-one-dimensional
circular trajectory. To improve clarity when presenting the
mechanical and computer simulation results together, we have
converted this angle to the normalized hexbug position. The
position is constrained within the interval [0, L], with L set to
1 in the mechanical model.

A set of 11 obstacle rings evenly distributed around the
arena perimeter obstructed the hexbug movement. The weight
of the 0.05 m diameter obstacles was 5 g. The environment
exerted variable drag on the hexbugs through these rings. The
rings only moved radially. When a hexbug collided with a
ring, its movement was slowed until the obstacle was grad-
ually shifted out of the hexbug track towards the arena center.
The more a ring blocked the hexbug lane at the time of the
hit the stronger the drag was. The highest drag belonged to
the situation when the ring touched the arena wall before
the collision. When the hexbug pushed the ring out of the
lane, a stigmergic cue was created in the environment, making
the motion of the next hexbug coming behind easier. The
cue gradually faded as the ring moved back downhill on the
parabolic surface. The rate of this obstacle relaxation motion
was set by varying the intensity of external mechanical vi-
brations applied to the parabolic surface. When the parabola
was not vibrated at all, the rings remained static outside the
hexbug track, the drag was minimized. The rate of stigmergic
clue fading was accelerated by stronger vibrations. As a first
approximation, we assumed that the parabola vibrations had a
negligible effect on the hexbug propulsion.

The Supplemental Material [28] includes experiments and
simulations of particle motion, details of obstacle relaxation,
simulation of battery wear effects, and hysteresis. The
approach for determining mean particle speed in experiments
is described (see Figs. S1 and S2). In the experimental
setup with only 11 obstacles, one of the hexbugs exhibits
periodic changes in speed due to varying drag, while the
closely following hexbug maintains a smoother and more
consistent speed. Figure S1 illustrates the angular positions
of these hexbugs in a circular arena, including linear fits
and associated parameters. Analyzing the hexbugs’ nearly
linear but undulating path, we employed linear regression
to compute their speed. This method averages speeds over
time, offering a filtered representation of the overall linear
trend observed in the data. Given the absence of additional
undulation in the computational model, basic averaging [see
Eq. (6) below] sufficed for our analysis. An analysis of the
“Obstacle relaxation rate” is presented in Fig. S3. Carefully
chosen parametric examples for simulation explore the role of
harmonic interaction strength and battery wear in influencing
the hysteresis (Fig. S4).

The subtle but noticeable differences between individual
hexbugs presented a challenge in maintaining their uniform
propulsion. Our primary goal was to specifically address
hexbug collisions resulting solely from propulsion imbalances
while enhancing or preserving stigmergic communication
effects. This required effective mitigation of propulsion im-
balances. To achieve a balance in hexbug propulsion, we
implemented an underlying force that exhibited almost har-
monic properties between the hexbugs.

To allow hexbugs to move and interact in the arena, radial
plastic rods were used to connect the hexbugs to the arena
center. These rods were attached to a static vertical shaft in

the arena center via small bearings, allowing free hexbug
motion along their circular trajectory, as shown in Figs. 1(b)
and 1(d). A U-shaped elastic spring was installed between
the rods. When the environment drag was not modulated
through the obstacles (no vibrations applied to the parabola),
the weak elastic force prevented the hexbugs from catching up
to each other. Figure 1(d) depicts the excitation of obstacles
by hexbugs and their subsequent relaxation towards the arena
walls.

III. MODELING EXTENDED ACTIVE PARTICLE
DYNAMICS IN THE LATTICE VISCOSITY ENVIRONMENT

This section presents a computational model inspired by
the experimental setup, which, while not a perfect match,
closely aligns with its conceptual framework.

The model illustrates how indirect interactions between
particles and the lattice (cellular automaton) manifest through
particle-lattice dynamics, with active particles acting as mo-
bile probes. These probes read and write local viscosity,
influencing the lattice states and collective motion through
a feedback loop. Viscosity relaxation, emulating the mem-
ory effect observed in experiments, prevents the system from
converging to a trivial state. Serving as a compensatory mech-
anism, the relaxation mode modulates the memory effect,
allowing for the exploration of nontrivial dynamics and the
potential emergence of self-organized structures.

The simulation process described in Secs. III A, III B,
and III C involves three updates governing the collective
dynamics. These updates iterate in loops indexed by time
t , following the sequence (A → B → C)t → (A → B →
C)t+1 . . . , where

(i) At : This update corresponds to particle adjustments. It
updates the positions of Np particles x(s)

t ; s=0, 1, . . . , Np − 1.
(ii) Bt : This update involves the stigmergy process. It

modifies the lattice states based on stigmergic principles,
where particles “read” the local viscosity [η( j)

t,lat with j =
0, 1, . . . , Nlat − 1] and “write” changes within the lattice en-
vironment.

(iii) Ct : This update refers to lattice relaxation. It mim-
ics the memory-oriented behavior of the environment by
gradually relaxing the viscosity within the lattice as time t
progresses.

A. Particle position update

Inspired by the “sensing-and-action” behavior observed
in biological microswimmers (e.g., elongated bacteria), we
have developed a model of Np self-propelled particles.
These elongated generalized Brownian particles possess two
propulsion-aligned centers: a primary center for reading vis-
cosity and a secondary center for writing onto a lattice
substrate (see Fig. 2). Our main goal is to investigate the
collective motion of these particles and explore their potential
as a framework for studying stigmergy-driven active particles,
with an additional aim to capture hexbuglike motion.

