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Self-organization of anti-aligning active particles: Waving pattern formation and chaos
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Recently, it has been shown that purely anti-aligning interaction between active particles may induce a finite
wavelength instability. The formed patterns display intricate spatiotemporal dynamics, suggesting the presence of
chaos. Here, we propose a quasi-one-dimensional simplification of the particle interaction model. This simplified
model allows us to deduce amplitude equations that describe the collective motion of the active entities. We show
that these equations exhibit chaotic orbits. Furthermore, via direct numerical simulations of the particle’s system,
we discuss the pertinence of these amplitude equations approach for describing the particle’s self-coordinated
motions.
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I. INTRODUCTION

Self-propelled entities may display a vast range of self-
coordinated motions, from the flocking transition, where the
particles move in unison, to more complex flocks.

Since the pioneering work of Vicsek et al. [1], the topic of
flocking transition has attracted much attention. Even though
Vicsek’s model is simple for numerical studies, it is compli-
cated for analytical investigations. Consequently, during the
2000s decade, there was much debate about the nature of the
flocking transition: Is it a first- or second-order transition?
[2] More recently, it has been shown that Vicsek’s model
exhibits a transition to flocking with many of the features of a
liquid-gas transition as a spinodal decomposition [3]. Today,
Vicsek’s model has also been analyzed within the framework
of kinetic theory, where hydrodynamic equations can be ob-
tained via the Chapman-Enskog expansion [4], as well as
using the tools of bifurcation theory [5].

Besides Vicsek’s model, many alternative approaches to
the flocking phenomena exist. For example, active Brown-
ian particles [6] have attracted growing attention. Moreover,
flocking phenomena are a type of synchronization of such
particles. Then, Kuramoto-like [7] approaches may also be ap-
propriate. In fact, Chepizhko and Kulinskii [8] pointed out the
similarities between the Kuramoto model and the previous hy-
drodynamics model proposed by Kulinskii et al. [9], namely,
they showed that the polar angle of the velocity obeys a similar
(but not identical) equation of motion to the phase of oscilla-
tion in Kuramoto’s model. In addition, they compared a noisy
version of Kulinskii’s model with the Kuramoto model for os-
cillators with randomly distributed frequencies, showing that
they exhibit a similar bifurcation structure for different kinds
of randomness [10]. Then, Sevilla et al. used a quite similar
velocity-aligning force to show that simple Brownian particles
(non-self-propelled particles, which are just driven by envi-
ronmental fluctuations) can also exhibit collective motion due
to this kind of interaction [11]. In 2012, Farrell et al. studied a
generalization of the Kuramoto model for active units (which
is presented by them as a continuous time variant of Vicsek’s
model); due to the inclusion of a density-dependence velocity

of the self-propelled agents, they observed a quite interest-
ing pattern-forming process [12]. Furthermore, Levis et al.
showed that, by considering motile Kuramoto-type oscillators
with randomly distributed frequencies, they observed a long-
range synchronization in two spatial dimensions, even for
short-range interaction (which is precluded for motionless os-
cillators in two dimensions) [13]. Moreover, they reported an
opposite chirality particle cooperation, analyzing the system
using a hydrodynamics approach, which is valid for short-
range interaction (see also Ref. [14] for a deep mathematical
foundation of this hydrodynamics approach). In addition, the
appearance of self-propelled chimeras has also been reported
[15]. A phase shift in the Kuramoto-like interaction term must
be included to observe these self-propelled chimeras; hence,
the interaction does not promote a perfect alignment. More
recently, Negi et al. used this kind of approach to include
visual perception in the active agents [16]. Furthermore, the
topic of swarmalators, where self-propulsion and oscillations
are independent but coupled degrees of freedom, has become
a growing field [17].

Aligning Kuramoto-type interactions leads to a synchro-
nized movement, where the active particles move in the
same direction. The flocking transition is a first-order tran-
sition for small interaction ranges (and is related to cluster
formation) and is a second-order transition for larger inter-
action ranges (and is related to the formation of a spatially
uniform flux) [18]. It is worth mentioning that the phase
diagram of this model is remarkably similar to the one ob-
served in a one-dimensional flocking model based on the
persistent-random-walk paradigm [19] (noting that persistent-
random-walk-like transport behaviors of active suspensions
have been widely documented [20]). The transition is related
to an infinite wavelength (or zero wave number) instability
[12,18,19]. Conservative generalizations of this type of align-
ing forces may induce a finite wavelength instability [18]. In
the last case, which involves cohesive forces, the transition is
highly subcritical; after a spinodal decomposition, the active
particles form a single self-propelled cluster. Moreover, apolar
generalizations of this type of interaction lead to the forma-
tion of two counterpropagating clusters [21]. These clusters
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interact as dissipative solitons; namely, they interact by
exhibiting two of the four classical behaviors of counter-
propagating dissipative solitons [22]: they interpenetrate and
continue their movement after colliding or forming a bound
state where the clusters remain together.

