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Tuning nonequilibrium colloidal structure in external fields by density-dependent state switching
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Biological cells have the ability to switch internal states depending on the density of other cells in their local
environment, referred to as “quorum sensing.” The latter can be utilized to control collective structuring, such as
in biofilm formation. In this work, we study a simple quorum sensing model of ideal (noninteracting) colloids
with a switchable internal degree of freedom in the presence of external potentials. The colloids have two possible
discrete states, in which they are affected differently by the external field, and switch with rates dependent on
the local density in their environment. We study this model with reactive Brownian dynamics simulations, as
well as with an appropriate reaction-diffusion theory. We find remarkable structuring in the system controlled
by the density-mediated interactions between the ideal colloids. We report results of different functional forms
for the rate dependence and quantify the influence of their parameters, in particular, discuss the role of the
spatiotemporal sensing range, i.e., how the resulting structures depend on how the environmental information is
“measured” by the colloids. Especially in the case of a rate function with sigmoidal dependence on local density,
i.e., requiring a threshold density for switching, we observe significant correlation effects in the density profiles
which are tuneable by the sensing ranges but also sensitive to noise and fluctuations. Hence, our model gives
some basic insights into the nonequilibrium structuring mediated by simple quorum sensing protocols.
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I. INTRODUCTION

Quorum sensing is a signaling process that enables bacteria
to communicate and coordinate collective behavior in depen-
dence of the local cell population density [1–3]. Chemically,
the cells emit and sense molecular (auto)inducers. Their de-
tection triggers a different gene expression inside the cells
with various behavioral consequences. For example, in the
Vibrio fisheri bacteria [4–6], found in the Hawaiian squid, the
quorum sensing process enables bioluminescence. In another
scenario, quorum sensing triggers the expression of genes
involved in the production of extracellular matrix components,
which tune mobility as well as physical cell-cell interactions,
and is therefore key for migration, structuring, and forming
various biofilm architectures [7–9].

Understanding how quorum sensing drives the spatiotem-
poral collective structuring, e.g., in biofilm formation is
crucial for developing effective strategies to prevent, control,
and eliminate these persistent microbial communities which
are often resistent to antibiotics. Because as fascinating as
they may be, they lead to problems everywhere their growth is
unwanted, especially in the context of biofouling of medical
devices [10–12], like catheters or artificial joints. However,
understanding and controlling these processes from the per-
spective of complex and colloidal fluids could potentially lead

*Contact author: joachim.dzubiella@physik.uni-freiburg.de

to the physics-based design and synthesis of active functional
materials [13–18].

From a physical perspective, biofilm formation can be
understood in the simplest terms as a directed self-assembly
and adhesion of active macromolecules [14,19–21]. Hence,
colloids, suspended particles in a liquid phase, which actively
switch properties and interactions may serve as a simplified
representation of microbial populations. Recently, for exam-
ple, Alston et al. [20] presented a microscopic model inspired
by the bacteria Neisseria meningitidis in which diffusive
colloidal-like agents feel intermittent attractive forces. They
demonstrated the presence of microphase separation where
the colloidal cluster sizes were tuneable by the switching rate
between particle states. Similarly, some of us explored theo-
retically the microstructure and phase behavior of soft colloids
which can actively switch their interactions at a predefined ki-
netic rate [19,22]. They showed that sufficiently fast switching
impedes the phase separation of an (in equilibrium) unstable
liquid in both bulk and confinement, allowing the control of
the degree of mixing, condensation, and local microstructur-
ing in a cellular confinement by tuning the switching rate.

However, quorum sensing mediated structuring is based
on communication and switching behavior depending on the
local cell population density [15]. The influence of density-
dependent communication and state-switching on colloidal
structuring is unexplored, to the best of our knowledge. In
this study, we fill this knowledge gap by investigating a
simple model of colloids with local density-dependent prop-
erties, using particle-based simulations and reaction-diffusion

2470-0045/2024/110(2)/024604(10) 024604-1 ©2024 American Physical Society

https://orcid.org/0009-0004-6001-0953
https://orcid.org/0000-0001-6751-1487
https://ror.org/0245cg223
https://ror.org/0245cg223
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024604&domain=pdf&date_stamp=2024-08-16
https://doi.org/10.1103/PhysRevE.110.024604


HEINEN, GROH, AND DZUBIELLA PHYSICAL REVIEW E 110, 024604 (2024)

theories. Similar methods haven been employed recently to
study structuring by density-dependent diffusion and motility
[17]. We keep our model as simple as possible and consider
ideal, noninteracting (and nonmotile) colloids in which be-
havioral switching is accounted for by an internal degree of
freedom, or “state” of the colloids, which either takes the
discrete value a or b. We assume that the colloids are affected
by an external potential originating from a possible biofilm
host. The interaction with the potential depends on the colloid
state and therefore conditions the different behavior observed
for different gene expressions. The colloids switch their state
based on switching rates kab and kba. We integrate the quo-
rum sensing process into our model by making the switching
rates dependent on the local density. We then systematically
examine in our work the different possibilities of “measuring”
or “sensing” the local density by the cells and the functional
form of the switching rate dependence, and how they tune the
resulting structures.

