
PHYSICAL REVIEW E 110, 024602 (2024)

Self-limiting stacks of curvature-frustrated colloidal plates:
Roles of intraparticle versus interparticle deformations
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In geometrically frustrated assemblies local intersubunit misfits propagate to intra-assembly strain gradients,
giving rise to anomalous self-limiting assembly thermodynamics. Here we use theory and coarse-grained
simulation to study a recently developed class of “curvamer” particles, flexible shell-like particles that exhibit
self-limiting assembly due to the build up of curvature deformation in cohesive stacks. To address a generic, yet
poorly understood aspect of frustrated assembly, we introduce a model of curvamer assembly that incorporates
both intraparticle shape deformation as well as compliance of interparticle cohesive gaps, an effect we can
attribute to a finite range of attraction between particles. We show that the ratio of intraparticle (bending
elasticity) to interparticle stiffness not only controls the regimes of self-limitation but also the nature of frustration
propagation through curvamer stacks. We find a transition from uniformly bound, curvature-focusing stacks
at small size to gap opened, uniformly curved stacks at large size is controlled by a dimensionless measure
of inter- versus intracurvamer stiffness. The finite range of interparticle attraction determines the range of
cohesion in stacks that are self-limiting, a prediction which is in strong agreement with numerical studies
of our coarse-grained colloidal model. These predictions provide critical guidance for experimental realizations
of frustrated particle systems designed to exhibit self-limitation at especially large multiparticle scales.
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I. INTRODUCTION

Geometric frustration occurs when a locally preferred or-
dering of the constituents of a system is unable to be achieved
globally. Originally associated with low-temperature mag-
netic spin ordering [1–3], geometric frustration has been
studied in various condensed matter systems including col-
loidal ordering on curved surfaces [4–7] and bent-core liquid
crystals [8–10]. In bulk systems, frustration is well under-
stood to result in the formation of topological defects that
localize the effects of shape mismatch [11]. However, when
featured in self-assembling systems, geometric frustration can
lead to anomalous equilibrium morphologies and behavior,
perhaps the most notable being finite assembly size [12,13].
This paradigm of geometrically frustrated assembly (GFA)
has been applied to understand different phenomena in soft
matter including spherical protein shells [14], twisted protein
fibers [15–19], chiral ribbons [20,21], and assembled polyhe-
dral nanoparticle mesostructures [22–24].

In contrast with the simplest case of associating particles
defined by either bulk, dispersed or defect-riddled condensed
states, in GFA of soft matter systems there exists a possi-
bilty of an intervening state of self-limiting assembly (SLA),
in which equilibrium dimensions are finite but larger than
subunit size [25]. This self-limiting state relies on the su-
perextensive buildup of misfit strains and associated elastic
costs over multiparticle dimensions [13,26] that balances the
energetic drive to bind additional attractive particles to select
a finite assembly dimension.

The current understanding of self-limitation in GFA has
relied primarily on continuum elastic frameworks of distinct
models and has established a few basic principles [12,26].
First, self-limiting size typically grows with the ratio of co-
hesion to elastic stiffness, while it decreases with increasing
shape frustration. Another theme is that for sufficiently soft
frustrated systems, strong cohesive interactions cause the as-
sembly to elastically “defrustrate” so that each particle pays
a constant misfit penalty to achieve an unfrustrated packing
and unlimited assembly thermodynamics, dubbed a “shape-
flattening” mode of frustration escape. More recently, several
discrete “building block” models have been introduced to
study how microscopic features of subunits, i.e., their misfit
shapes, deformability, and interactions, control the range of
physically accessible self-limiting assembly and more gen-
erally engineer SLA behavior via fabrication of intentionally
misfitting particle design [27]. Notably, these discrete particle
models so far fall into two distinct classes: elastic polygons
with infinitely short ranged interactions [28–30] or rigid,
shape-frustrated particles with finite-ranged attractive interac-
tions [31,32]. In the former case, elastic costs of frustration
are borne entirely by subunit deformation, while in the latter
misfit strain leads to stretching of interparticle attractions. In
physical particle assemblies, the costs of frustration will be
distributed to a combination of interparticle and intraparti-
cle deformation, according to the minimal free energy state
for a given aggregate state. Though at present, it remains
poorly understood what controls when which deformation
mode dominates, and more importantly, what are the distinct
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FIG. 1. (a) The geometry of a cylindrical, shell-like “curvamer” in its preferred shape. A natural gap δ occurs between pairs of curvamers.
(b) Colloidal curvamers in a dispersed state attract and assemble into one-dimensional stacks. Yellow halos represent cohesive interactions
between particles with an effective range of attraction σeff . (c) Curvamer assemblies with no cohesive gaps between particles, or equivalently
interactions with σeff � δ, form concentric stacks of uniformly spaced, gap-closed particles whose curvatures are focused to a common focal
point. The buildup of curvature strains leads to finite-sized self-limiting states. Large stacks can escape frustration by flattening the particles
leading to unlimited growth. (d) Assembly with flexible cohesive gaps, or equivalently finite attraction range, features both intraparticle
(curvature change) and interparticle (bond stretching) modes of elastic deformation. Flexible gaps relieve stresses stemming from curvature
change by allowing particles to be more uniformly shaped at the expense of opening gaps between particles. Unlimited assembly may occur
for extremely compliant gaps, or long attraction ranges (σeff � δ), as the particles become uniformly shaped and the center gaps uniformly
stretched.

consequences for assembly thermodynamics should frustra-
tion strain be accommodated in one or the other.