Within the quasi-one-dimensional environment, the posi-
tions of secondary active particle centers (indicated by red
dots in Fig. 2) are described by real-valued variables x(s)

t .
These variables range from 0 to the system size, L.
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FIG. 2. In the illustration, the pair of generalized Brownian particles (s, s − 1) is shown moving and interacting with the respective lattice
nodes j (s−1)

cent,t (red), j (s−1)
+,t (green), and j (s)

cent,t (red), j (s)
+,t (blue) as their environment. Given the specific forward movement denoted by the arrow,

the functions of the particle centers notably vary. The primary center, highlighted in blue [a triangle positioned to the right of x(s)
t ] or green [a

square positioned to the right of x(s−1)
t ], differs from the secondary center, marked with a red circle. The viscosity traces from previous particles

influence the behavior of subsequent ones. This underscores the importance of spatial separation (cyclic distances) between particles. In the
range of viscosities, lower values (close to ηlow) facilitate movement, while higher values (close to ηhigh) obstruct it.

We utilize periodic boundary conditions (PBCs) to
accommodate the circular geometry, ensuring seamless
particle movement from point L to position 0 and vice versa.
The PBCs also aid in node enumeration and transition along
the lattice from 0 to Nlat − 1. Initially, we examine particle
motion without PBCs, later incorporating this aspect into the
model (see Appendix B for details).

Schematically, the continuous-time dynamics of the
particles in the overdamped limit is governed by a
system of stochastic differential equations dx(s)/dt =
(forces(s)/viscosity) + stochastic term(s). To perform numer-
ical simulations, we convert this schematic equation into the
Euler scheme with timestep τ :

x(s)
t+1 = x(s)

t + τ

η̂
(s)
t︸︷︷︸

stigmergy influence

(
fact + f (s)

push,t + f (s)
res,t︸ ︷︷ ︸

contact

+ f (s)
harm,t

)

+ σd ε
(s)
t

√
τ︸ ︷︷ ︸

stochastic

. (1)

The model includes three interaction forces impacting par-
ticle alongside the active (constant) force fact. To provide
intuitive insight into stigmergy, we omit here the specifics of
short-range contact forces [ f (s)

push,t for pushing and f (s)
res,t for

resistance], which arise from interactions with nearby parti-
cles (see Appendix A). Reflecting the experimental setup, a
harmonic force given by f (s)

harm,t = kp[x(s+1)
t − 2x(s)

t + x(s−1)
t ]

and subject to kp > 0 acts to induce particle separation.
Additionally, the stochastic term σdε

(s)
t

√
τ incorporates en-

vironmental influences through σd (a constant) and ε
(s)
t (a

zero-mean, unit-variance Gaussian term), aligning with the
concept of Brownian motion (Wiener’s process) as the char-
acteristic time (τ ) approaches zero, as described in Ref. [29].

Equation (1) integrates the stigmergy over the local instan-
taneous viscosity(̂η(s)

t ), reflecting the viscous drag effect that
takes into account how the lattice state affects the particle
motion.

B. Stigmergy update

Stigmergy operates within a 1D lattice with equidistant
nodes, spaced by �η to represent local viscosity details. To
monitor the movement of active particles, we project the po-
sitions of both particle centers onto the lattice. The secondary
(writing) center positions are determined by performing an
integer division of x(s)

t by �η, resulting in the lattice node
j (s)
cent,t , referred to as the instantaneous central node. For the

specified left-to-right movement of the particle, we reach the
position on the lattice corresponding to the primary node after
shifting nplat lattice units. The shift is related to the parti-
cle size �p = (2nplat + 1)�η. To ensure compatibility between
lattice nodes and particle positions, PBC are applied. The
primary center of the particle is projected onto the lattice posi-
tion j (s)

+,t ≡ [ j (s)
cent,t + nplat]PBC, where discrete values between

0 and Nlat − 1 are expressed by the modulo operator [. . .]PBC.
The details are given in Appendix B.

Stigmergic interaction uses the lattice for communication.
Particles “read” and “write” information, enabling indirect in-
teraction. Mathematically, the reading process is represented
as:

η̂
(s)
t+1︸︷︷︸

experienced by s

= η
( j (s)

+,t )
lat,t︸ ︷︷ ︸

read from j (s)
+,t

. (2)

This update applies to all particles s ∈ {0, . . . , Np − 1}. The
writing (action) process

η
( j (s)

cent,t )
lat,t+1 = ηlow (3)

024605-4



CONTROLLED STIGMERGY IN QUASI-ONE-DIMENSIONAL … PHYSICAL REVIEW E 110, 024605 (2024)

conversely transfers information from the sth particle to the
lattice node j (s)

cent,t .

C. Lattice viscosity relaxation update

Dynamic control of the environmental dynamics to main-
tain the local viscosity within the range [ηlow, ηhigh] at each
node j ∈ {0, 1, . . . , Nlat − 1}, is an important aspect of the
model. The viscosity is determined using an iterative rule

η
( j)
lat,t+1 =

{
η

( j)
lat,t + αrelaxτ, if η

( j)
lat,t < ηhigh,

η
( j)
lat,t , otherwise.

(4)

Local viscosity is stabilized by adjusting it, either increasing
it by αrelaxτ when below ηhigh or keeping it constant if at or
above ηhigh. In our investigation of stigmergy, the relaxation
rate parameter αrelax carries considerable significance. Tem-
porary stagnation may persist until the prescribed action in
Eq. (3) occurs at the designated node.

IV. STATISTICAL CHARACTERISTICS

To characterize the dynamics of systems of several inter-
acting particles, we focus on the statistical description. We
introduce and study three statistical characteristics that iden-
tify the system’s regimes. Analyzing the particle speed and
mutual distance dynamics together with the corresponding
animations (see the videos in the Supplemental Material) re-
fines our understanding of the system’s behavior. The notation
of the simulated particle model is employed to introduce the
statistical characteristics. It’s important to recognize that the
quantities calculated in the mechanical case were introduced
similarly.