Our approach involves both Brownian dynamics (BD) sim-
ulations and a theoretical analysis to unravel the emergent
behaviors of our model system. The theoretical descrip-
tion of our model is based on a reactive, overdamped
Smoluchowski transport equation, but adapted to include the
density-dependent reactive switching between states of the
colloids. The two different perspectives and mutual compar-
isons enable us to develop a thorough understanding of the
inner mechanisms of the colloid behavior.

This work is structured as follows. The first section intro-
duces to our quorum sensing model and the used methods,
namely the BD simulations and the theoretical framework.
Afterwards, our results are presented, divided into constant
rate studies, the influence of introducing the local density de-
pendence and finally a description of the structural correlation
effect we observe for a sigmoidal switching rate dependence.
The final section summarizes our findings and concludes our
studies.

II. MODEL AND METHODS

A. Switching colloid model

We consider a binary system of N ideal (noninteracting)
colloids suspended in a liquid phase. Each particle i = 1, .., N
is characterized by a three-dimensional position vector �ri =
(xi, yi, zi ) and an internal state s = a, b. Their movement is
limited by two walls in the x direction, where the colloid-wall
interaction is dependent on the internal state. The generic Mie-
93 potential [23,24] is chosen for the interaction between the
colloids and the wall in the form

�93(x; s) = 3
√

3

2
ε

[(σ

x

)9
− f (s)

(σ

x

)3
]
. (1)

Here, we introduced a switching function

f (s) =
{

1 if s = a,

0 if s = b,
(2)

which leads to colloidal attraction in state a, while repulsion
only in state b. The attraction range σ sets the unit length in
our model. The energy scale ε = 1 kBT sets the energy scale.
An illustration of the model is provided in Fig. 1.

FIG. 1. Model and simulation snapshots. (a) Colloids in state a
(red/light gray) are attracted to the wall. They can stochastically
switch by a model-defined rate to state b (blue/dark gray) which
is repulsive only. The colloids are mutually noninteracting (ideal).
(b) Snapshot from the Brownian Dynamics simulations. Visible are
N = 1000 colloids, distributed in the simulation box with dimen-
sions Lx = 10σ, Ly = Lz = 5σ . The origin of the coordinate system
is in the center of the simulation box. Two walls interacting with
state-dependent potential given by Eq. (1) bound the system in the x
direction.

The colloids change their internal state with the stochastic
switching rates kab and kba. As a reference, we also investigate
position-independent switching rates, but focus in this study
on rates dependent on the local density of neighboring col-
loids, hence becoming a function of position. This captures
implicitly the environmental effects of quorum sensing, e.g.,
between bacteria, in an effective and efficient way, especially
because the functional form of the dependence can be adapted
accordingly. In this way, the chemical autoinducer signaling
molecules, that control the quorum sensing interactions in
bacterial populations do not have to be modeled explicitly.

In the case of local density-dependent switching rates, we
study the effects of linear and sigmoidal dependent functions
(see Fig. 2), based on the following motivation: We want to
impose that the general trend of the dependence has to be
increasing for kba, so that bacteria with many neighbors favor
state a, in which a biofilm can be initiated, and decreasing
for kab, so that for low local density, the initial reference state
b is favored. We express this by a strictly increasing k+ and
decreasing k− and setting kba = k+ and kab = k−. The most
simple expression of this trend is a linear dependence of the
rate on the local density, where the slope is controlled by a
free parameter kamp:

k±(x) = kinit ± kamp ·
[
ρloc(x)

ρtot

]
. (3)

The local density, ρloc(x), to be defined in detail below, is nor-
malized with the total density of N colloids in the simulation
volume V , namely ρtot = N/V . The amplitude kamp simply
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(a)

(b)

FIG. 2. Examples of the functional forms for the dependence of
the position-dependent switching rates k− (orange/light gray) and
k+ (green/dark gray) on the measured local colloid density ρloc.
(a) Linear dependence functions for different amplitudes kamp, see
Eq. (3). (b) Sigmoidal dependence functions for different critical
densities ρcrit, see Eq. (4).

describes how strongly the rate scales with the local density,
and kinit is a position-independent offset defining the ratio
between populations a and b in the homogenous system. We
note also that in crowding situations it was found theoretically
that internal switching rates of elastically bistable colloids
depend linearly on the local density for not too high densities
[25]. Examples for k(ρloc(x)) for different values of kamp are
shown in Fig. 2(a).