A recently developed model of discrete GFA subunit, in-
troduced by Tanjeem and coworkers [33] suggests that the
interplay between intra- and interparticle deformations has
important implications for the range of self-limiting assem-
bly behavior. This model considers a stacking assembly of a
cylindrical, shell-like, colloidal particle model (dubbed “cur-
vamer”), shown schematically in Fig. 1. Here, a simplified
continuum theory for curvamer stacks was developed based
on the assumption of perfectly contacting binding geometries
favored by strong cohesive interactions. In this perfect-
contact approximation, it was assumed that the intra-assembly
stresses were solely borne out of the particles changing
curvature, due to a “curvature focusing” effect required by
uniform spacing of curved layers [34,35]. This perfect-contact

model predicted that self-limiting stack sizes are possible
for arbitrarily large cohesive forces between the particles.
However, comparison to simulations of a discrete, coarse-
grained model of curvamer stacks in the same study found
that self-limiting stacks are only favorable over unlimited
stacks for sufficiently weak cohesive binding. Furthermore,
the range of self-limiting assembly was shown to decrease
with the range of cohesive forces between curvamers. This
observation, along with the apparent deviation of discrete
curvamer simulations away from perfect-contact, particularly,
with longer range interactions, suggested that cohesive strain
of the intercurvamer binding itself is crucial for understanding
thermodynamically optimal states of this class of frustrated
assembly.

We can understand this schematically by comparing the
range of cohesive interactions, σeff (shown as a yellow halo
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surrounding curvamers in Fig. 1), to the size of the natural
gap, δ, between curvamers which maintain their preferred
shape. When σeff � δ, particles must adjust their shapes to
a curvature focusing geometry in order to close the gap and
gain cohesive energy. Alternatively, when σeff � δ, curvamer
surfaces favorably attract over their entire width without
changing shape to close the gap. Heuristically, this suggests
a transition from strongly bound, curvature focused stack-
ing to gap-opened, uniformly shaped stack geometries with
increasing range and compliance of cohesive forces. This
picture raises a number of key questions about the impact
of compliant interactions in frustration limited assembly of
curvamers. What physical parameters govern the distribution
of frustration induced stress to either particle deformation or
interparticle bond stretching? How do these distinct deforma-
tion modes control the accumulation of self-limiting elastic
energies in curvamer stacks? When interactions are compliant
and finite ranged, what range of self-limiting stack assembly
is possible and how is this controlled by shape, elastic, and
interaction parameters for a colloidal curvamer particle?

To address these questions, here we extend and analyze
the continuum theory of curvamer assembly introduced in
Ref. [33] to incorporate both intraparticle (bending) and
interparticle (bond) deformations. In parallel, we compare nu-
merical studies of optimal stacking in a coarse-grained model
of discrete colloidal curvamers. We analyze the ground state
stack energetics as a function of stack size as well as a new
parameter, the reduced gap stiffness G, which measures the
ratio of inter- vs intracurvamer stiffness. From this analysis
we predict several theoretical results.

First, at small sizes stacks maintain a curvature-focused,
gap-closed configuration while large stacks stretch interparti-
cle bonds becoming gap opened with a generic gap-opening
transition occurring at a critical stack size, Hgap(G), which
grows with the gap stiffness. We find that stacks smaller
than this critical size accumulate frustration energy su-
perextensively and therefore support self-limitation with the
self-limiting size increasing with a dimensionless ratio of co-
hesive interaction strength to bending stiffness. In contrast, the
frustration energy saturates for stacks larger than Hgap, leading
to a second-order-like transition from self-limiting to unlim-
ited assembly behavior at a critical value of cohesive strength.
We find that compliant interparticle binding ultimately limit
frustration accumulation stemming from shape misfit reduc-
ing both the range of self-limiting cohesive strength and
self-limiting size, with Hgap serving effectively as the max-
imum self-limiting size. Finally, based on this model we
construct the phase diagram of self-limiting vs unlimited stack
assembly and show that it is controlled by dimensionless mea-
sures of cohesive strength and range of interaction, finding
shorter interaction ranges suppress intersubunit bond stretch-
ing and favor larger ranges of self-limiting cohesive strength.

Hence, a key result of our study is that, notwithstand-
ing the high-dimensional parameter space needed to describe
microscopic physical properties of colloidal curvamers, the
space of self-limiting assembly is controlled by only two
dimensionless numbers, parametrizing the respective strength
and stiffness of interparticle cohesion. Crucially, we predict
that self-limiting assembly is only possible below a maxi-
mal range of attractive forces between colloidal curvamers.

These predictions provide necessary guidance for the exper-
imental design and study of attractive and curved colloids,
from banana shaped-particles to lithographically fabricated
polymeric shells, specifically for efforts towards realizing
“programmable” large-scale assemblies of frustrated particle
systems.

The remainder of this article is organized as follows. In
Sec. II we introduce both our continuum analytic theory and
coarse-grained simulation model for assembly of curvamers
with flexible interactions. Next we analyze energetic ground
state structures in mechanical equilibrium and describe the
transition from curvature-focusing to gap-opened stacking in
Sec. III. Then in Sec. IV we assess the range of accessible
self-limiting stacking behavior in terms of a finite ratio of
interparticle stiffness to intraparticle bond stiffness, and al-
ternatively in terms of finite ranges of attraction ultimately
providing a phase diagram of self-limiting versus unlim-
ited assembly that depends on attraction range and cohesive
strength. Finally, we summarize our results and discuss the
implications for different possible experimental designs of
self-limiting stacks of flexible, curved colloidal particles in
Sec. V. In particular we discuss systems of banana colloids
and polymeric shell particles that interact through depletion
forces, as well as DNA origami nanostructures that bind using
single stranded DNA hybridization.