Recently, it has been shown that purely anti-aligning in-
teraction induces a finite wavelength instability [23], namely,
a negative coupling strange in the Kuramoto-like interaction
term induces a nonzero wave-number instability that leads to
pattern formation. Moreover, the same phenomenon is ob-
served in Vicsek’s model with anti-aligning coupling [23].
It is worth mentioning that Bonilla and Trenado previously
included anti-alignments as fluctuations in Vicsek’s model
[24]. They observed a zero wave-number Hopf-type instabil-
ity leading to oscillatory flockings. Furthermore, Großmann
et al. showed that selective attraction-repulsion interaction
(short-range alignment and large-range anti-alignment) may
induce a wide variety of patterns, including vortex arrays and
mesoscale turbulence [25]. Beyond the topic of active matter,
antisynchronous interaction leading to oscillatory patterns has
been documented, for example, in populations of globally
coupled Kuramoto oscillators [26] and lattices of three-state-
stochastic oscillators [27].

Due to the finite wavelength instability reported in
Ref. [23], the system displays a pattern-forming process.
The formed pattern may exhibit a pretty intricate spa-
tiotemporal dynamics, which involves, let us say, some
choreographic movement of the active entities. The active
particles self-synchronize, forming two counterpropagating
hexagonal traveling waves. They are assembling and disas-
sembling a global hexagonal structure and a striped lineup of
particles. Since these hexagonal waves seem to be performing
some kind of dance, we called them the dancing hexagons.
The dance steps become quite erratic for long-time simula-
tions, suggesting the presence of chaos.

Here, we present a quasi-one-dimensional simplification
of the Kuramota-like model presented in Ref. [23]. To
wit, we confine the particles in a thin channel. In Sec. II,
we present the model, showing that it undergoes a fi-
nite wavelength instability, leading to a longitudinal density
wave formation. We perform a weakly nonlinear analy-
sis in Sec. III, that is, neglecting the system‘s fluctuations
near the critical point, and for low speed, we deduce a set
of amplitude equations for describing the wave dynamics.
Then, we show that these equations have chaotic orbits.
Moreover, in Sec. IV, we compare the amplitude equations’
predictions with direct numerical simulations of the parti-
cles’ system, discussing the agreements and discrepancies.
Finally, in Sec. V, we summarize our findings and present our
conclusions.

II. QUASI-ONE-DIMENSIONAL SIMPLIFIED MODEL

A. Particles in a channel

Let us consider a set of N active particles that are con-
fined in a channel. More precisely, a set of particles which
are characterized by their positions {�rl = (xl , yl )}N

l=1 and the
orientation angles {θl}N

l=1. They are confined in a rectangular
domain of dimensions Lx > Ly, as illustrated in the Fig. 1.

FIG. 1. Schematic drawing of active particles confined in a
channel.

Each particle moves with a constant speed v in the direction
θ̂l = (cos θl , sin θl ) and obeys the equations of motion

�̇rl = vθ̂l , (1)

θ̇l = ā

2σLy

∑
�r j∈Dσ (�rl )

sin(θ j − θl ) + √
ηξl (t ), (2)

where Dσ (�r ) represents the interaction domain. Reference
[23] considers a circular interaction domain; here we will
assume that the particles only interact along the channel (see
Fig. 1) due to

�r′ ∈ Dσ (�r) if |x − x′| < σ.

It may be compatible with a circular domain if the channel is
considerably thinner than the interaction range (Ly � σ ). On
the other hand, ξl (t ) are independent Gaussian white noises,
〈ξl (t )〉 = 0 and 〈ξ j (t ′)ξl (t )〉 = δ jlδ(t ′ − t ). η is the noise in-
tensity. The parameter ā is related to the coupling strength,
normalized by the area of the interaction domain.

Furthermore, since the interaction range does not depend
on the traversal position, {yl}N

l=1 only affect the particles’
polarizations when colliding with the channel borders. Con-
sidering, then, periodic boundary conditions, Eqs. (1) and (2)
may be reduced to the autonomous quasi-one-dimensional
system

ẋl = v cos θl , (3)

θ̇l = a

2σ

∑
|x j−xl |<σ

sin(θ j − θl ) + √
ηξl (t ), (4)

where a = ā/Ly. Notice that model equations (3) and (4) can
be directly related to the model presented in Ref. [23] if
we drastically decrease one of the two dimensions. Although
taking null-flux boundary conditions along the transversal
direction seems more realistic, there are no significant differ-
ences for the purposes of this report. As shown below, the
unstable Fourier modes along the longitudinal direction rule
the pattern-forming process. Then, for the sake of simplicity,
we will focus on the equations of motion (3) and (4).

Aligning interactions are related to a > 0 while anti-
alignments with a < 0 [23].

At the macroscopic level, the system may be described by
the particle density

N (x, θ, t ) =
N∑

l=1

δ(xl (t ) − x)δ(θl (t ) − θ ). (5)

Neglecting the inherent fluctuations of a finite N ensem-
ble (which typically scales as

√
N), this density can be
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approached by its mean value NP(θ, x, t ), where P corre-
sponds to the one-particle probability distribution. At this
level of approximation, P satisfies the nonlinear Fokker-
Planck equation

∂t P = −v cos θ ∂xP + η

2
∂2
θ P − ∂θ [PTxP], (6)

where

TxP = Na

2σLy

∫ x+σ

x−σ

dx′
∫ 2π

0
dθ ′P(θ ′, x′, t ) sin(θ ′ − θ ).