The sigmoidal dependence of rates on local density is well
motivated from biology: In quorum sensing, it is common
for bacteria to collectively change their behavior at a certain
threshold density [15]. Because of the autoinducer production
and their reflux back to a bacteria cell, there is a characteristic
internal autoinducer concentration present. If the local density
of neighboring bacteria exceeds a critical value, then this in-
ternal concentration is raised to a critical value and a different
gene expression is triggered. We capture this behavior with a
sigmoidal dependence function:

k±(x) = kinit ± kamp
[
1 + e−αsig ( ρloc (x)−ρcrit

ρtot
)]−1

. (4)

It contains the critical density ρcrit as an additional parameter
which sets the threshold for switching, as well as the parame-
ter αsig to control the transition sharpness. Example functions
for different ρcrit are plotted in Fig. 2(b).

B. Brownian dynamics simulations

In our BD simulations, N = 100 up to 1000 colloids dif-
fuse in a box with dimensions of Lx = 10σ , and Ly = Lz =
2.5σ to 5σ depending on total density. The origin of our
coordinate system is placed in the center of the simulation
box. The walls are placed in the x direction at ±Lx/2. In the
y and z directions periodic boundary conditions are applied.
Figure 1(b) shows an example configuration of the simulation
setup. We consider total densities in our systems in the range
ρtot = N/(LxLyLz ) = 0.4σ−3 to 16σ−3.

Initially, the colloids are distributed randomly in the sim-
ulation box and an equilibration run is performed until a
stationary distribution is reached. In a subsequent production
run, the colloid positions and their states are saved for further
analysis.

The colloid positions for a particle in state s = a, b are
updated every time step �t according to standard overdamped
Langevin dynamics [26]:

�ri(t + �t ) = �ri(t ) − βD�t · ∇i�93(xi; s) +
√

2D�t · �ζ .

(5)
There, β = kBT −1 is the inverse thermal energy, D the

diffusion coefficient, and �ζ a vector of numbers drawn from a
Gaussian distribution with mean μ = 0 and variance χ = 1.
The internal colloid state s is updated every time step as
well. The integration time step for the simulations is typically
�t = 10−3 τ in units of the Brownian time scale, see below.
The switching probabilities are defined by the switching rates
kss′ = kab, kba through the exponential Poisson form [22]

P(s → s′) = 1 − e−kss′ (�r,t )�t . (6)

All variables are reduced to characteristic units. Lengths are
given in σ , set to unity. Times are measured in the character-
istic timescale τ , based on the diffusion coefficient D of the
colloids τ = σ 2/D. The wall potential uses a cutoff of 4σ in
the simulations.

The simulation trajectory is divided into Nblock = 10
blocks, and the standard errors of block averages based on
the standard deviation

√
χq of a variable q are defined by

fq = √
χq/

√
Nblock. To gather enough statistics, simulations

up to 1000 τ were necessary.

C. Reaction-diffusion Smoluchowski equation

Next to the BD simulations, we describe the colloid behav-
ior by a deterministic theoretical approach. The overdamped
dynamics of an ideal gas in an external field is governed by
a Fokker-Planck equation, which, in the context of colloid
position distributions, is better known as the Smoluchowski
diffusion equation [27]. It describes the evolution of the den-
sity profiles in state s, ρs(x, t ), of colloids with diffusion
constant D in the external potentials �93(x; s) as a function
of time and space. Because the potentials only act in the
x direction and equal distributions are expected in y and
z, a one-dimensional form is sufficient. We distinguish col-
loids by their internal state, therefore the system is described
by two reaction-coupled Smoluchowski equations [19,28]
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as in Eq. (7):

∂ρs(x, t )

∂t
= D

∂2ρs(x, t )

∂x2
+ Dβ

∂

∂x

[
ρs(x, t )

∂�93(x; s)

∂x

]
,

(7)
for states s = a, b and, for simplicity, D is assumed to be the
same for both colloid states. The switching of the internal state
introduces a set of coupled differential equations:

∂ρa(x, t )

∂t
= −kab(x, t )ρa(x, t ) + kba(x, t )ρb(x, t ), (8)

∂ρb(x, t )

∂t
= +kab(x, t )ρa(x, t ) − kba(x, t )ρb(x, t ). (9)

They describe that the density profiles change in time based
on the fractions of colloids leaving and entering the respective
states. These fractions depend on the switching rates kss′ , that
are in the most general form time- and space-dependent. In
the case of local density dependence, the switching rates are
calculated from the current density profile, which introduces
this dependency. Combining Eqs. (7)–(9) leads to a system
of two second order coupled reaction-diffusion equations,
fully describing the colloid behavior through their average
densities.