II. MODELS OF CURVAMER STACKING ASSEMBLY

Starting from the model of conformal curvamer assem-
bly presented in Ref. [33], we model each curvamer as a
two-dimensional, curved shell with thickness t , midline width
w, and preferred radius of curvature r0 = κ−1

0 , as shown in
Fig. 1. While curvamer particles may be realized by cylindri-
cal shells stacking in three dimensions, the models introduced
here focus on a simpler two-dimensional picture based on the
assumption that optimal binding geometries favor maximal
overlap between attractive surfaces, allowing us to focus on
the cross-sectional shapes, which appear as one-dimensional
curved bars of finite thickness. Since deformations are as-
sumed to be constant in these one-dimensional cross sections,
the elastic energy derives purely from bending energy away
from the preferred curvature κ0. We assume that the con-
cave “bottoms” of particles favorably bind to convex “top”
surfaces of adjacent curvamers and that this binding is me-
diated by a finite-ranged, surface-to-surface attractive force.
Following Ref. [33] we assume that the predominant state of
stacking assembly maintains curvamer alignment in the stack,
which permits our theoretical analysis of the elastic energy
of stacks of variable size. Notably, as reported in Ref. [33],
under certain cases, aligned curvamer stacks may be unstable
with lateral-sliding instabilities that give rise to more complex
(i.e., nonmirror symmetric) stacking geometries. However, as
we exploit below, lateral motion of bound curvamers can be
suppressed through the introduction of patchy interactions in
which attractive zones are confined to the central regions of
curvamer faces. Hence, in the analysis of curvamer assembly
thermodynamics here, we neglect the possibility of these more
complex, misaligned stacking motifs.

Additionally, we restrict our analysis of intrastack ther-
modymanics to ground state energetics, and approximate the
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intrastack free energy by its minimal energy state. While
entropy (most significant, translational entropy of subnits) is
critical for the transition from a state of dispersed colloidal
subunits to a state of assembled aggregates and in determin-
ing the range of temperature and concentration where this
transition occurs, the nature of the (high concentration, low
temperature) aggregate state, i.e., whether self-limiting or un-
limited, are determined by free energies of assembly within
the aggregates, which derive primarily from their interactions,
shape and elasticity. A classical result of ideal aggregation
theory, as summarized in Ref. [26], is that the location and
width of the peak in the aggregate size distribution (in satu-
rated solutions) derives from the minimum and convexity of
the per subunit intra-aggregate interaction free energy, with
the temperature and concentration contributing higher order
effects. Fluctuations “internal” to the aggregates will, indeed,
contribute to the intrastack free energy. However, we do not
expect these to strongly alter size dependence of the per sub-
unit thermodynamics, and therefore, are not expected to shift
the predictions of our analysis at finite temperature.

A. Continuum mechanical model of curvamer stacking

Here we construct an analytical model of N consecutive
bound curvamers in a stack, accounting for both the mechan-
ics of shape deformation and interparticle bond stretching. For
simplicity, we assume that curvature along a given particle
is constant to good approximation, so that every section is a
circular arc. When two curvamers at their preferred curvature
stack on top of one another without overlap, there is a natural
gap δ ≈ 1

8 tκ2
0 w2 between their centers [Fig. 1(a)]. In general,

attractive interactions favor closing that gap, which requires
deformation of particle shape. Assuming these curvamers are
sufficiently thin to neglect extension of their length, we model
this via an elastic shell energy

Ebend(n) = 1
2 Bw(κn − κ0)2, (1)

where κn is the (midline) curvature of the nth particle in
the stack and B is the bending modulus, so that curvamers
experience a linear force response for deviations away from
the preferred curvature [36].

For the extreme case of infinitely short ranged attraction,
interparticle binding requires an assembly of curvamers to
stack conformally (without gaps), and the radius of curvature
of the nth particle must change concentrically away from
the radius of curvature of the bottom curvamer in the stack
as rn = rn−1 + t . If this conformal stacking motif propagates
through the entire assembly, then we have a shape profile
rn = r− + nt , or

κn = κ−
1 + nκ−t

≈ κ− − nκ2
−t, (curvature focusing), (2)

where κ− is the curvature of a “virtual” curvamer at the bottom
the stack (n = 0). We refer to this as curvature focusing, due to
the divergence of the curvature at the center of the concentric
packing (a.k.a. the focal point) and can be seen schematically
in Fig. 1(c). The “gradient” of shape in a conformal stack, and
its associated elastic energy, grows with stack size and pro-
vides the fundamental mechanism to compete with cohesive
drives to bind additional particles in a stack.

FIG. 2. (a) Curvature focusing particles stack with perfect con-
tact. (b) Noncurvature focused particles stack with a gap that varies
along their surfaces. The gap is stretched open in the middle of the
particle (green dot), compressed towards the flanks (purple dot) and
is zero at a point in between (black dot). (c) Close up view of the
gap between noncurvature focused particles. The gap distance �(x)
is measured at a point x away from the center of the top particle.
(d) The cohesive interaction energy per unit length between curvamer
surfaces as a funtion of surface-surface separation distance. The
interaction is approximated as a harmonic well around its minimum.
An effective interaction range is defined as σeff = √

γ /γ ′′ or half the
width of the well at half its minimum.

To introduce the additional possibility of nonconformal
assembly (gap-opened stacking), we define a cohesive energy
per unit length between pairs of curvamers

dEcoh

dx
= −γ + 1

2
γ ′′�2(x), (3)

where �(x) is the surface-surface separation (the distance
of closest approach) at a point x away from the center of
the particle, while γ and γ ′′ describe the binding energy per
unit length and the binding stiffness, respectively. Interactions
of this form, which treat the composite interaction as the
superposition of locally planar geometries, are the generic
consequence of finite-range colloidal forces between surface
elements, which themselves derive from the combination of
short-range repulsive forces that prevent overlap and long-
range attractions [37]. Hence, local interactions are described
by a local equilibrium spacing, which we describe by surfaces
in contact, and a finite range of interaction that describes
distortion away from the local minimum (see Fig. 2). In
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our analytic model, we parametrize the effect of deforma-
tions away from the locally preferred spacing by an energetic
penalty γ ′′ for opening gaps between curvamers. As shown
in Fig. 2, this corresponds to a harmonic approximation of
interactions around their local minimum, which is strictly ac-
curate, provided distortions are small enough compared to the
effective range of interactions σeff = √

γ /γ ′′. Intuitively, as
σeff decreases, cohesive interactions become effectively more
stiff.