B. Finite wavelength instability and waving pattern formation

The asynchronous state is represented by the uniform
distribution

P = 1

2πLx
.

Introducing a perturbation in the Fourier space,

P(θ, x, t ) = 1

2πLx
+ ε̄ exp (λ(k)t + ikx)�(θ ),

and linearizing respect to the small perturbation parameter
ε̄, an eigenvalues problem is obtained to compute the λ(k)
spectrum [18,23]:

(L0 − ivkL1)� = λ(k)�. (7)

L0 is diagonal in the basis {eimθ }∞m=−∞,

L0eimθ = λ[0]
m (k)eimθ ,

with the eigenvalues

λ[0]
m (k) = −η

2
m2 + ν0a

2

(
sin (kσ )

kσ

)
(δm,1 + δm,−1), (8)

where ν0 = N/Lx is the global density, while

L1eimθ = (ei(m+1)θ + ei(m−1)θ )/2.

Furthermore, the periodic boundary condition demands

k = 2πn

Lx
,

with n an integer.
Therefore, the asynchronous state is stable only if

∀n Re

[
λ

(
2πn

Lx

)]
< 0,

otherwise it is unstable. Finite wavelength instabilities are
related to n �= 0.

1. Without self-propulsion

For v = 0, the particles do not move. It is like a disordered
lattice. The λ(k) spectrum corresponds to λ[0]

m (k), i.e., Eq. (8).
The asynchronous state becomes unstable at the critical point

ν0ac

(
sin (2πncσ/Lx )

2πncσ/Lxσ

)
= η, (9)

ν0ac

(
sin (2πnσ/Lx )

2πnσ/Lxσ

)
< η ∀ n �= nc. (10)

These conditions relate the critical coupling strength ac with
the critical wave number nc.

Re[λ(k)]

k

Re[λ(kc)]

Im[λ(kc)]

FIG. 2. Numerical computation of the λ(k) spectrum in the trun-
cated basis {eimθ }10

m=−10 with v/Lx = 0.01, ν0a = −6, σ/Lx = 0.1,
and η = 0.5. Top: Re[λ(k)] versus k. Bottom: Eigenvalues at the
critical wave number kc = 2πnc/Lx , where nc = 7 for Lx = 100
(σ = 10).

Notice that, in this speedless case, the only modes that are
excited during the instability have m = ±1. As pointed out in
Ref. [23], spatial structuring is related to the excitation of the
mode m = 0 (see also the discussion below).

For aligning interaction a > 0, the critical wave number
is nc = 0 (ν0ac = η), leading to a global alignment of the
particles.

In contrast, anti-aligning interaction a < 0 induces a finite
wavelength instability (nc �= 0), leading to the formation of a
static polarization pattern [23].

2. With self-propulsion

Here we have solved the eigenvalues problem (7) in the
truncated basis {eimθ }M

m=−M . Figure 2 shows one of our results.
In this case, the instability involves the confluence of three
modes: two of them with a non-null imaginary part (see the
bottom panel of Fig. 2). Therefore, it corresponds to a type
Io instability in the Cross-Hohenberg classification [28] (an
oscillatory finite wavelength instability).

In contrast with the speedless case, this instability in-
volves a strong excitation of the mode m = 0. Reference
[23] has a detailed analysis of this linear stability prob-
lem. In fact, as Appendix A shows, the linear problem for
the dimensional-reduced model has the same structure as in
the two-dimensional case [23,29]. The resulting pattern of the
quasi-one-dimensional dynamics is a standing wave, as shown
in Fig. 3. More precisely, Fig. 3 displays a spatiotemporal
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0255075100

Δt

x
FIG. 3. Numerical simulation of the equations of motion (3) and

(4) for v = 0.01, ν0a = −6, σ = 0.1, η = 0.5, N = 1000, Lx = 1,
and dt = 0.05 (using an Euler-Maruyama method). We are showing
the spatiotemporal diagram of χ�(x, t ), as defined in Eq. (11), with
� = 0.025.

diagram of the coarse-grained spatial density:

χ�(x, t ) =
∫ x+�/2

x−�/2
dx′

∫ 2π

0
N (x ′, θ, t )dθ. (11)

The underlying dynamics of this standing wave consists of
two counterpropagating traveling waves. In some sense, it is
making a one-dimensional mimic of the dancing waves. As
we will see below, this apparently simple wave dynamics also
hides complex features.

C. Pattern-forming dynamics

In summary, motionless particles lead to the formation of
a static polarization pattern. This might be seen as an equi-
libriumlike antiferromagnetic state (if the magnetic analogy
applies). The system is then driven out of this equilibriumlike
state by self-propulsion. As a consequence of that, the new
nonequilibrium steady state displays permanent spatiotempo-
ral dynamics.

It is worth noting that, expanding

P(θ, x, t ) =
∞∑

m=−∞
gm(x, t )eimθ ,

and neglecting the fluctuations, we may approach

χ�(x, t ) ≈ �Ng0(x, t ).