There is no explicit analytical solution for the stationary
density distributions ρs(x). However, with the stationarity
ansatz, ∂ρs(x, t )/∂t = 0, the equations simplify and adding
the two resulting reaction-diffusion equations further cancels
the reactive part. After integrating over dx, a single first order
differential equation results (10):

∑
s=a,b

[
∂ρs(x)

∂x
+ βρs(x)

∂�93(x; s)

∂x

]
= 0. (10)

By introducing a new variable, the flux j(x) as the first term of
the sum in Eq. (10), the equation can be decoupled and solved
for the density profiles ρs(x). By deriving an expression for
the flux from the initial system of equations, a self-consistent
implicit solution is formally found, given by

ρa(x) = e−β�93(x;a)

[
ca +

∫ x

0

j(x̃)

D
eβ�93(x̃;a)dx̃

]
, (11)

ρb(x) = e−β�93(x;b)

[
cb −

∫ x

0

j(x̃)

D
eβ�93(x̃;b)dx̃

]
, (12)

j(x) =
∫ x

0
[kab(x̃)ρa(x̃) − kba(x̃)ρb(x̃)]dx̃. (13)

The integration constants ca and cb can be calculated from the
conservation condition of a fixed colloid number. We solve
this equation system with an iterative procedure, consisting
of an initial guess for the density profiles and repeated appli-
cation of the self-consistent set of equations, until stationary
distributions emerge.

There are analytic solutions for the limit of low and fast
switching rates, that are connected to our solution. In the
low switching rate regime, the flux vanishes and the den-
sity profiles recreate the external potentials in an exponential
Boltzmann form [19]. Here, the colloids in different states
are completely controlled by diffusion. On the contrary, the
reactive part of the equations dominates in the fast switching
limit, characterised by high switching rates kss′ . In this case,

colloids of different states are indistinguishable and share a
common profile ρa(x) ∝ ρb(x). This ansatz leads again to an
exponential Boltzmann form of the resulting density distribu-
tions, but with an effective potential given by [19,22]

Veff (x) = kba�93(x; a) + kab�93(x; b)

kba + kab
. (14)

Generally, this effective potential depends on the—in general
different—diffusion coefficients Da and Db of the colloids,
but the dependence cancels out in our special case with Da =
Db = D.

D. Measuring local densities

Now we discuss how the local density, ρloc(x), can be
defined (or physically “measured” by a colloid) in the BD
simulations and calculated in the theoretical Smoluchowski
description. This is not only of methodical importance for
our work, because a sensing colloid (like a cell or bacteria)
may also employ different sensing protocols to evaluate the
chemical information in the environment. In particular, in
what spatial and temporal range it is measured and how the
received information is weighted and processed.

To measure ρloc(x), we introduce a spherical neighborhood
with radius rloc around a colloid. In the discrete-particle sim-
ulations, the most intuitive and coarse-grained measurement
possibility is then to count and average the number of neigh-
bors Nnear in this spherical volume and normalize this value by
the measurement volume, as given by

ρloc(�r) = 〈Nnear (�r)〉dtloc

4
3πr3

loc

(15)

The average is taken over the current and last dtloc time steps,
as discussed in more detail below. In reality, cells gain ac-
cess to their number of neighbors through the concentration
of autoinducers in their environment. Since these colloids
naturally detect their own autoinducers they themselves are
counted in Nnear, which introduces a minimum local density
value 3/(4πr3

loc) in the simulation. Reasonable extensions of
this definition of ρloc could also impose a position-dependent
weight on the number of colloids that are counted (e.g., col-
loids in the closer proximity contribute more). The sensing
range rloc is a free parameter in our study and systematically
scanned from a spatially local to longer-ranged global “sens-
ing.” Note that ρloc is defined to include colloids of both states,
hence measures the total density. One could also assume in
future work that only one state is sensed and important for
response.

Furthermore, we needed to introduce the timescale param-
eter, dtloc, in the BD simulations which is used to calculate the
time average in Eq. (15). It has also a reasonable biological
interpretation: The autoinducers need time to diffuse to the
cells and be processed at the receptors (which might also need
some significant time), while the bacteria move further into
other environments. The actual local density inferred by a
cell therefore represents an average over a certain timescale.
Hence, in the BD simulations we do not restrict ourselves to
the instantaneous local density at a given time step, but also
include the last dtloc time steps. Therefore, for large dtloc, it
increases the precision of the measurement, but the average
possibly smears out over the path-dependent history of the
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(a) (b) (c)

FIG. 3. Density distributions of different simulations with constant switching rates. The results from BD simulations at ρtot = 0.4σ−3

are labeled ρsim
s and shown as solid lines (orange/light gray and green/dark gray). The theoretical predictions are depicted as dashed lines

(blue/light gray and red/dark gray) for both states, respectively. (a) No switching case with kab = kba = 0 τ−1: The distributions mirror the
external potentials. (b) Fast switching case with kab = kba = 1000 τ−1: The distributions converge to the same shape, because the fast reactive
behavior dominates over the slow diffusion. (c) General switching case with kab = kba = 1 τ−1. The distributions are between the two limits,
and neither diffusive nor reactive behavior are dominant.

particle. In the other extreme, if only the instantaneous density
would be used, dtloc = 0, the value is highly local in space but
prone to fluctuations and maybe of little actual information.