We note that when the two curvamers feature curvature
focusing, the surface-surface gap becomes a constant [�(x) =
�] and the total cohesive energy can be minimized to Ecoh =
−γw when � = 0, meaning the curvamers are stacked con-
formally as seen in Fig. 2(a). If the pair is not curvature
focusing, however, then the surface-surface separation �(x) is
not constant and will depend on the deviation of κn and κn+1

from a curvature focusing configuration. To calculate �(x),
we assume κw � 1 allowing us to approximate the circular
curvamers as parabolas and find

�(x) � �z − t − 1
2 (κ−

n+1 − κ+
n )x2, (4)

where �z is the center-center separation distance between cur-
vamers, and κ±

n are the curvatures of the top (+) and bottom
(−) surfaces of the nth curvamer with midline curvature κn.
Averaging the square gap-strain over the curvamer width we
find

〈�2(x)〉 = (�z − t )2 − w2

12
(κ−

n+1 − κ+
n )(�z − t )

+ w4

320
(κ−

n+1 − κ+
n )2, (5)

which is minimal for a center-to-center spacing �z∗ = t +
1

24 (κ−
n+1 − κ+

n )w2. Consequently, the gap-strain distribution
necessary for force balance between two curvamers is given
by

�∗(x) = −1

2
(κ−

n+1 − κ+
n )

(
w2

12
− x2

)
, (6)

where we see a transition from the gap being stretched open
(attractive) near the center of the pair to it being compressed
(repulsive) near the edges, with the transition points of zero
strain occurring at |x| = w/2

√
3 ≈ 0.29w, independent of the

particle curvatures. Thus, to leading order, the parabolic form
of the gap-strain distribution only depends on the width of
the curvamers, with the curvature difference of the interacting
surfaces proportionally affecting the magnitude of the gap
strain.

Notably, the optimal vertical spacing �z∗ is only equal to
particle thickness when particles are curvature focusing, i.e.,
κ−

n+1 = κ+
n , and the gap strain consequently vanishes. From

this optimal spacing, we find the (width average) cohesive
energy to be

En,n+1
coh (�z∗) = −γw + 1

2

γ ′′w5

720
(κ−

n+1 − κ+
n )2 (7)

� −γw+1

2

γ ′′w5t2

720

(
κn+1−κn

t
+ κ2

n+1 + κ2
n

2

)2

,

(8)

where in the second line we assume κt � 1 to approximate
the top and bottom curvatures as κ±

n = κn
1±tκn/2 � κn ∓ 1

2 tκ2
n .

Defining the reduced curvature as κ̃ = κ/κ0, we then find
the total energy of a stack of N curvamers and normalize by
Bwκ2

0 , an energy scaling characterizing curvature flattening,

Estack

Bwκ2
0

= − γ

Bκ2
0

(N − 1) + 1

2

N∑
n=1

(κ̃n − 1)2

+ 1

2

γ ′′w4t2κ2
0

720B

N−1∑
n=1

(
κ̃n+1 − κ̃n

tκ0
+ κ̃2

n+1 + κ̃2
n

2

)2

.

(9)

We next take the continuum limit of this stacking energy in the
limit N � 1 and tκ0 � 1, where the sums in Eq. (9) are well
approximated as integrals and likewise κn+1 − κn ≈ ∂κ/∂n. It
is convenient to reparameterize the position in the stack by the
scaled height coordinate,

h ≡ nκ0t , (10)

and define the dimensionless ratio of cohesive energy relative
to intraparticle stiffness

S = γ t

Bκ0
. (11)

Notably, this latter quantity can be understood as the ratio of
the “surface energy” of the missing cohesion at the top and
bottom of the stack, γw, relative to the cost of flattening a
stack of curvamers of thickness equal to Nt = r0 = κ−1

0 , given
by Bwκ0/t . As shown in Ref. [33], S controls the equilibrium
self-limiting stack size for the conformal limit of curvamer
assembly.

As self-limiting thermodynamics is controlled by the size
dependence of (interaction free) energy per particle, we define
the dimensionless total energy density in the stack of scaled
size H = Nκ0t ,

ε(H ) ≡ E/N

Bwκ2
0

= −ε0 + S

H
+ εex[κ̃ (h)], (12)

where ε0 = S/κ0t is a measure the bulk cohesive energy of
assembly while S/H is the per particle cost of the unbound
surfaces at the top and bottom of the stack. The excess energy
density, εex[κ̃ (h)], represents that accumulation of additional
costs of assembly associated with the frustration [26], which
here depends on the shape profile of curvature κ̃ (h) in the
stack,

εex[κ̃ (h)] = 1

H

∫ H

0

[
1

2
(κ̃ − 1)2 + G

2
(κ̃ ′ + κ̃2)2

]
dh, (13)

where κ̃ ′ = ∂κ̃/∂h and we introduce the dimensionless
quantity

G = γ ′′w4t2κ2
0

720B
, (14)

that parameterizes the cohesive (interparticle) stiffness to
bending (intraparticle) stiffness ratio. This can be understood
(up to a prefactor) as the ratio of the energetic cost to stretch
interparticle bonds between parallel surfaces a distance δ,
given by γ ′′wδ2 ∼ γ ′′t2w5κ4

0 , to the flattening energy of a
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stack of thickness Nt = r0. Hence, the first term in the func-
tional favors uniform, preferred shape (i.e., κ̃ = 1), while the
latter term parameterizes the cost of gap strain, vanishing only
for curvature focusing profiles (i.e., κ̃ ′ = −κ̃2 in the contin-
uum limit). Predicting the accumulation of excess energy with
stack size H , and relating that to self-limiting thermodynamics
requires optimizing the functional εex[κ̃ (h)] with respect to
curvature profile in the stack. For a given size, optimal energy
stacks satisfy mechanical equilibrium described by solutions
of the Euler-Lagrange equation

d

dh

[
G

2
(κ̃ ′)2 + 1

2
(κ̃ − 1)2 + G

2
κ̃4

]
= 0, (15)

subject to the free boundary conditions

κ̃ ′(0) = −κ̃2(0); κ̃ ′(H ) = −κ̃2(H ), (16)

which means that stacks satisfy curvature focusing at the open
boundaries on their top and bottom. Detailed solutions for
these equations are provided in Appendix A, and take the form
of elliptic integrals well known for the Euler elastica problem
satisfying the same class of nonlinear ODE [38]. Here we
briefly remark that combination of Eqs. (15) and (16) gives
a surprisingly simple relation between curvature of the two
open boundaries of mechanically equilibrated stacks