Therefore, the dynamics of the density wave is ruled by the
dynamics of the mode m = 0.

As we will see in the next section, the weakly nonlinear
analysis near the critical point (and for low speed) predicts:

(1) Without self-propulsion: A potential relaxation dy-
namics for the modes m = ±1 related to the unstable wave
number. Leading to a static steady state, without excitations
of the mode m = 0.

(2) With self-propulsion: A nonpotential dynamics lead-
ing to a permanent movement. In particular,

g0(x, t ) ≈ Re[A0(t )eikcx]/πLx,

where A0(t ) oscillates chaotically.

III. WEAKLY NONLINEAR ANALYSIS

A. Perturbative scheme and amplitude equations

The full derivation of the amplitude equations can be found
in Appendix A. Here we summarize the main results.

Near criticality, and for small v, the probability P(θ, x, t )
may be approached by

P(θ, x, t ) ≈ 1

2πLx
(1 + 2Re[(A+eiθ + A0 + A−e−iθ )eikcx]),

(12)

where A+, A0, and A− are the amplitudes of the unstable
modes, at least for small v, and

kc = 2πnc

Lx
.

To capture the nonlinear evolution of these amplitudes near
criticality (a ∼ ac), we have assumed the perturbative scheme

v ∼ ν0(ac − a),

A+ ∼ A0 ∼ A− ∼
√

ν0|ac − a|,
Ȧ+ ∼ Ȧ0 ∼ Ȧ− ∼ (ν0|ac − a|)3/2,

which is the standard scaling of a pitchfork bifurcation. Note
that since we are taking the speed v perturbatively, the value
of ac corresponds to the one predicted by Eq. (9).

Thus, it is expected that these amplitudes obey the
equations

Ȧ+ = εA+ + i�A0 − c1A2
0A∗

− − c2|A0|2A+

− c3(2|A−|2 + |A+|2)A+, (13)

Ȧ0 = i�(A+ + A−), (14)

Ȧ− = εA− + i�A0 − c1A2
0A∗

+ − c2|A0|2A−

− c3(2|A+|2 + |A−|2)A−, (15)

where

ε = η(a − ac)

2ac
, � = kcv

2
, (16)
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and the coefficients c1, c2, and c3 are positive real numbers.
The exact expression of these coefficients can be found in
Appendix A.

B. Without self-propulsion

For v = 0 (� = 0), A0 remains at rest. Starting with a
random distribution of particles, A0 = 0 during the whole
system evolution. Hence, the amplitude equations reduce to
the potential system

Ȧ± = − ∂U
∂A∗±

,

where

U =−ε(|A−|2 + |A+|2)

+ c3
[

1
2 (|A−|4 + |A+|4) + 2|A−|2|A+|2]. (17)

Thus, it is a relaxation dynamics that minimizes the po-
tential (17). Therefore, all the steady-state amplitudes are
static and correspond to minima (stable solutions), maxima
(unstable solutions), or saddle points (unstable solutions) of
the potential (17). In general, we may write these solutions as

A± = R±eiϕ± ,

where ϕ± are arbitrary phases.
The asynchronous state

R− = R+ = 0, (18)

is stable when ε < 0 [minimum of (17)] and unstable when
ε > 0 [maximum of (17)], as expected. Besides, above the
critical point (ε > 0), there are the solutions

R± =
√

ε

c3
and R∓ = 0, (19)

which is stable [minimum of (17)], and the saddle point of
(17) (that is, the unstable solution)

R− = R+ =
√

ε

3c3
. (20)

C. With self-propulsion

1. Static solutions

Considering the particle’s self-propulsion (v �= 0), only
two of the three static solutions we found for the speedless
case remain. The asynchronous state, where the linear stability
analysis gives the eigenvalues

�1 = ε,

�± = ε

2
± i

√
2�2 −

(ε

2

)2
.

Here, again, the asynchronous state is stable when ε < 0 and
unstable when ε > 0. However, in this case, the instability
takes place with the oscillatory frequency ω = √

2�; that is, it
is a Hopf-type of instability. Moreover, it is worth noting that
this result coincides with the perturbative analysis performed
in Ref. [23].

The other static solution is

A+ = −A− =
√

ε

3c3
eiϕ and A0 = 0, (21)

where ϕ is an arbitrary phase. Therefore, it corresponds to the
solution (20) with the constraint

ϕ+ − ϕ− = ±π. (22)

Of course, it is unstable. The linear stability analysis leads to
the eigenvalues

� ∈
{

−2ε,
ε

3
± i

√
2�2 −

(ε

3

)2
, 0,±i

√
2�

}
.

Therefore, this static solution borns unstable at ε = 0 and
exists for ε > 0. Here, again, a small perturbation involves
oscillatory frequencies.

2. Unstable limit cycles

Defining

A± = Z±eiϕ and A0 = Z0eiϕ

with ϕ an arbitrary phase, and separating real and imaginary
parts

Z± = X± + iY± and Z0 = X0 + iY0,

we may introduce the variables

V = X+ − X− and W = X+ + X−.