The equation defines the particle speed:

v
(s)
t = x(s)

t − x(s)
t−1

τ
, (5)

where x(s)
t is the position of particle s at time t and τ is the

time step. The first statistical measure investigated is the mean
particle speed, which is defined as

vt = 1

Np

Np−1∑
s=0

v
(s)
t . (6)

Furthermore, in addressing the challenges associated with
Np � 3, it is imperative to characterize the heterogeneity of
speed values. To achieve this, we employ the mean speed
difference, expressed as:

	vt = 1
2

(
v

(smin,t )
t + v

([smin,t +1]PBC )
t

) − vt , (7)

where the index

smin,t = arg min
s=0,...,Np−1

δ
(s)
t

points to the instantaneous particle identified by the circular
distance δ

(s)
t , as defined by Eq. (B1) in Appendix B. Thus,

Eq. (7) deals with the closest particle pair with indices smin,t

and [smin,t + 1]PBC. The intuition behind the choice of the
measure is that it plays a role similar to that of the group-pair
speed to the systemic mean vt . As will be demonstrated later,
the 	vt detects the presence of oscillatory modes sensitively.

Finally, to analyze the system deviation from the symmet-
ric particle distribution under periodic boundary conditions,
we introduce a metric based on the Euclidean distance,

dδ,t =
√√√√ 1

Np

Np−1∑
s=0

(
δ

(s)
t − L

Np

)2

,

to a vector consisting of Np components representing identical
L/Np distances. This is a simple way of expressing the degree
of deviation from the clustered state to the uniform distance
state.

The time averages of the above-mentioned quantities and,
in addition, the quantity for the mean viscosity are formally
expressed as follows:

〈v〉 ≡ 〈vt 〉, 〈	v〉 ≡ 〈	vt 〉, 〈dδ〉 ≡ 〈dδ,t 〉,

〈η〉 ≡
〈

1

Nlat

Nlat−1∑
j=0

η
( j)
lat,t

〉
. (8)

In the context of the regime, the symbol 〈. . .〉 represents the
averaging procedure across numerous time steps. The con-
scious decision to exclude explicit time references is made to
maintain analysis independence from the transient interval.

A. Specific analysis of Np = 4 configurations

A more detailed statistical analysis was conducted for the
case where Np = 4. Here, we propose a specific approach uti-
lizing comparisons with memorized static configurations for
the same case. This approach allows a more nuanced analysis
of the system statistical properties in steady states by using
a hypergrid within the configuration space. The nodes of this
hypergrid are defined in terms of discretized cyclic distances.

The simulation data of the particle system can be struc-
tured into vectors, each comprising successive (real-valued)
distances, delineated as:

�
(0,1,2,3)
t ≡ (

δ
(0)
t , δ

(1)
t , δ

(2)
t , δ

(3)
t

)
. (9)

These time-dependent vectors are further categorized by
Nmem = 10 memorized configurations which are shown in
Table I. In the context of Eq. (9), the sum of components
is equal to L (L = 1 in the case considered). Appendix C
provides additional details.

The categorization of data from Eq. (9) is based on mini-
mizing the distance between vectors �

(0,1,2,3)
t and the vectors

representing memorized configurations. The statistical out-
puts of our analysis consist of the time-averaged proportions
of each category, identified by the index k∗

t [details can be
found in Eq. (C3) of Appendix C]. For ease of interpre-
tation, the stored configurations were combined into larger
structural units, groups denoted by Ig, IIg, IIIg, IVg, and Vg.
Each group belongs to cluster configurations as follows: Ig,
single tetramer; IIg, trimer and monomer; IIIg, two dimers;
IVg, dimer and two monomers; and Vg, four monomers.

B. Parametric settings

In this study, we employed both mechanistic and simula-
tion systems that feature externally controlled parameters. In
the mechanical system, the “Obstacle relaxation rate,” which
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TABLE I. Memorized configurations for Np = 4 and L = 1 grouped into Ig, IIg, IIIg, IVg, and Vg. For instance, to interpret (1,2,1,4),
consider normalized distances (1/8, 2/8, 1/8, 4/8). The two rightmost columns depict particles in a quasi-1D system with periodic boundaries
emphasized. Within each group, configurations are selected via combinatorial changes (combin) and adjusted using the smallest distance
principle (adjust) defined in Appendix C.

is related to the speed of the drifting obstacles, was externally
controlled by substrate-induced vibrations. The simulation ex-
hibits a similar mechanism, which is parameterized by αrelax

and the pair of viscosities ηlow and ηhigh. Specifically, the
simulation relaxation parameter is directly proportional to
the frequency of incremental, successive linear increases in
viscosity, as outlined in Eq. (4). All simulation parameters, or
their various values used in this work, are listed in Table II.
The choice of the ratio of ηhigh to ηlow equal to 2 is not
arbitrary. It has a rough correspondence with the experimental
mechanical system.

In our simulation, we make a clear distinction between
statistical characteristics derived from gradual transitions
within the parametric space of the relaxation parameter αrelax,
whether they involve a transition from low to high values
or from high to low values. Our numerical approach was
modified to compute averages over 1.75 × 107 simulation
steps, omitting the initial 5 × 106 steps after changing the
αrelax value as transients. In addition, we performed numer-
ous iterations, traversing the parametric range from lower to
higher αrelax values and vice versa. This process was typically
repeated between 20 and 60 times, with the exact number of

024605-6



CONTROLLED STIGMERGY IN QUASI-ONE-DIMENSIONAL … PHYSICAL REVIEW E 110, 024605 (2024)

TABLE II. The simulation model utilized dimensionless param-
eters. Beyond the tabulated values, diverse parameter combinations
were explored. Specifically, simulations covered Np = 1, 2, 3, 4 with
L = 1, Nlat = 100. Additionally, certain combinations like (L =
2, Nlat = 200, Np = 8) and (L = 4, Nlat = 400, Np = 16) were
examined.