In the theoretical (mean-field) Smoluchowski description
only the one-dimensional colloid density profiles are studied
in a continuum approach and discrete colloid neighbors can-
not be counted in this way, nor their fluctuations. Naturally,
the instantaneous position-dependent local density is already
provided in the theory as a formal average over an ensemble
of particles at fixed time t . The correspondence in the BD
simulations would be an average of ρloc(�r) for all particles
in the simulation box which are in a thin slice at position x
and dtloc = 0. However, it is hard to imagine how real cells
would agree to such an average. Given the nature of the
nonstochastic mean-field approach, the density measure thus
cannot be matched to the one in the BD. However, to attempt
a connection to the smeared-out average of particles in the
radius rloc as in the BD definition, the number of neighbors
can be expressed by an integral over the colloid number dis-
tribution, and a (weighted) local density defined as

ρloc(x) =
∫ x+rloc

x−rloc
ρ(x̃)A(x̃) dx̃
4
3πr3

loc

, (16)

where ρ(x) = ρa + ρb is the self-consistent (total) density
distribution from the Smoluchowski theory. Since the col-
loids are assumed to be equally distributed in the y and z
directions, the volume integral can be simplified to a single
integral over the x direction. This introduces the area element
A(x̃) = π [r2

loc − (x̃ − x)2]. Because of the spherical detection
range, density values at other positions inside the sphere are
also taken into account, but scaled down by the area element
weighting factor. Two corrections to Eq. (16) are necessary
and included when the sphere intersects the simulation box.
First, the integration boundaries can extend outside the box
in the x direction and must be capped accordingly. Second,
the measurement sphere may extend beyond the simulation
box in the y and/or z directions. When it occurs, the area
element is no longer spherical but is instead reduced with a
maximum calculation of A(x̃) = LyLz. We note that we do not

attempt to make averages in the Smoluchowski approach over
the time-dependent density (i.e., we do not take into account
information or “memory” from previous times as provided in
the longer dtloc in the BD).

III. RESULTS AND DISCUSSION

A. Constant switching rates

We first demonstrate some representative results for con-
stant (not density-dependent) switching rates, specifically the
cases of no switching, fast switching and a general constant
rate case with kab = kba = 1 τ−1. The individual theoretical
predictions and expectations for these cases and the sim-
ulation results are compared in Fig. 3. For all cases, BD
simulations and Smoluchowski theory are in perfect agree-
ment, which shows us that both approaches work and can be
used to study our quorum sensing model.

Furthermore, the density profiles tell us much about the
system. In the no switching case, the profiles mirror the ex-
ternal potentials in the Boltzmann form. State a colloids are
attracted to the walls and state b colloids are repelled, so they
gather in the center of the simulation box. Because of the short
ranged repulsion of the Mie potentials, there is an excluded
region near to the walls at positions ±5 σ , where no colloids
can be found at all. As expected and known from previous
work on nonideal systems [19], when the switching rates are
high (kab = kba = 1000 τ−1) and the fast switching limit is
reached, the individual state density profiles take the same
form, based on the derived effective potential in Eq. (14). State
b colloids are now also gathering at the walls, because they
travel to the walls as state a colloids, switch, and then con-
tribute to the density distribution. For intermediate switching
rates different density profiles are observed. They interpolate
between the two limiting cases and show elements of both
distributions. Neither the diffusive, nor the reactive behavior
of the colloids are dominant, but both exist at the same time
and in constant interplay.

B. Linear rate dependence

We now report the results for the case of switching rates
depending linearly on the local density. We first produce

024604-5



HEINEN, GROH, AND DZUBIELLA PHYSICAL REVIEW E 110, 024604 (2024)

(a)

(b)

(c)

FIG. 4. Influence of the spatiotemporal sensing range parame-
ters rloc and dtloc on the colloid density distributions in the case
of a linear rate dependency on local density. The total density is
ρtot = 0.4σ−3. (a) BD results for state a (solid lines) and state b
(dashed lines). (b) Theoretical predictions for state a (solid lines)
and state b (dashed lines). Different parameter values are represented
by shades of the same color. Smaller rloc generally lead to stronger
position dependence of the local density and therefore to increasingly
different switching rates. The number of state a colloids, as well
as the adsorption increases. In the limit of infinite rloc, the profiles
converge to the constant rate case profiles. (c) Theoretical (dashed
lines for ρ theo

a and dotted lines for ρ theo
b ) and BD results (solid lines

with annotations) depending on dtloc. The time averaging parameter
dtloc has only a small effect on the density profiles. For increasing
dtloc, a smoothing effect is expected and observed on a small scale,
see inset for ρsim

a .

simulation and theory curves for the individual state density
profiles with a linear local density dependence with kinit =
1 τ−1 and kamp = 0.5 τ−1 and varying rloc for dtloc = 10. The
profiles are shown in Fig. 4(a) for simulations and Fig. 4(b)
for the comparison to the theory.