|κ̃− − 1|2 = |κ̃+ − 1|2, (17)

where κ− ≡ κ (0) and κ+ ≡ κ (N ) denote the curvature at the
bottom and top of the stack respectively. Hence, this vari-
ational model makes generic predictions for ends of stacks
in mechanical equilibrium for any size and notwithstanding
their top vs bottom asymmetry: (i) stacks approach curvature
focusing at their free boundaries and (ii) the amount of “over-
bending” on one end of the stack is equal to the degree of
“underbending” on the opposite end. We denote the (energy
minimizing) mechanical equilibrium solutions of Eqs. (15)
and (16) as κ̃∗(h) and will describe their structure in Sec. III
below. We discuss the thermodynamic dependence of (profile
optimized) excess energy εex(H, G) = εex[κ̃∗(h)] on stack size
in Sec. III and its implications for self-limiting stack forma-
tion in Sec. IV.

B. Discrete, coarse-grained colloidal model

For comparison to the continuum model of stacks, we
perform numerical coarse-grained calculations of curvamer
stacks with finite ranges of attraction based on a bead-
spring model of discrete curvamers, following the design of
Ref. [33]. The positions of the evenly spaced beads (150 per
layer) are placed along the top (+) and bottom (−) edges
of the particle with radii r± = r0 ± t0/2, where the particle
has structural thickness t0. This forms a trapezoidal truss
network [see Fig. 3(a)] of three different types of springs
(denoted kh, kv , and kc, for horizontal, vertical, and cross,
respectively), whose rest lengths correspond with the particle
having a preferred radius of curvature r0 at its midline, and
spring constants chosen such that effective elastic properties
(i.e., bend to stretch modulus ratio) of the particle behave like
an elastic shell of Poisson ratio of ν = 0.3 (see Appendix B
of Ref. [33]).

FIG. 3. (a) Coarse-grained curvamers are modelled as a bead-
spring network, with structural thickness t0 between bead layers.
An attractive patch of length l = w/3 keeps particles aligned while
stacking and prevents lateral sliding. (b) Bead-bead interactions
between particles are composed of an attractive Lennard-Jones po-
tential (shown for yellow-magenta beads) that is localized to the
beads in the middle third of the particle and a purely repulsive
Weeks-Chandler-Anderson potential for all other bead-bead interac-
tions (shown for red-blue beads). All beads have a hard-core diameter
of dcore which fixes their equilibrium separation distance. (c) The in-
teraction energy per unit length between two flat plates as a function
of the center-center separation distance is obtained by summing over
all the bead-bead interactions.

As observed in Ref. [33], some regimes of curvamer as-
sembly become unstable to complex patterns of lateral particle
sliding that have the effect of “defocusing” curvature and thus
suppressing the range of self-limitation. To suppress this mode
and favor alignment of curvamer particles on the same axis,
we introduce two types of bead-bead interactions [Fig. 3(b)].
The first is an attractive interaction using a shifted Lennard-
Jones (LJ) potential

ULJ(r) = 4 ε

[(
σ

r − �r

)12

−
(

σ

r − �r

)6
]

, (18)

where ε is the interaction strength, σ is the range of the
attractive well, and �r is the shift parameter that controls the
equilibrium separation distance (hard core diameter) between
attractive beads. We define dcore to be the minimal energy sep-
aration of the shifted LJ potential which we hold constant for
variable interaction range via the relation �r = dcore − 21/6σ .
This attractive interaction is localized to the beads in middle
of the particle, forming a “sticky patch” of length l = w/3
to prevent any lateral sliding between curvamer particles. The
remaining beads interact repulsively with a Weeks-Chandler-
Anderson (WCA) potential

UWCA(r) =
{

ULJ(r) + ε, r � dcore

0, r > dcore
(19)

which smoothly goes to zero at r = dcore, and otherwise shares
the same variables ε and σ as the attractive potential. Ad-
ditionally, bead-bead interactions within the same curvamer
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particle are turned off. This choice of potentials means that
when two particles interact and maintain perfect contact be-
tween their surfaces, only the beads in the sticky patch will
contribute to the total cohesive energy, and repulsive flanks
of the particle contribute only when they are overlapping.
The interaction strength ε is chosen such that when two flat
curvamers are separated by their effective thickness t ≈ t0 +
dcore, the total cohesive energy is −γw which is held at a
constant value, while the the dimensionless ratio of cohesion
to intraparticle stiffness, S, is varied by decreasing the intra-
particle spring constants.

To map the coarse-grained parameters to their theoretical
counterparts, we assume that γ is roughly independent of
particle curvature and calculate the particle bending modulus
B from the energy of a curvamer with preferred curvature κ0

being placed in a completely flattened state, allowing us to
compute the reduced cohesion S. By calculating the interac-
tion energies of two flattened curvamers at various separation
distances around the particle thickness t (i.e., their equilib-
rium spacing), and fitting a parabola to the minimum of the
interaction well, we compute γ ′′ and thus map to the reduced
gap stiffness G (see Appendix G for more details). Notably,
we expect γ ′′ ∼ σ−2 so that gap stiffness is largely controlled
by the range of the attractive well. Since the particle geom-
etry and cohesion energy is fixed, we ultimately vary S by
changing the spring constant in the coarse-grained model and
vary G through the bead-bead interaction range σ and the
spring constant. Additionally, we find the relation between the
effective interaction range between flat curvamer plates and
the range of the LJ attractive well to be σeff � 0.11 σ .

To calculate the equilibrium state and energy of a finite-
sized stack, N coarse-grained curvamers are uniformly
stacked vertically with their centers aligned and curvatures
decreasing according to curvature focusing so that they ini-
tially have perfect contact. We then perform zero-temperature
energy minimization of the bead positions using a conjugate
gradient algorithm with LAMMPS [39] to obtain the structure
configuration that corresponds to a minimum in the energetic
landscape.