Name, meaning Symbol Value(s)

Linear size L {1, 2, 4}
Number of cellular automaton nodes Nlat {100, 200, 400}
Number of active particles Np {1, 2, 3, 4, 8, 16}
Relaxation parameter αrelax [0.01,9.0]
Lower medium viscosity ηlow 1.0
Higher medium viscosity ηhigh 2.0
Characteristic time step τ 10−6

Particle size �p 0.07
Propulsion fact 1
Soft contact coupling parameter gp 2.0
Soft contact extent σp 0.2�p

Stiffness, harmonic coupling kp 0.05
Smallest distance δsmall 1/8
Adjusted distance δadj 0.1

iterations depending on the statistical reliability of the alter-
native “Means.”

V. RESULTS

A. Results for Np = 1, 2, 3

We begin with reporting one- and two-particle information
obtained both with the experimental model and by simula-
tions, as depicted in Fig. 3. As shown below, despite the
obvious differences in the simulation and mechanical system
results, they share many important characteristics.

1. Case Np = 1

Unexpectedly, when we follow the transition from long-
term stigmergy (low values of αrelax) to short-term stigmergic
interactions (large αrelax values), even the results for a single
particle and a single hexbug are instructive and valuable.
When Np = 1 [depicted by the black curve in Fig. 3(a)], mov-
ing towards larger relaxation parameters we observe an initial
linear decrease in the simulated 〈v〉 from the maximum value
of fact/ηlow = 1 to a steady state of fact/ηhigh = 0.5, which is
reached for αrelax > 0.5. Interestingly, it is the effect of self-
stigmergy (self-interaction caused by the viscosity-reducing
effects in a periodic boundary system) that can explain the lin-
ear drop. Above αrelax = 0.5 the relaxation of the viscosity is
fast enough so that the particle loses contact with its clue and
moves at constant speed in the high-viscosity environment. In
general, the same effects are detected in the mechanical model
scenario [see Fig. 3(c)] with 1 hexbug. The initial decrease
of 〈v〉 and the sharp threshold for reaching the steady speed
regime are well presented in the results.

2. Case Np = 2

The significant impacts of stigmergic interaction become
evident when transitioning to the Np = 2 system.

In Figs. S1 and S2, it is possible to find qualitative sim-
ilarities and differences in particle dynamics observed in
computational and mechanical systems. We now turn to a
more detailed discussion of the results obtained using the
computational model. It is advantageous to analyze the dif-
ferent stigmergic regimes in terms of the 〈dδ〉 characteristics,
which reflect the deviations from the symmetric (equidistant)
particle distribution on the track. When αrelax is set to zero, the
stigmergic clue lasts forever and the two simulated particles
move at high speed in a reduced-viscosity environment (ηlow).
Due to the harmonic interaction, the particles are distributed
equidistantly (not counting the stochastic fluctuations), what
is reflected in the nearly zero of 〈dδ〉 [see Fig. 3(b)]. When
we start to increase the relaxation parameter [blue curves
with open triangles in Figs. 3(a) and 3(b)], sharp rise is
observed in the 〈dδ〉. If the reduced viscosity clue starts to
fade behind the particles (αrelax > 0), then moderate random
fluctuations cause one of the two particles to approach the
other, allowing it to enter the region with reduced viscosity
and thus increase its speed, which further widens the inter-
particle gap. The system flips into a clustered mode: The
two particles move closely together at an intermediate speed.
The 〈dδ〉 is about 0.4 here. The strongly clustered regime
stays stable until we reach a critical αrelax ≈ 0.63. Above
this threshold, the relaxation is very fast, and the stigmergic
clue becomes shorter than the cluster interparticle distance
(maintained by the repulsive forces), both particles encounter
the same high-viscosity environment and finally start to lose
contact. Harmonic forces act to spread out the particles in
the cluster, suppressing the formation of pairs of particles
(dimers) and restoring a symmetrical arrangement of parti-
cles, which is evident from the minimization of the average
interparticle distance 〈dδ〉 and indirectly also the average
speed 〈v〉.

Our simulations depict the emergence of hysteresis in the
two-particle dynamics, characterized by inherent bistability in
upward and downward relaxation parameter movement [blue,
open triangles and red, solid triangles on curves in Figs. 3(a)
and 3(b)]. This bistability is evident as the two particles ex-
hibit distinct behavior depending on the value of the parameter
αrelax. Within the range αrelax ∈ [1, 7], the simulations show
that for the same αrelax value, the two particles either behave
almost independently, distributed symmetrically and moving
at low speed (red, solid triangles), or as if they are clustered,
forming a dimer that moves at intermediate speed (blue, open
triangles).

Within the mechanical system, both stigmergy and hys-
teresis are present, with hysteresis revealing more nuanced
effects than in the simulation. Consistently with the sim-
ulations [see Figs. 3(c) and 3(d)], the hexbug distances
display an exceptional uniformity, as verified by the re-
markably low 〈dδ〉 primarily at low (�0.002 m s−1) and
high (�0.007 m s−1) values of the “Obstacle relaxation rate”
(equivalents of αrelax). However, a more distinct tendency
to form hexbug dimers emerges at intermediate relaxation
rates ∼[0.002, 0.007] m s−1. In this clustered regime, the
two hexbugs move at an intermediate speed, which again
correlates well with the simulated model. Typical experi-
mental situations at zero and intermediate relaxation rates
(uniform and clustered regimes) are shown in Video_HBa and
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FIG. 3. The mean particle speed 〈v〉 and the mean Euclidean distance 〈dδ〉 are measured for Np = 1 or 2 in both the simulation model
[(a) and (b)] and the mechanical model [(c) and (d)]. The statistical characteristics are plotted as a function of the relaxation parameter αrelax,
or the analogous “Obstacle relaxation rate” determined in the Supplemental Material (Fig. S3). Color coding and symbols indicate hysteresis:
red for decreases (base down, solid triangles) and blue for increases (base up, open triangles) in relaxation rate. Additionally, the error bar in
(d) represents the standard deviation of the “Obstacle relaxation rate”.