Then, if we take the initial condition,

Y±(t = 0) = X0(t = 0) = V (t = 0) = 0, (23)

these variables will remain null during the whole system evo-
lution. Hence, the amplitude equations (13)–(15) reduce to the
bidimensional system

Ẇ = εW + 2�Y0 − (
c̄2Y

2
0 + c̄3W

2
)
W, (24)

Ẏ0 = −�W, (25)

where c̄2 = c2 − c1 and c̄3 = 3c3/4.
The fixed point (W,Y0) = (0, 0) corresponds to the asyn-

chronous state and has the eigenvalues �±. Therefore, the
dynamical system (24) and (25) undergoes a Hopf bifurcation
at ε = 0, giving rise to the formation of a limit cycle.

Since we introduced the arbitrary phase ϕ, they form,
in fact, a continuous family of limit cycles. Moreover, the
same dynamical system is obtained by considering the pair
W ′ = Y+ + Y− and X0.

These limit cycles are unstable under perturbations of the
initial condition (23).

3. Attractive orbits

Let us focus on the complex plane of the mode m = 0
amplitude (see Appendix B for a discussion of the modes m =
±1 amplitudes). Figures 4 and 5 show attractors of Eqs. (13)–
(15). They are open orbits that never close.

These attractive orbits are circular-shaped near the critical
point (ν0ac

∼= −2.312), as shown in Fig. 4. In contrast, getting
away from criticality, they become more elongated, as shown
in Fig. 5. The bone-shaped formations may have an arbitrary
orientation according to phase invariance.
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Y0

X0

FIG. 4. Numerical simulation of the amplitude equations (13)–
(15) [30] for ν0a = −2.5, v/Lx = 0.001, η = 0.5, and σ/Lx = 0.1
[see Eqs. (16) and (A2)–(A4)]. After a transient, we show the attrac-
tor in time window t ∈ [5.8 × 104, 7 × 104].

We have computed the maximum Lyapunov exponent to
check the susceptibility of these attractors to the initial condi-
tions, namely, defining

�q = (X+,Y+, X0,Y0, X−,Y−),

we may write the amplitude equations (13)–(15) as

�̇q = �F (�q).

Let �q(t ) = �ζ (t ) be an attractor of this system. Then, we define

f (t ) = ln

( |δ �q(t )|
|δ �q(0)|

)
with δ �̇q = DF [�ζ (t )]δ �q, (26)

where DF [�ζ (t )] is the Jacobian matrix of �F evaluated in the
attractive orbit �ζ (t ), and δ �q is a vector relates to a small
perturbation of this orbit. Hence, the maximum Lyapunov
exponent corresponds to

λmax = lim
t→∞

f (t )

t
.

Y0

X0

FIG. 5. Same as Fig. 4, except that ν0a = −3 and t ∈ [3 ×
104, 5 × 104].

FIG. 6. Numerical estimation of the function f (t ), as defined in
Eq. (26), for the attractor �ζ (t ) shown in Fig. 4. More precisely, we
take the last state of Fig. 4 as the initial condition, run it for a time
t = 1.5 × 105, and use it to construct the Jacobian matrix. Then, we
solve the linear system related to this matrix using an Euler method
with dt = 0.1.

Figure 6 shows our computation of f (t ) for the attractor
�ζ (t ) shown in Fig. 4. The maximum Lyapunov exponent can
be estimated λmax ≈ 0.0056, which is positive. Even though
it is small, the exponential divergence is clear from Fig. 6.
For the attractor shown in Fig. 5, we obtained λmax ≈ 0.0215.
Therefore, despite the apparent regularity of these orbits, they
are chaotic.

The sensibility to initial conditions becomes clearer if we
take the perturbation �ζ + δ �q and, instead of linearizing, we
leave it to evolve following the full nonlinear dynamics dic-
tated by the amplitude equations (13)–(15). Figure 7 displays
one of these experiments for the attractor �ζ (t ) shown in Fig. 4.
A small perturbation shows a quite divergent dynamics. After
the turbulent transient, the system reestablishes the attractor.
Figure 8 shows the same experiment for the the attractor �ζ (t )
shown in Fig. 5. The dynamics becomes quite erratic again,
with a turbulent and divergent transient ending in the attrac-
tor’s reestablishment with a different orientation, as expected
from the phase invariance.

For the parameters explored here, these are the typical
observed dynamics. Below the critical point, the only attractor
is the asynchronous state (with A0 = A± = 0). An attractive
open orbit (with a positive maximum Lyapunov exponent)
supercritically appears at the critical point. These attractors
may draw a circular-shaped figure in the A0 plane (nearly
above the critical point) or a more elongated one (moving
away from the critical point). In Appendix B, we give more
details about these orbits, in particular, the behaviors of the
amplitudes A±.

IV. NUMERICAL OBSERVATIONS

Notice that

A0 = ∫ 2π

0 dθ
∫ Lx

0 dx P(θ, x, t )e−ikcx,

A± = ∫ 2π

0 dθ
∫ Lx

0 dx P(θ, x, t )e−i(kcx±θ ).