III. MECHANICALLY EQUILIBRATED STRUCTURES
AND THE GAP OPENING TRANSITION

As mentioned in Sec. II A, by looking at the form of the
total energy density in Eq. (12), we see that the two bare
(i.e., distortion-free) cohesive terms do not depend on particle
curvature, so solving Eqs. (15) and (16) for the mechanical
equilibrium curvature profile κ̃∗(h) is controlled only by the
scaled height H of the stack and the dimensionless ratio of gap
to particle stiffness G. We start by considering two heuristic
limiting behaviors as a function of gap stiffness.

First, for infinitely stiff gaps, G → ∞, from Eq. (13), it
is straightforward to see that the excess energy is minimized
when κ̃ ′(h) = −κ̃2(h) for all stacks, which is the curvature
focusing condition of Eq. (2) in the continuum limit. Thus, the
particles stack with perfect contact and our theory reduces to
that of conformal stacking of Ref. [33] when the interparticle
bonds are infinitely stiff and the excess energy is generated
purely from particle shape deformations. The residual en-
ergy of this solution derives from the gradient of particle

shape through the stack which grows monotonically with
size, i.e., for narrow curvature-focusing stacks (H � 1) it is
straightforward to show the linear profile κ̃∗(h) ≈ 1

2 H − h. In
the opposite limit of infinitely compliant gaps, G → 0, the
εex[κ∗(h)] for all stack sizes favors uniformly undeformed
curvatures, κ (h) = κ0. On these basic grounds we expect a
transition in the equilibrium profiles from curvature focusing
to gap opened states as a function of decreasing G.

In Fig. 4, we plot four mechanically equilibrated profiles
κ (n), here as a function of unscaled parameters. Comparing
two different stack sizes with the same gap stiffness, we see
that the smaller stack (red) has a nearly constant slope for
its curvature radius profile [Fig. 4(c)], which indicates it is
close to the concentric stacking rn = r− + nt condition re-
quired by curvature focusing. In comparison, for the larger
stack (orange) with the same gap stiffness (G = 8.26), cur-
vature radii are curvature focusing only at the bottom and
top, following a constant slope similar to the shorter stack
but with interior middle particles that deviate away from this
slope becoming more uniformly shaped. This flattening of
the interior curvamer shapes is more evident when the gap
stiffness is further reduced (G = 1.48) for this same larger
stack size (blue). In this case, the particles become nearly
uniform and adopt a curvature even closer to the preferred
value κ (n) ≈ κ0 over a large segment of the shape profile in
the middle of the stack. Once again the top and bottom of
the stack feature a return to the constant slope of curvature
focusing. As discussed above, the condition of free boundaries
of Eq. (16) requires stacking to maintain curvature focusing at
the top and bottom of the stack. Hence, for increasingly large
stacks with sufficiently compliant gaps (i.e., low-enough G)
we see that this curvature-focusing region becomes essentially
a boundary layer in equilibrium curvature profiles. This can be
seen, by considering in Fig. 4(c), an even larger stack (green)
profile for the compliant gap G = 1.48, which evidently at-
tains the same constant curvature value κ (n) ≈ κ0 in the stack
interior, but over a larger length than the shorter (blue) stack,
and is flanked by approximately the same curvature focusing
regions on its free boundaries. Last we note from Fig. 4(a)
that all of the analytical solutions for κ∗(n) satisfy Eq. (17),
with the magnitude of overbending at the bottom of the
stack equal to the magnitude of underbending at the top, i.e.,
κ− − κ0 = −(κ+ − κ0).

In Figs. 4(b) and 4(d), we see that the coarse-grained
simulations are in good agreement with the continuum theory
predictions with regards to these basic features, although there
are also some quantitative differences that arise from two
aspects of the continuum to discrete comparison. First, the
boundary conditions in the continuum model strictly speaking
are formulated in terms of “virtual particles” at the edges
of the stack (e.g., n = 0), a position which is not actually
sampled in the real discrete stacks. Second, and related to this,
since the reduced stack size is h = ntκ0, the smallest resolu-
tion achievable in the coarse-grained simulations of stack size
is that of one curvamer, or �h = tκ0. Hence, if the boundary
layer is small compared to this size scale (i.e., if the number of
discrete particles in the boundary zone is not large), then the
shape gradients in these regions will differ more significantly
between the continuum and discrete models. In both cases,
these limitations can be reduced and effects be better seen by
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FIG. 4. [(a) and (b)] The curvature profiles of continuum model (lines) and coarse-grained (dots) curvamer stacks for three different stack
sizes and two dimensionless ratios of gap stiffness to particle stiffness G. The curvature at the ends of the continuum model stacks are equally
distant from the preferred curvature (dashed line), as required by Eq. (17). This condition of equal over-bending and underbending at the ends
is not as evident in the coarse-grained stacks due to the lack of a “virtual” particle at the bottom of the stacks (e.g., n = 0), which does not
exist in real stacks of discrete particles (which start with n = 1). [(c) and (d)] The radius of curvature profile of curvamer stacks. A slope of
tκ0 represents curvature focused stacking (gap closed). All stacks form a curvature focusing boundary layer at their ends. Larger stacks and
those with smaller G see a clear deviation away from curvature focusing indicating the formation of gaps between particles with the middle
section of the stack approaching nearly uniform shape. (e) Visualizations of the coarse-grained stacks plotted in panels (b) and (d).

decreasing tκ0 of the particles, at the expense of having to
include more particles in the assembly to achieve the same
reduced stack size H = Ntκ0. Nevertheless, the agreement
shown in Fig. 4 suggests that the solutions of continuum
model capture the essential features of intraparticle relative to
interparticle modes of distortion in frustrated stacks and their
dependence on structural and elastic parameters.