Video_HBb, respectively. Finally, at low relaxation rates 〈v〉
decreases approximately two times slower than for Np = 1,
in agreement with the tendency found in simulations. Dur-
ing the experiments, it was observed that the 〈v〉 values at
zero relaxation rate were not fully recovered after initially
increasing and then decreasing the “Obstacle relaxation rate.”
This observation suggests the influence of battery wear, a
phenomenon reported by other researchers [21].

The qualitative divergence observed between the mechan-
ical experiment and the simulation model likely arises from
several factors, including higher inherent noise levels in the
mechanical system and geometric variations, particularly in
barrier count. Simulation results indicate that harmonic forces
and battery wear may jointly play a significant role. In simu-
lations with kp = 0.38 (Fig. S4) provided in the Supplemental
Material, increasing harmonic force in combination with

simulated battery wear aligned simulated hysteresis closer
to experimental results in the qualitative sense. However, in
the simulations presented in the main text, we reduced the
harmonic force to kp = 0.05 to underscore the dominant in-
fluence of stigmergic effects.

3. Case Np = 3

Now we will investigate how the observed scenario
changes as we progress toward more complex properties with
a three-particle simulated system. The 〈dδ〉 data plotted for
Np = 3 in Fig. 4(b) evidence a new stigmergic regime, absent
in the previous two-particle case. An extra plato is formed in
the increasing αrelax branch (blue, open triangles) for αrelax ∈
[5, 7]. Five characteristic loci, marked as 3A, 3B, . . .,3E
in Fig. 4(b), were chosen for monitoring to gain a deeper
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FIG. 4. Results for Np = 3, L = 1 include statistical features: (a) the mean particle speed 〈v〉, (b) the mean Euclidean distance 〈dδ〉, and
(c) the mean speed difference 〈	v〉. Time dependencies δ

(s)
t , s = 0, 1, 2 measured at selected points labeled as 3A, . . ., 3E in panel (b) are

shown in the right column. 3A, 3D, and 3E show a homogeneous distribution. A stable trimer is formed in 3B and the oscillations observed in
3C support a dynamic dimer.

understanding of the system. The corresponding interparticle
distances, δ

(0)
t , δ

(1)
t and δ

(2)
t , are plotted over time on the right-

hand side of Fig. 4.
Symmetric particle distribution belongs to point labeled as

3A for αrelax = 0.01, where the interparticle distances fluc-
tuate around 1/3. The locus 3B represents a very stable,
fully clustered mode characterized by two short interparticle
distances (within the formed trimer) and one large distance.
The motion of the trimer is visualized in the Animation_3B
video of the Supplemental Material. The loci centers 3D and
3E produce fully symmetric order, and all the interparticle
distances stay close to 1/3 here (see Animation_3D and 3E).
Pronounced hysteresis is observed for the increasing (blue,
open triangles) and decreasing (red, solid triangles) relaxation

parameter branches as manifested by the 3B and 3E loci,
which belong to the same αrelax = 3.

In the 3C locus, a unique stigmergic behavior emerges with
periodic oscillations in interparticle distances. Remarkably,
this regime also exhibits dynamic clustering, where parti-
cles periodically exchange positions, forming and maintaining
transient dimer structures over time. The Animation_3C video
vividly illustrates a particle separating from and rejoining a
cluster of two particles—a process akin to the formation and
dissolution of pelotons in velodromes. This self-organization
reflects the oscillatory dynamic clustering mode, evident
from the nonzero 〈	v〉 in Fig. 4(c). Positive values indicate
that the clustered particles’ effective speed exceeds the av-
erage speed, maintaining dynamic equilibrium as members
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FIG. 5. Simulation results for Np = 4, L = 1. We compare the three panels of time averages (left) with the dynamics panels (right) of
distances δ

(s)
t , s = 0, 1, 2, 3 as measured at loci 4A,. . . , 4E indicated in panel (b). 4A and 4E are states with homogeneous distribution, 4B is

the locus of a stable tetramer form, while 4C and 4D are notable for their dynamic clustering (trimer and dimer) accompanied by oscillations
of distances.

join and leave the cluster. The dynamics of this process
is influenced to a large extent by the periodicity of the
geometry.

B. Case Np = 4

Figure 5 shows the results for Np = 4. A comparison with
Np = 3 (Fig. 4) reveals a new stigmergic mode with an ad-
ditional particle. The characteristic states 4A to 4E denote
different operating regimes. Analyzing the time evolution of
the interparticle distances δ

(0)
t , δ

(1)
t , δ

(2)
t , and δ

(3)
t , we ob-

serve symmetric (4A and 4E) and fully clustered (stable
tetramer in 4B) regimes. However, the interval of the oscil-
latory mode, now about 3.5 � αrelax � 7.3 [Fig. 5(c)], splits
into two distinct regimes. At the 4C site, a dynamic trimer

forms, capturing the fourth particle and simultaneously losing
its last particle. Conversely, at the 4D locus, a dynamic dimer
is present, accompanied by the two detached particles (see
corresponding animations in the Supplemental Material).

The classification of all observed steady-state regimes,
with the exclusion of transients from our investigations, in-
dicates roughly three primary regime types:

(i) Uniform particle dispersion: Interparticle distances
exhibit fluctuations around L/Np, indicating a significant
stochastic contribution (see, for example, loci 4A and 4E in
Fig. 5). This regime is characterized by the absence of particle
clusters.