Then, approaching (that is, neglecting noisy fluctuations)

P(θ, x, t ) ≈ N (x, θ, t )

N
,
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FIG. 7. Numerical simulation of the amplitude equations (13)–
(15) [30] for the same parameters as Fig. 4. We have omitted the axes
because the orbits have the same dimensions as Fig. 4. The back-
ground orbit (thinner trajectory) is the attractor �ζ (t ) shown in Fig. 4.
The thicker trajectory corresponds to the nonlinear evolution of the
perturbation �ζ (t0) + δ �q, where δ �q = (10−5, 0, 0, −7 × 10−5, 0, 9 ×
10−7). The different panels display different time windows, showing
at the top of each orbit, where �t = t − t0.

where the density N is defined in Eq. (5), we may define the
empirical amplitudes

A0 = 1

N

N∑
j=0

e−ikcx j , (27)

A± = 1

N

N∑
j=0

e−i(kcx j±θ j ). (28)

FIG. 8. As in Fig. 7, but for the attractor and parameters shown
in Fig. 5. δ �q = (10−3, 0, −10−3, 0, 0, 7 × 10−5).

And separate real and imaginary parts:

A0 = X0 + iY0 and A± = X± + iY±.

A. Mode m = 0 amplitude

Figure 9 displays A0 planes from numerical simulations
of the simplified model (3) and (4). As the amplitude equa-
tions predict, the orbits tend to draw a more circular formation
near the critical point. Of course, since noise is unavoidable
in the particles’ system dynamics, these orbits seem to be in
a perpetual transient where they display the most turbulent
aspects of their dynamics (see, for instance, upper panel of
Fig. 7). As we move away from the critical point, the orbits
display a more elongated figure in the A0 plane, in concor-
dance, again, with the amplitude equations predictions.

Furthermore, the elongated formation is also expected to
destabilize, changing its orientation due to internal fluctua-
tions. Figure 10 shows one of these events (note that we are
performing a simulation with a longer transient and larger
number of particles). Again, the amplitude equations provide
a good picture of the particles’ system dynamics (see Fig. 8).

Moreover, the amplitude equations also predict the or-
bit sizes. In fact, Fig. 11 shows a comparison between
the temporal average of |A0| (particles’ system) and |A0|
(amplitude equations). Both show a good agreement above
criticality. Below criticality, the only attractor of the amplitude
equations system is the asynchronous state with all the am-
plitudes nulls. In contrast, the particles’ system shows some
pattern-forming activity. This might be attributed to the noisy
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Y0

X0

Y0

ν0 a = -2.4 ν0 a = -2.5 ν0 a = -2.8

ν0 a = -3 ν0 a = -3.3 ν0 a = -3.5

X0X0

FIG. 9. Numerical simulation of the equations of motion (3) and (4) for v = 0.001, σ = 0.1, η = 0.5, N = 1000, Lx = 1, and dt = 0.05
(using an Euler-Maruyama method). We are showing A0 = X0 + iY0, as defined in Eq. (27) for different values of ν0a. More precisely, we
initialize the system with randomly distributed positions and polarizations at ν0a = −2, run it for a time t0 = 2 × 103, and collect data for a
time �t = t − t0 ∈ [0, 103]. Then, we decrease ν0a in δ = −0.1 and repeat the procedure (run the system for a time t0 = 2 × 103 and collect
data for a time �t = t − t0 ∈ [0, 103]). We did it up to ν0a = −3.5.

precursor of the pattern [31]. If this is the case, it is possible
to claim that the waves appear via a supercritical transition.

B. Discrepancies

Figure 12 shows |A+| versus |A0|; |A−| versus |A0|
displays the same pattern. The thin curves correspond to par-
ticles’ system simulations (same numerical data as in Fig. 10).
The amplitudes |A±| and |A0| are following down in a very
synchronous way. That is, they are alternating between zero
and their maximum values. This means that the maximum
level of anti-aligning synchrony is reached when the standing
wave is almost flat (|A0| is almost zero), namely, when the
particles are scattered along the channel. On the other hand,
when the standing wave reaches its maximum amplitude, the

particles’ polarizations are completely disordered (|A±| is
almost zero).

The dotted structure of Fig. 12 is obtained from numerical
simulations of the amplitude equations. They are missing the
following down of the |A±| amplitudes. In contrast, they pre-
dict that A± will be orbiting around the unstable fixed point
(21). Appendix B presents more details about the A± orbits.
The thick line in Fig. 12 shows the module of this unstable
solution. Therefore, the amplitude equations approach is still a
good predictor of the maximum values reached by |A±|. How-
ever, since they are missing the following downs, the temporal
averaging of these amplitudes is overestimated. Of course,
we may attribute the |A±| following downs to the internal
fluctuations of the particles’ system. The synchronization be-
tween the |A±| and |A0| following downs, however, seems
more than simple noise. The noisy correction to the nonlinear

FIG. 10. Numerical simulation of the equations of motion (3) and (4) for ν0a = −3 and N = 3500 (other parameters as in Fig. 9). The
different panels show A0 = X0 + iY0, as defined in Eq. (27), at different times windows of �t = t − t0, with t0 = 5 × 104.
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ν0 a

FIG. 11. Comparison between the temporal average of |A0| (par-
ticles’ system) and |A0| (amplitude equations). We use the same
numerical data as Fig. 9 for the particles’ system. We reproduce the
experiment with the amplitude equations (13)–(15) [30], dropping a
longer transient t0 = 2 × 104.