These example cases show the shape profile deviates from
conformal, curvature-focusing stacking when G is sufficiently
low and when stack size is sufficiently large. In these cases
of nonconformal stacks, we therefore expect a variable degree
of interparticle strain. The patterns of inter- and intraparticle
strain, as well as the overall dependence on G and N , in
equilbrium stacks is illustrated in Fig. 5. For lower G and
large N , Figure 5(a) shows that stacks develop the largest
magnitude of gap strains, but in general these vary both along
the stacks, as well as along bound curvamers themselves.
This is because when curvamers are not curvature focusing,
according to Eq. (4) the cohesive gap between them varies
quadratically with lateral position, yet the mean gap between
a particle pair �z∗ adjusts so that the net force is zero. There-
fore, for nonfocusing geometries, we observe a characteristic
gap strain that is tensile (with gaps pulled open) at the center
of particles and compressive (with curvamers pushing into one
another) in their outer flanks. Notably, in these same regimes
where gap strain is highest (low G and large H), Fig. 5(b)
shows that curvature is most uniform and tends towards the

preferred particle shape κ (n) → κ0, with the exception of the
curvature-focusing boundary layer at the ends. In contrast, as
gap stiffness increases or stack size decreases, we observe the
magnitude of gap strain visibly decrease, and a more obvi-
ous gradient in particle shape develops through the particle
stack. Taken together, Fig. 5 shows that the mode of elastic
distortion that absorbs the predominant effect of frustration
in a curvamer stack, whether that be intraparticle bending or
interparticle gap strain, exhibits a complex interdependence
on stack size and relative gap to particle stiffness.

In general, we can characterize this dependence as a gap
opening transition at a characteristic stack size Hgap(G), from
curvature-focusing or gap-closed stacks for H � Hgap(G)
to uniform-shape or gap-opening profiles for H � Hgap(G).
We characterize this transition in shape profile as shown in
Fig. 6(a), where we plot the central gap in the middle of
the stack for fixed dimensionless gap stiffness and increasing
stack sizes H , in general showing gap strain increasing from
zero up to to a maximal gap size δ∞ as H → ∞. We define
Hgap(G) as the stack size at which the central midstack gap
is half of δ∞. In Fig. 6(b), we plot Hgap(G) from continuum
theory, as well as a comparison to a range of simulated stacks,
as a function of dimensionless gap stiffness, showing that
this characteristic size increases monotonically with G consis-
tent with two power-law regimes: Hgap(G) ∼ G1/2 for G � 1
and Hgap(G) ∼ G1/3 for G � 1. This shows that conformal
stacking is favorable for sufficiently small stacks for any gap
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FIG. 5. Mechanically equilibrated stacks of different sizes N (vertical axis) and gap to particle stiffness ratios G (horizontal axis) colored by
the averaged interparticle gap distance between curvamers according to Eq. (6) in (a) and particle curvature in (b). Stacks see their interparticle
gaps stretch open after a certain stack size Hgap(G) which increases with the gap stiffness G. Stacks with high gap strain (gap opened) see low
curvature strain (uniform shaped), while those with high curvature strain (curvature focused) see low gap strain (gap closed).

stiffness but also that this packing gives way to one that
favors gap strain between uniformly shaped particles at a stack
size that becomes smaller as interparticle cohesion becomes
relatively more complaint than particle shape.

An understanding of when this transition occurs can be
found via the following scaling argument that compares the
energetics of two competing morphologies: gap-opened, uni-
form stacks at large size and conformal, curvature-focusing
stacks at small size. In the former case, the nature of infinitely
large, uniform stacks is determined by considering the optimal
constant curvature κ̃∞ in Eq. (13) for the case κ̃ ′ = 0, which
is governed by the roots of the cubic equation

κ̃∞ + 2Gκ̃3
∞ = 1. (20)

In the case of small G, stiff particles with flexible bonds
mean that uniform stacks will have particles which only
slightly flatten from their preferred shape κ̃ � 1 − 2G, so that
the nonconformal excess energy density scales as ε∞

ex ∼ G.
Meanwhile, for small conformal stacks, curvature changes
linearly around a central particle with curvature κ0, and the
conformal excess energy then scales as εex ∼ H2. The gap
opening transition size, where these scalings cross over, will

then go as Hgap ∼ √
G. In the case of large G, it can be shown

that flexible particles with stiff bonds will be nearly flat in
infinite assemblies with uniform curvature κ̃∞ ∼ G−1/3 im-
plying large stacks approach absolute flattening for stiff gaps
leading to a residual cost, ε∞

ex ∼ 1
2 − G−1/3. For large confor-

mal stacks, curvature focusing implies εex ∼ 1
2 − ln(H )

H [33]
and so we find the gap opening transition will go as G ∼
(ln(Hgap)/Hgap)−3 or up to a logarithmic correction, Hgap ∼
G1/3. Notably, the stack size of this gap-opening transition
diverges as G → ∞, consistent with an asymptotic approach
to the strictly conformal limit at all scales.

This gap-opening transition and the scaling picture that
describes it are also reflected in the ultimate excess en-
ergy dependence on stack size predicted by the continuum
model, plotted in Fig. 7. For all G, the limit of small stacks
(H � Hgap), exhibits conformal stacking and therefore a
monotonically increasing cost of curvature focusing, e.g.,
εex(H � 1) ∼ H2. For large stacks (H � Hgap) excess energy
accumulation plateaus due to a transition to a state which is
predominantly gap opened and uniform shape in the bulk of
the stack, flanked by curvature-focusing boundary layers as
illustrated in Fig. 4. As argued above, the energy cost of these
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FIG. 6. (a) The central gap between particles in the middle of
a stack, �, grows with stack size until becoming uniformly spaced
[δ∞(G)] for infinitely large stack sizes. The gap opening transition
size Hgap is defined to be when � = 0.5 δ∞. (b) Continuum and
coarse-grained model calculations show Hgap increases with gap to
particle stiffness ratio G.