(ii) Stable clustered regime: A robust and stable particle
cluster forms (observed at locus 4B), with minimal fluctua-
tions in interparticle distances.
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FIG. 6. The results of a numerical study of Np = 4, L = 1 peri-
odic particle system, highlighting the frequency of occurrence of five
specific groupings of memorized configurations (see also Table I)
(a), and the mean viscosity (b) measured at different relaxation rates.
Only the data for gradually increasing αrelax are plotted. It’s impor-
tant to recognize that the configurations (group occurrence) display
approximate symmetry in relaxation rates, indicating similarities be-
tween their high and low values.

(iii) Dynamic clustered regime: Particles self-organize
into intricate, nontrivial structures featuring dynamic clus-
ters. The particles within these clusters undergo periodic
exchanges, as evident in loci 4C and 4D.

Classification of Np = 4 configurations

It is worth highlighting that during the analysis of various
αrelax values in Fig. 5, all possible cluster sizes (4, 3, and 2)
emerge, each in a unique context. The configuration groups
described in Sec. IV A (see Table I) serve as a framework for
a detailed study of the dependence of characteristic cluster
sizes on the relaxation rate parameter. The probabilities of
occurrences for distinct configuration groups are graphically
represented in Fig. 6(a), with exclusive emphasis on data
about the gradual increase of the αrelax parameter to preclude
interference associated with hysteresis.

At αrelax < 0.05, the fully monomerized (nonclustered)
configuration group Vg clearly dominates the long-term stig-
mergic regime. The logarithmic scale used in Fig. 6 reveals
the details of the fast configuration transitions toward higher
relaxation parameters αrelax = 0.05 → 0.4, which stayed un-
resolved in the graphs of Fig. 5. We see the system gradually
passing through the groups of Vg → IVg → IIg → Ig

with a negligible contribution from the IIIg group. As we pro-
gressively increase the relaxation parameter, the dominance

of the fully clustered configuration in group Ig remains intact
until αrelax reaches 3.3. Beyond this point, the extensive cluster
gradually disassembles as the system transitions backward
through the configuration groups: Ig → IIg → IVg → Vg.

An insightful finding from our detailed Np = 4 analy-
ses, is the obvious symmetry that the system configurations
display in relaxation rates when bridging long-term and short-
term stigmergy [see Fig. 6(a)]. This intriguing phenomenon
directly stems from the system’s inherent bistability, a conse-
quence of the two extreme viscosity levels, namely ηlow and
ηhigh. The average viscosity values are plotted in Fig. 6(b).
Slow relaxation rates promote a uniform arrangement of parti-
cles characterized by an almost uniform viscosity distribution
near ηlow. Similarly, the increased activity at fast relaxation
values favors the homogeneity of viscosity sites, particularly
in the vicinity of ηhigh. In both low- and high-viscosity regions
there is a noticeable increase in the preference for uniform
particle arrangement, which is only weakly affected by the
harmonic forces. At intermediate values of αrelax, however,
strong particle clustering is observed, where the viscosity
distribution at the nodes exhibits strong heterogeneity. In this
region, the significant stigmergic interaction is the driving
force behind the dynamics of the active particle system under
investigation.

VI. FEATURES FOR INCREASED PARTICLE COUNT

In our pursuit of a deeper exploration of the influences
of particle numbers within periodic geometry, we have cho-
sen to study three triads of the type (Np, L, Nlat ). The
invariant density determines the choice. We have carefully an-
alyzed (4, 1, 100) before shifting our focus to (8, 2, 200) and
(16, 4, 400). This allows us to gain additional perspectives on
the asymptotic behavior of the system. It is important to note
that larger values of L correspond to a reduced influence of
the boundary conditions.

The results in Fig. 7 display 〈dδ〉 values for Np = 8 and
Np = 16 as a function of αrelax. In extreme stigmergic con-
ditions, very short and very long relaxations, all systems
exhibit similar behavior: particles adopt an almost homo-
geneous (“monomerized”) arrangement, minimizing 〈dδ〉. A
notable difference from the four-particle case [see Np = 4
data in Fig. 5(b)] is observed at intermediate relaxation rates.
Doubling the system size to Np = 8 results in clustered modes
splitting into two sub-modes, represented by two branches
in Fig. 7(a). At αrelax = 4.5, the 8D locus has two distinct
dynamic clusters, while the 8E locus has only one. Generally,
the two branches in Fig. 7(a) represent one-cluster and two-
cluster scenarios, with cluster size varying with the relaxation
parameter (as observed for Np = 4). At the 8E locus, a single
cluster typically contains four particles and four monomers,
while at the 8B locus, the cluster comprises seven particles.
The system is fully clustered within a limited range of the
relaxation parameter, observed at 8A.

In the Np = 16 scenario, a new branch with three-cluster
configurations emerges, highlighting the trend of larger sys-
tems to contain more clusters [Fig. 7(b)]. Loci 16B and
16C represent stable two-cluster and three-cluster scenarios.
The 1-cluster branch is suppressed, appearing only within
a limited range of relaxation parameters. The presence of
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FIG. 7. Comparing the systems of Np = 8 (a) and Np = 16
(b) particles as seen by projecting on 〈dδ〉. The color scheme indi-
cates the number of clusters formed at different conditions. Video
presentations illustrating the dynamics of the system are provided
in the Supplemental Material at selected points of interest, labeled
8A–8E, 16A–16C. The phases of the crescent symbols graphically
symbolize different trends (up, down) in αrelax.

a sharp peak in 〈dδ〉 at locus 16A suggests a departure
from uniform distances, indicating the emergence of a glob-
ally clustered configuration despite the increased particle
count. Within this peak region, there is notably high stigmer-
gic coupling, highlighting cohesive and coordinated particle
behavior.

Based on our results, it is hypothesized that larger systems
with more particles will break up into more dynamic clusters,
with their size depending on the relaxation rate.