Fokker-Planck equation (6) is multiplicative [12,32]. Perhaps
it is a constructive effect of multiplicative noise. If such con-
jecture is correct, this discrepancy is expected to persist for
a larger number of particles. In fact, mean-field approaches
such as Eq. (6) take first the limit N → ∞, and then t → ∞.
The opposite choice, first t → ∞, and then N → ∞, does not
necessarily commute with the former. Consequently, although
multiplicative fluctuations decay as N−1/2, they might leave a
mark in the nonequilibrium steady state even at the thermody-
namic limit.

V. SUMMARY AND FUTURE PROSPECTS

We have proposed a quasi-one-dimensional simplification
of the model presented in Ref. [23], namely, anti-aligning
active particles confined in a thin channel. This system
exhibits a finite wavelength instability as well as the two-
dimensional model of Ref. [23]. The instability leads to the

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

FIG. 12. |A+| versus |A0|. The thin curves correspond to numer-
ical simulations of the equations of motion (3) and (4), where we
are using the same numerical data used in Fig. 10. Dots correspond
to numerical simulations of the amplitude equations (13)–(15) [30].
The thick line corresponds to the module of the unstable solution
(21), that is,

√
ε/3c3.

formation of a longitudinal density wave. To wit, a standing
wave composed of two counterpropagating traveling waves.

Of course, this wave is a dissipative structure whose spa-
tiotemporal dynamics is ruled by attractors. Neglecting the
inherent fluctuations of the system, near criticality, and for
low speed, we have deduced a set of amplitude equations that
govern this dynamics. These equations have chaotic attractors.

We have compared the dynamics predicted by the am-
plitude equations with direct numerical simulations of the
particles’ system. The amplitude equations approach captures
the waving behaviors of the particles’ density along the chan-
nel well. The agreement is qualitatively and quantitatively
good, being near criticality and having low speed. However,
the amplitude equations fail to predict the follow-down of
the anti-aligning synchrony when the standing wave reaches
its maximum amplitude. We have conjectured that it might
be attributed to the presence of multiplicative noise in the
macroscopic variables.

Therefore, the inclusion of the fluctuating term into Eq. (6)
[12,32] and the computation of the stochastic normal form
should be addressed in future investigations.

Furthermore, the presence of chaotic orbits in this quasi-
one-dimensional reduction supports the conjecture that the
dynamics of dancing hexagons also exhibit chaos [23]. Of
course, a complete study of two-dimensional waves must also
be addressed in future works. It is worth mentioning that
turbulence seems to be relevant in this kind of active system.
For instance, Großmann et al. reported mesoscale turbulence
in a closely related system of active particles [25].
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APPENDIX A: AMPLITUDE EQUATIONS DERIVATION

Let us introduce the inner product

〈φ |ψ〉 = 1

2πLx

∫ 2π

0
dθ

∫ Lx

0
dxφ∗ψ,

and the Dirac notation

exp

{
i

(
2πn

Lx
x + mθ

)}
= |nm〉,

where, according to the periodic boundary conditions, |n m〉 is
a complete basis of the functional space, with

〈nm|n′m′〉 = δn,n′δm,m′ .

Then, we rewrite the probability P(θ, x, t ) in terms of the
deviation to the asynchronous state

P(θ, x, t ) = 1

2πLx
(1 + δP(θ, x, t )),

thus, Eq. (6) takes the form

∂tδP = (LC + δL)δP − ∂θ [δPTxδP], (A1)

where

LC =
∞∑

n=−∞

∞∑
m=−∞

λC
nm|nm〉〈nm|,
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with

λC
nm = −η

2
m2 + ν0ac

2

(
sin (2πnσ/Lx )

2πnσ/Lxσ

)
(δm,1 + δm,−1),

that is, λC
nm corresponds to λ[0]

m (k) at the critical point ac.
Therefore,

ker [LC] = {|nc − 1〉, |nc 0〉, |nc 1〉,
× |−nc − 1〉, |−nc 0〉, |−nc 1〉},

δL = ε�L0 + vL1,

where

�L0 =
∞∑

n=−∞
|n − 1〉〈n − 1| + |n 1〉〈n 1|,

ε = η(a − ac)

2ac
,

and

L1 = iπσ

Lx

∞∑
n=−∞

∞∑
m=−∞

n(|n m + 1〉〈n m| + |n m − 1〉〈n m|),

Tx = ν0ac

2i

∞∑
n=−∞

(
sin (2πnσ/Lx )

2πnσ/Lxσ

)
(|n − 1〉〈n − 1|.

+ |n 1〉〈n 1|).
Now, we will take as small perturbation parameter |ε| � 1

(that is, we are near the onset of the instability), with

v ∼ ε,

and expand

δP(θ, x, t ) =
∞∑

z=1

p[z](θ, x, εt ),

where

p[z](θ, x, εt ) ∼ |ε|z/2.