For very high rloc the measurement sphere contains all
of the colloids in the simulation box (including the images)
and the local density is therefore constant and converging to
the total density, ρtot. In this limit, the profiles converge to
the constant rate case discussed above. In contrast, small rloc

values and thus small measurement spheres, lead to a strong

position dependence of the local density. Close to the walls,
where state a colloids gather due to their attractive behavior,
high local densities are measured and the switching rates
strongly favor the switching to state a. This leads to high
adsorption and a high asymmetry in the colloid numbers of
the different states. The density of state a shows high adsorp-
tion peaks and the density of state b a flat behavior at small
values. The theoretical prediction agrees with the simulation
curves perfectly. The results stress how density-dependent
interactions (communication) can control the structural and
adsorption behavior of the colloids. In particular, the structure
can be governed by the colloids by tuning their sensing range,
rloc, in space. Large measurement ranges rloc smear out, i.e.,
homogenize the structure, and return to constant, position-
independent switching rates.

In Fig. 4(c) we now consider the influence of varying
dtloc for fixed rloc = 2 σ . Different dtloc values somewhat sur-
prisingly show little influence when using a linear density
dependence function. Between time averages from 1 up to
5000 time steps, we do not observe significant changes in
the behavior. The integration time step for these simulations
is �t = 10−3 τ , so the colloids move by about 5 σ during
the time averaging. This is expected to result in a smoothing
effect, which can be observed only on a small scale in the
inset in Fig. 4. Since the effect is small, the colloids apparently
do not travel significantly during the time averaging, but stay
in their local environment. We suspect that significant con-
tributions to the structure comes from the colloids attracted
to the walls, which are quite localized in their diffusion. Be-
cause dtloc does not appear in the theoretical Smoluchowski
description of our model, a single density profile is provided
for the theory for each of the two colloid states, integrated
into the figure with dashed lines. Theory and simulations are
in good agreement, but show small deviations (less than 5%)
in absolute values.

In a similar manner, we studied the influence of the am-
plitude parameter kamp. The respective simulation and theory
profiles for the individual state densities are summarized in
Fig. 5. The parameter is varied between 0 τ−1 and 0.8 τ−1.
The spatiotemporal sensing range parameters are set to rloc =
2 σ and dtloc = 10. For a vanishing amplitude, the linear slope
is zero and the constant rate case with kab = kba = kinit is
reached exactly, as evident by comparing the density profiles
to Fig. 3. If the amplitude is increased, the impact of the
local density dependence increases and state a colloids are
favored. Therefore the state profiles diverge from each other
and there are more state a colloids in general. The adsorption
increases as well, because the position dependence of the
local density increases with increasing slope. Especially at
the walls, high kba are reached and colloids of state a cluster.
Simulations and theory are in very good agreement and kamp,
i.e., the density-dependent magnitude of the switching rate, is
identified to have great influence on the colloid structure and
the adsorption to a possible biofilm host.

C. Correlation effects for sigmoidal rate dependence

We now turn to the sigmoidal dependence function as
described in Eq. (4), in which a critical local density defines
the threshold for switching the rate. This introduces two new
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(a)

(b)

(c)

FIG. 5. Influence of the amplitude parameter kamp on the colloid
density distributions for the case of the linear rate dependence on
local density. The total density is ρtot = 0.4σ−3. (a) BD results for
state a (solid lines) and state b (dashed lines). (b) Theoretical pre-
dictions for state a (solid lines) and state b (dashed lines). Different
parameter values are represented by shades. Smaller kamp recreate
the constant rate case with kab = kba = kinit . High kamp favor switches
to state a and the number of state a colloids increases in general.
The adsorption also increases, because the position dependence of
the local density increases with increasing slope.

parameters, the point of transition ρcrit and its sharpness,
controlled by αsig. The latter we set to 50 (with respect to
total density), because interesting results are expected with
relatively sharp transitions. The critical density is studied
in a parameter series and varied in a range of 0.40 σ−3 to
0.56 σ−3. The sensing parameters are kept to rloc = 2 σ and
dtloc = 10 first. Figures 6(a) and 6(b) show the simulation
density profiles in comparison with the theoretical predictions.
Surprisingly, we now observe a strong deviation between
simulations and theory. The density distributions in the simu-
lations show a simple trend of favoring state a colloids with
decreasing local density. This is because the critical density
is exceeded by the local density at many positions and the
switching rates are altered, which increases the state a col-
loid number. A similar trend is also visible in the theoretical
density profiles, but for certain intermediate ρcrit values, there
are additional structure peaks for both state distributions at
x = ±2 σ .