VII. DISCUSSION

Our research is based on a hybrid computational model,
emphasizing the importance of situating our work within
existing stigmergy modeling approaches to deepen under-
standing and drive future advances. The well-known “ant

colony optimization” method [30] is a common example,
although our approach differs by not having optimization
goals. Colony dynamics show efficiency within discrete
search spaces. Our computational dynamics also include off-
lattice Brownian dynamics, which affect the states of lattice
nodes and vice versa. Conceptually, the principles of our
approach have the potential to be more consistent with the
probabilistic Markov chain framework used for “ant colony
optimization.”

Our modeling relies on cyclic design, revealing regu-
lar patterns and dynamic clustering akin to phase oscillator
models [31,32]. Supported by our video material, we’ve iden-
tified a potential link between the oscillator’s phase variable
and the position in the extended Brownian particle model
(phase(s) = 2π [x(s)

t /L]). This interpretation helps us under-
stand a constant frequency term as a driving force acting on
a Brownian particle. Phase clustering from oscillator phase
models offers insights for advanced stigmergy techniques,
yet preventing phase overtaking and capturing stigmergy
or environmental influence through oscillator phases remain
challenging.

In light of recent research, we refer to a study on granular
material by Ref. [33], which identifies two distinct modes of
steady-state behavior for a mechanically probing intruder in
a quasi-2D circular geometry. These modes lead to different
degrees of wake persistence behind the intruder, which corre-
late with the packing density. The presence of these regimes
highlights the implications for our study of stigmergy, as the
formation of wakes of different persistence reflects different
relaxation modes.

Although not specifically focused on stigmergy, the study
[34] provides insights into the analysis of the ordering of
matter and could potentially open up new directions for study-
ing barrier environments and stigmergy in two dimensions.
In addition, the study, which is also relevant to our work,
tentatively suggests that an optimal noise level may be crucial
for promoting particle exchange between dynamic clusters.
Research on active matter may find this commonality worth
considering.

Understanding hysteresis typically involves considering
both current conditions and past states, as well as different
types of interactions [35]. Intuitively, hysteresis should be
naturally associated with the presence of stigmergy. The in-
fluence of other factors remains less clear. In this study, we
consistently observed hysteresis in all tested simulation cases,
which corresponded to lower noise levels. By integrating
knowledge about the strength of harmonic interactions and
the linear decrease of the hexbugs’ driving force over time,
we identified where the discrepancies between the mechan-
ical and computational systems likely originate. This insight
defines tasks for future research. Multiple interactive contribu-
tions in the experimental setup somewhat resembles realistic
communication among organisms. Research on social insects
has highlighted the combined effects of both indirect and
direct interactions. Observations of termite acoustic commu-
nication [36] exemplify this, showing that stigmergy does not
preclude direct long-distance communication. In this context,
the harmonic interaction approach presented here provides a
foundation for modeling stigmergy acting in combination with
long-range interactions.
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VIII. CONCLUSION

Our research uses computational and mechanistic model-
ing to create a unified physical framework for stigmergy. This
framework treats active particles in a relaxed environment,
allowing the exploration of different dynamical regimes. We
demonstrate control over the environment, revealing its im-
pact on particle configurations, dynamics, and clustering. This
approach provides insights into different stigmergic processes
across timescales, including slow relaxation, oscillations, and
dynamic clustering. The potential for re-evaluating biological
models through the lens of symmetry, hysteresis, and a deeper
exploration of indirect interactions is immense.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and
Development Agency, Grants No. APVV-21-0333 and No.
APVV-19-0580, and by the grant agency of the Ministry
of Education, Science, Research and Sports of the Slovak
Republic, Grant No. VEGA 2/0101/22. This publication
is the outcome of the implementation of the OPENMED
project, ITMS2014+ 313011V455, and BioPickmol project,
ITMS2014+ 313011AUW6, funded by the ERDF Operational
Program Integrated Infrastructure.

APPENDIX A: CONTACT FORCES

In this Appendix we present a model describing the con-
tact forces between particles. Each particle is indexed by
s and has a corresponding position x(s)

t , organized along a
single dimension in ascending order. Our analysis begins by
considering the pushing force exerted by the (s − 1)-th parti-
cle on the sth particle. This force becomes significant when
the (s − 1)-th particle falls within the interval [x(s)

t − �p −
σp, x(s)

t − �p + σp]. Here σp accounts for the inherent wig-
gling of the particle positions, which introduces uncertainty
in their exact positions due to their small transverse angular
motions. The smoothness of the changes, i.e., the sampling,
which is affected by the time resolution τ , is also relevant
to the calculation. As x(s−1)

t moves over this interval, we
expect a monotonic change in the pushing force. Both contact
forces(pushing and resisting) are expected to vary proportion-
ally with the parameter gp.

The adoption of smooth logistic functions ψ0,1 in nu-
merical computations provided a refined alternative to the
qualitative interval representation

f (s)
push,t = gpψ0

(
x(s−1)

t − x(s)
t + �p, σp

)
,

f (s)
res,t = gpψ1

(
x(s+1)

t − x(s)
t − �p, σp

)
, (A1)

where

ψ0(X, σp) = 1

1 + exp(−X/σp)
,

ψ1(X, σp) = − exp(−X/σp)

1 + exp(−X/σp)
. (A2)

Here X is used to denote a generic argument. On utiliz-
ing the property ψ1(−X, σp) = −ψ0(X, σp) of the contacts

softened by σp, the action-reaction principle within the chain
of hexbugs, f (s−1)

res,t = − f (s)
push,t , becomes readily apparent.

We introduced additional computational constraints, for-
mulated as rules, to maintain the canonical ordering of
particles and prevent overtaking. Furthermore, the selection
of parameters aimed to minimize the occurrence of overtaking
events and ensure their statistical insignificance.