Notice that we are assuming that p[z] evolves with the slow
timescale εt . That is, we are neglecting fast transients that are
related to fast-decaying modes and keeping the slow dynamics
related to the critical modes that become unstable when ε > 0.
Thus,

∂t p[z] ∼ |ε|1+z/2.

Introducing this expansion into Eq. (A1), the first order
gives

LC p[1] = 0,

therefore,

p[1] = A+|nc 1〉 + A0|nc 0〉 + A−|nc − 1〉
+ A∗

+|−nc − 1〉 + A∗
0|−nc 0〉 + A∗

−|−nc 1〉.
Note that

Ȧ± ∼ Ȧ0 ∼ |ε|3/2.

Real part of the amplitudes
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t

FIG. 13. Top: Same as Fig. 5, but we are showing all the ampli-
tudes in the time window t ∈ [4 × 104, 7 × 104]. The thicker circle
has a radius corresponding to the module of the unstable fixed point
(21), that is,

√
ε/3c3. Bottom: Phase shift as defined in Eq. (B1), the

dashed line corresponds to the value π .

X+

Y+

FIG. 14. Same as Fig. 4, but we are showing the amplitude A+
in the time window t ∈ [3 × 104, 7 × 104]. The thicker circle has a
radius corresponding to the module of the unstable fixed point (21),
that is,

√
ε/3c3.
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X+

Y+ Y-

X-

FIG. 15. Numerical simulation of the amplitude equations (13)–(15) [30], for ε = 0.04, we are using the same values of c1, c2, and c3 used
the paper, and we have increased the ratio v/Lx by a factor of 8/7 with respect to the simulations shown in Sec. III. Left and middle: A± orbits
in the time window t ∈ [4 × 104, 5 × 104]. Right: Both orbits together with the radius

√
ε/3c3 circle and two inscribed equilateral triangles,

one for each orbit.

The second order gives

LC p[2] = ∂θ [p[1]Tx p[1]].

To solve this equation, its right hand must not contain ele-
ments of ker[LC]. In this order, it does not, that is,

〈±nc ± 1|∂θ [p[1]Tx p[1]]〉 = 0,

and

〈±nc0|∂θ [p[1]Tx p[1]]〉 = 0,

thus, we can invert the operator LC , obtaining

p[2] =
∞∑

n=−∞

∞∑
m=−∞

〈nm|∂θ [p[1]Tx p[1]]〉
λC

nm

|nm〉.

The third order gives

LC p[3] = (∂t − δL)p[1]

+ ∂θ [p[1]Tx p[2]] + ∂θ [p[2]Tx p[1]].

Unlike the second order, the third order does have solvability
problems. Here, we must impose solvability conditions in the
form

if ψ ∈ ker[LC] then

〈ψ | (∂t − δL)p[1] + ∂θ [p[1]Tx p[2]] + ∂θ [p[2]Tx p[1]]〉 = 0,

which are the conditions that rule the temporal evolution of the
amplitudes A+, A0, and A−. More specifically, the amplitude
equations (13)–(15) come from the solvability conditions

Ȧ± = 〈nc ± 1 | δL p[1] − ∂θ [p[1]Tx p[2]] − ∂θ [p[2]Tx p[1]]〉,
Ȧ0 = 〈nc 0 | δL p[1] − ∂θ [p[1]Tx p[2]] − ∂θ [p[2]Tx p[1]]〉,

where, after straightforward calculation, we obtain the
coefficients

c1 = −ν0ac

2
(

1 − ν0ac
η

) , (A2)

c2 = c1 + η

2(1 − sec (2πncσ/Lx ))
, (A3)

c3 = η

4
. (A4)

APPENDIX B: MODE m = ±1 AMPLITUDE ORBITS

Figure 13, top panel, shows the complex plane of all the
amplitudes related to the attractor shown in Fig. 5. In addition
to the bone-shaped structure formed by A0, the amplitudes A±
orbit the extremes of this structure. In fact, they are moving
around the unstable solution (21). The thicker circle has a
radius corresponding to the module of this fixed point

√
ε/3c3.

Moreover, they are oscillating around the constraint (22). The
bottom panel of Fig. 13 shows the phase shift:

�ϕ = ϕ+ − ϕ− = Im

[
ln

(
A+
A−

)]
. (B1)

Figure 14 shows the A+-orbit for the circular-shaped attrac-
tor shown in Fig. 4. Again, it is moving around the unstable
solution (21) (see the thicker circle). The A− orbit is quite
similar, with an oscillatory pattern for the phase shift �ϕ.

In all our numerical exploration, we have observed the
same behavior. That is, at the attractor, the amplitudes A±
always orbit around the unstable fixed point (21). There is a
vast variety of ways of visiting this fixed point, as shown in
Figs. 13 and 14. Moreover, Fig. 15 shows another example.
The amplitudes A± are visiting the fixed point, forming lob-
ules, which are separated by angles of 2π/3. The lobules of
each amplitude are intercalated, forming angles of π/3. This
scenario becomes clearer if we inscribe, in the radius

√
ε/3c3

circle, two equilateral triangles, one for each amplitude. The
right panel of Fig. 15 illustrates this geometry.
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