To investigate the origin of these structure peaks further,
the measured local density ρloc(x) and the resulting position-
dependent switching rates, k(x), for the specific case of
ρcrit = 0.48 σ−3 are shown for both theory and simulations in
Figs. 6(c) and 6(d), respectively. The adsorption peaks of the

particle density ρs(x) close to the walls at around x = ±4 σ

naturally condition the shallow peaks in the local density pro-
files, ρloc(x). However, the peaks are shifted toward the center
of the simulation box and appear at around x = ±2 σ , because
a high fraction of the measurement sphere overlaps with the
excluded region behind the walls. The spatial distributions of
switching rates, k(x), inherit this behavior and show extreme
values at x = ±2 σ , strongly favoring state a colloids. The
peak shift is strongly connected to the measurement range
rloc; a larger range leads to a stronger shift, because more of
the excluded wall region is encapsulated in the measurement
sphere. Small rloc push the additional density peaks to the
walls until they merge with the attraction peaks at x = ±4 σ .
In the simulation box center, the rates take their initial val-
ues, because the decreased local density is below the critical
density ρcrit. While the structure in k(x) looks similar for
simulations and theory, the local density ρloc(x) also differs
as for the particle density profiles.

Our further analysis suggests that the origin of the encoun-
tered deviation are noise and related measurement fluctuations
in the BD simulations. To illustrate this, Fig. 6(e) shows the
distributions of measured ρloc,s(x = 0) for both states s in the
center of the simulation box as well as the calculated theo-
retical values at this position as vertical lines for both states,
respectively. The theory has a single value, while the simula-
tion results are distributed in a Gaussian-like fashion. Such a
distribution of local densities translates into a corresponding
distribution of switching rates. For a linear rate dependence
function the mean local density corresponds directly to the
switching rates. The sigmoidal shape, however, breaks the
direct correspondence between density and local rate distri-
butions and smoothes out the structure peaks in the density
profiles of the simulation when based on fluctuating density
values. When the local density distribution overlaps with the
critical density value, the measured values are translated either
into the low or the high switching rate regime, affecting the
mean switching rates to not correspond to the mean local
density. This is why the structure effect is smoothed out in our
BD results for the individual state densities, and they resemble
more closely the results obtained with a linear dependence
function.

Following this, we pursued possible approaches to ma-
nipulate or reduce the fluctuations in the local density
measurement in the BD simulations, so that the correlation
effect is also visible there. The origin of the measurement
uncertainty is generally located in finite and noisy statis-
tics. (Note that a real cell faces the same challenge, i.e.,
how to process information in the noisy environment.) We
conducted simulations with higher overall colloid density of
ρtot = 16 σ−3 to reduce absolute fluctuations in the measure-
ment volume. It is important to note that while increasing
the total colloid density is expected to alter the fluctuations
in the local density measurement and consequently the shape
of the density profile when considering the sigmoidal rate
dependence, a change in total colloid density would simply
rescales the density profiles accordingly without altering their
shape for the other cases. We additionally scanned through
different sensing times dtloc. In Fig. 6(f), the density pro-
files of the different simulations are shown for rloc = 2 σ .
Note again, the timescale parameter is not a part of the
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Structural correlations effects observed for a sigmoidal dependence function. Panels (a) and (b) show density profiles from
simulations with varying ρcrit, represented by shades for simulations and theory, respectively. One observes the correlation effect for certain
critical densities in the theoretical predictions, but not in the simulation results. Panels (c) and (d) show the local density and the switching rate
distributions for an example simulation with ρcrit = 0.48 σ−3. The peaks of the distributions are shifted in comparison to the density peaks,
because of the excluded region close to the walls and the finite measurement range. Panel (e) shows the measured local density distributions
from the BD simulations and the expected theoretical values in the center of the simulation box. There is a discrepancy, because the fluctuations
self consistently affect the colloid behavior. Panel f) shows density distributions of simulations with increased overall density, varying timescale
parameter dtloc and fixed rloc = 2 σ . The single theoretical expectations for both states are included as dashed lines for ρ theo

a and dotted lines
for ρ theo

b . The structure effect is now visible in the simulation results as well, proving, that it is not just a theoretical artefact.