APPENDIX B: PERIODIC BOUNDARY CONDITIONS

PBCs play a crucial role in our dynamic model, which is
why we present this Appendix to elucidate the computational
procedure. We denote the impact of PBCs on the argument
[. . .] as [. . .]PBC. Implementing PBCs entails adjustments to
two model components: particle indices and interparticle dis-
tances. Extending PBCs to the lattice is a natural extension of
their application.

From understanding the instantaneous positional differ-
ences D(s)

t , the approach then shifts to circular distances δ
(s)
t ,

which are defined as follows

D(s)
t ≡ x([s+1]PBC )

t − x(s)
t ,

(B1)

δ
(s)
t ≡

{
D(s)

t if D(s)
t > 0,

D(s)
t + L if D(s)

t < 0.

Both variants guarantee δ
(s)
t stays within [0, L]. For PBCs,

adjustments to neighboring particle indices are defined as

[s − 1]PBC ≡
{

s − 1 if s > 0,

Np − 1 if s = 0,
(B2)

[s + 1]PBC ≡
{

s + 1 if s < Np − 1,

0 if s = Np − 1.

The introduction of PBCs requires a reconsideration of the
interaction terms. This entails modifying the contact forces,
as outlined in Eq. (A1), as well as the harmonic force. By
incorporating ψ0(.) (explained in detail in Appendix A) and
δ

(s)
t , this revision results in

f (s)
push,t = gpψ0

( − δ
([s−1]PBC )
t + �p, σp

)
,

f (s)
res,t = −gpψ0

( − δ
(s)
t + �p, σp

)
,

f (s)
harm,t = kp

(
δ

(s)
t − δ

([s−1]PBC )
t

)
. (B3)

APPENDIX C: MEMORIZED PATTERNS
AND CATEGORIZATION OF Np = 4 SYSTEM

In this Appendix, we present a two-stage design process
for memorized configurations. The first stage is purely combi-
natorial, involving uniform sampling of the space of possible
configurations. The second stage involves adjustments based
on both simulation results and combinatorial considerations.

The first stage in categorization involves constructing a
list of Nmem unique memorized configurations through a
purely combinatorial approach. These configurations, essen-
tially templates, are represented as four-dimensional vectors

N(0,1,2,3)
k ≡ 1

n(�)

(
n(0)

k , n(1)
k , n(2)

k , n(3)
k

)
. (C1)
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Here k serves as a unique index that identifies each configu-
ration (from k = 0 to Nmem − 1). The N(0,1,2,3)

k is defined by
n(0)

k , n(1)
k , n(2)

k and n(3)
k , which are all natural numbers. For

consistency with �(0,1,2,3), a norming factor n(�) = n(0)
k +

n(1)
k + n(2)

k + n(3)
k is introduced. In particular, for L = 1, the

sum of the components in each N(0,1,2,3)
k vector must equal one

(for all k). Increasing the level of detail (higher n(�)) improves
accuracy. However, this leads to reduced interpretability. A
compromise is therefore necessary when choosing n(�). In
this manuscript, we consider the case where n(�) = 8 and
Nmem = 10 (see Table I) as a compromise.

The second stage of categorisation is a form of supervising.
It uses the simulation data to replace the initial stored patterns
N(0,1,2,3)

k with adjusted vectors Ñ(0,1,2,3)
k . We found that these

improvements, conditional on a minimum δsmall, are suitable
for practically all values of αrelax. The combinational approach
used δsmall = 1/8. However, because of the simulation, this
value should be replaced by δadj = 0.1 for the given simulation
parameters. Such a step will of course cause a discrepancy in
the normalization of the sum of the circular distances. There-
fore, in order to adjust the entire memorized configuration, we
introduce a uniform multiplication factor for the remaining
larger distances: 2/8, 3/8, . . .. For instance, let’s consider a
scenario where a single smallest distance (n(0)/n(�) ) = 1/8 is
present in some memorized pattern. This necessitates a factor
of (L − δadj )/

∑3
j=1(n( j)

k /n(�) ) for the multiplication of the
other distances.

Cycle symmetry is crucial for efficient pattern memoriza-
tion and configuration reduction. This is achieved through the

existence of equivalences, exemplified by permuted (cycle-
distance) indices

Ñ(0,1,2,3)
k equiv. Ñ(3,0,1,2)

k equiv. Ñ(2,3,0,1)
k equiv. Ñ(1,2,3,0)

k .

(C2)

On a formal level, we can introduce the shift operator Ĉsh,
thereby gaining

Ñ(3,0,1,2)
k = Ĉsh

(
Ñ(0,1,2,3)

k

)
, Ñ(0,1,2,3)

k = Ĉsh
(
Ñ(1,2,3,0)

k

)
,

Ñ(1,2,3,0)
k = Ĉsh

(
Ñ(2,3,0,1)

k

)
, Ñ(2,3,0,1)

k = Ĉsh
(
Ñ(3,0,1,2)

k

)
.

The categorization process involves assigning input vectors,
denoted by �

(0,1,2,3)
t [structured according to Eq. (9)], to

configurations. This assignment is achieved through a mini-
mization process detailed in

k∗
t ≡ arg min

k ∈ { 0, . . . ,

. . . Nmem − 1 }

min
m∈{0,1,2,3}

∥∥ Ĉm
sh

(
Ñ(0,1,2,3)

k

) − �
(0,1,2,3)
t

∥∥.

(C3)

This minimization identifies the configuration, denoted by k∗
t ,

that minimizes a specific measure. The measure represents the
Euclidean distance after applying cyclic shifts to account for
potential rotational variations within the input data. The cyclic
shift operator, denoted by Ĉm

sh, considers powers ranging from
0 to 3. In essence, the system performs a minimization to
find the configuration most similar to the input vector after
considering all possible cyclic shifts of the memorized con-
figurations (represented by Ñ(0,1,2,3)

k ).
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