iteration procedure of the self-consistent Smoluchowski equa-
tions, so all simulations share the same theoretical predictions
for the density profiles, included as blue and red dashed lines.
A slight improvement of the agreement of simulations and
theory is visible with increasing dtloc, especially the state
a colloid profile in the center of the simulation box shows
a deeper local minimum. However, when dtloc is increased
to 500, the structure smoothes out, as it averages over the
colloidal spatial motion and starts to vanish again. Hence,
although the fluctuations can be decreased effectively, the
deviation of simulations and theory can never be eradicated, it
seems. It is directly coupled to the discrepancy between sharp
values in the theory and distributions in the BD simulations.
The increased density and the introduction of the timescale
parameter dtloc, however, make the correlation effect more
apparent in the simulation profiles, proving that the structural
effect is not just a theoretical artefact.

IV. CONCLUSION

We studied a system of actively switching binary colloids
in an external surface potential. To mimic a quorum sensing
type of communication, a local density dependence of the
switching rates between the states was imposed. In particu-
lar, the colloids were assumed to have two different states
a and b, for which the external potentials acted attractively
or repulsively, respectively. Otherwise, they were (energeti-
cally) noninteracting. We studied this model with Brownian

dynamics simulations as well as with a self-consistent set of
appropriate reaction-diffusion equations.

In the reference case of constant, position-independent
rates, we were able to confirm behavior observed in pre-
vious studies of soft colloids [19,22]: Without switching,
the density distributions of the colloids of both states just
mirror their external potentials in an exponential Boltzmann
form, respectively. For high switching rates, the reactive be-
havior is dominant and the shape of the individual density
distributions cannot be distinguished anymore, as described
by an effective mixed potential. Intermediate switching rates
lead to density profiles extrapolating between these extreme
cases.

In the local density-dependent case we first studied a linear
dependence function. We conducted parameter studies for the
influence of the measurement spatial range and time as well
as the rate amplitude. The number of state a colloids and their
adsorption to the walls in general is strongly favored by the lo-
cal density dependence and therefore increase with increasing
amplitude as well as with decreasing spatial sensing range.
For low amplitudes, the constant rate case is recreated, as
well as for infinite radii. The temporal range parameter only
showed small influence in these studies, indicating that the
colloids do not traverse far away from their local environment
of attracting surfaces.

Using a sigmoidal dependence function leads to interesting
structural correlation effects in the density distributions. This
is remarkable because our colloids are ideal and therefore not
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expected to show much structural (such as oscillatory or layer-
ing) behavior. It originates purely from their density-mediated
communication and is therefore an interesting addition to ex-
isting studies. It is generated from an interplay of the external
energetic potentials and the finite range, in which the colloids
can “sense” the density of other colloids in their environment.
However, we did not observe a large correlation effect in the
density profiles from the simulation data. There, noise and
fluctuations in the local density measurement smooth out the
distributions and the structure is suppressed.

As an interesting conclusion of our study we can state
that the apparently technical parameters, such as measurement
spatial range rloc, temporal range dtloc, amplitude kamp, and
threshold density ρcrit , are actually all physical (and biological
relevant) sensing parameters. The latter can be used by cells
and perhaps synthetic active colloids to tune the communi-
cation between them and thus control the collective structure
and dynamics of the suspensions.

Our work inspires numerous follow up studies. Method-
ically, a pressing problem is how to further interpret the
fluctuations in the simulation data, because they significantly
influence the system. The mean-field Smoluchowski equa-
tions do not capture their impact and inclusion of fluctuations
might be useful in the theoretical description. Furthermore,
the density-dependent switching mediates non-Hamiltonian,
nonreciprocal interactions between the particles which in gen-
eral will violate Newton’s third law. Nonreciprocity leads
to a rich set of emerging behaviors that are usually hard
to account for starting from the microscopic scale, and
generic theoretical frameworks out of equilibrium are under

development [29–31] and may apply also for quorum sensing
interactions. In the context of biofilm formation, our quorum
sensing model could be extended to include physical pair
interactions [19,20] between the switching colloids, which
also switch for different states. Some form of nutrition (or
chemical fueling) is also a key element in biofilm research
[32], as well as proliferation [33] leading to an increase in total
colloid number per time. To consider effects of cell motility,
one could also consider self-propelled colloids and related
chemotactic or chemophoretic interactions [30,34–39].

Our adsorption studies can be enhanced by including
different forms of adhesion [40,41] to the model, possibly
realized by sink boundary conditions close to the walls of
the simulation. Further understanding the quorum sensing
signaling process is key to control it, maybe prevent it when
necessary, an approach called antiquorum sensing [42,43].
After all, quorum sensing aids unwanted biofouling and in-
creases resistance to antibiotic treatment. Understanding its
role in biofilm formation holds immense potential for the
development of novel strategies to combat bacterial infections
and enhance various industrial applications.
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