FIG. 7. The excess energy density which penalizes curvature
changes and gap stretching as a function of stack size for different
gap to particle stiffness ratios G. Stacks with finite values of G are
gap closed and curvature focusing for small sizes, then become gap
opened at Hgap (dots) asymptotically approaching a finite energy
density for infinitely large stacks. The black curve represents the
gap-closed, curvature focusing theory of Ref. [33].

infinite uniform stacks decreases with gap stiffness from a
maximum of ε∞

ex (G → ∞) → 1/2 for rigid gaps to a cost that
ultimately vanishes with G as ε∞

ex (G � 1) ∼ G for compliant
gaps. Hence, the effect of increasing the flexibility of cohe-
sive interactions is to reduce both the size range (in terms
of stack size) and energetic cost of frustration accumulation
in curvamer stacks. In the following section, we analyze the
thermodynamic consequences of this dependence of accumu-
lation cost on relative stiffness of cohesion to particle shape
deformation.

IV. SELF-LIMITING VS UNLIMITED ASSEMBLY

In the canonical ensemble and for sufficiently saturated
conditions (i.e., above the aggregation concentration thresh-
old), equilibrium assembly is determined by the aggregate
size that minimizes the free energy per subunit of interactions
within the aggregate structure [26,37]. For curvamer stacks,
the self-limiting assembly size, H∗, is defined to be the size
for which the per subunit assembly energy of Eq. (12), is a
minimum, which includes the per subunit “surface” cost S/H
which competes with εex(H ) to set the optimal size. The bulk
term ε0 = S/tκ0 only shifts ε(H ) by a constant and therefore
has no effect on the self-limiting size. If no finite minimum
occurs, then the assembly will be unlimited, which in the case
of one-dimensional (1D) stacking assembly strictly speaking
corresponds to exponentially distributed lengths that grow
with total concentration. In this section, we will look at self-
limiting stacks of curvamers and the thermodynamic regimes
of self-limiting or unlimited assembly. We first consider, in
Sec. IV A, self-limitation in the thermodynamic ensemble

of fixed ratio of gap to particle stiffness G = γ ′′w4t2κ2
0

720B , and
show that the self-limiting size is effectively tuned with the
reduced cohesion S = γ t

Bκ0
, up to a maximal value Smax(G)

beyond which the assembly is driven to unlimited size. We
then consider and analyze, in Sec. IV B, the more experi-
mentally relevant ensemble, where effective interaction range,
σeff = √

γ /γ ′′, is held constant, in which case the relevant
fixed dimensional measure of gap compliance is defined rela-
tive to cohesive strength as we detail below.

A. Fixed ratio gap to particle stiffness

We first consider self-limitation in the case of fixing the

ratio of interparticle to intraparticle stiffness G = γ ′′w4t2κ2
0

720B
constant and increasing the dimensionless ratio of cohesion
to flattening energy S. In this case, the excess energy den-
sity takes the form of the fixed-G solutions described in the
previous section (see Fig. 7), so if and where a minimum
occurs will depend on the strength of the cohesive boundary
penalty S/H which generically favors larger stack sizes and
implies a self-limiting size H∗(S, G) that grows with S. As an
example, we consider a case of fixed G = 103 in Fig. 8(a) for
an increasing range of S. Whether a minimum in ε(H ) occurs
at finite H depends on how fast the excess energy density
grows with size and is outlined for a general d-dimensional
frustrated assembly in Ref. [26]. It is straightforward to show
(Appendix C) that self-limiting states are described by the
equation of state relating optimal size H∗ to the reduced
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FIG. 8. (a) The total energy density of the continuum model for
G = 1000. The minimum of the energy density curve is the self-
limiting stack size H∗ (dots), which increases with cohesive strength
to particle stiffness ratio S and diverges as S approaches a maximal
cohesive strength Smax. Above this maximal value (yellow curve),
assembly is unlimited. (b) Self-limitation occurs within a finite range
of cohesive strength S which increases with the gap stiffness G. The
curve colors correspond to the same values of G shown in Fig. 7,
with the black curve representing gap-closed, curvature focusing
assembly.

cohesion

S(H∗) = H2
∗

dεex

dH

∣∣∣∣
H=H∗

. (21)

For the limit of very small (i.e., curvature focusing) stacks we
expect εex ∼ H2, from which it is straightforward to show the
power-law growth of self-limiting size with cohesion

H∗(S → 0) ∼ S1/3. (22)

As illustrated for the case in Fig. 8(a), however, for sufficiently
large S the self-limited size increases and eventually exceeds
Hgap, meaning that the relevant stack profile is approaching
the uniform curvature state for which excess energy plateaus,
i.e., εex(H � Hgap) � ε∞

ex (G). Since dεex
dH ≈ 0 for H � Hgap,

the accumulation of elastic energy with size is not sufficient
to balance the cohesive drive to increase stack size at these
scales, and hence, assembly is no longer self-limiting for
this range of cohesion. This behavior can be seen clearly

in Fig. 8(a), where for large S the energy density mono-
tonically decreases approaching the bulk energy ε∞

ex (G) as
the structure grows infinitely large (i.e., H∗ → ∞). A simple
estimate for this maximal cohesion Smax(G) for self-limitation
is given by H∗ ∼ S1/3 ≈ Hgap(G). For small G, this implies
Smax(G � 1) ∼ G3/2, illustrating that the cohesive range for
self-limiting assembly grows with gap stiffness, consistent
with an analogous argument for stiff gaps which suggests that
Smax(G � 1) ∼ ln G. Exact calculations of Smax(G) can be
seen in Fig. 15 of Appendix D.

A careful analysis (see Appendix C for detailed calcula-
tion) shows that the self-limiting size diverges continuously at
this maximal cohesion S → Smax(G), i.e., there is a second-
order transition which occurs at Smax(G) between self-limited
to unlimited assembly. Equations of state H∗(S) versus S are
shown for a series of G values in Fig. 8(b). This is in contrast
to the conformal theory where the self-limiting size is finite
for any finite S and strictly only diverges at S → ∞ [black
line in Fig. 8(b)]. From Appendix C, we find a logarithmic
divergence of self-limiting stack size at the transition H∗(S →
Smax) ∼ − ln(Smax − S).

B. Fixed attraction range: Phase diagram
of self-limiting behavior

The analysis of the prior section considers self-limiting
assembly of curvamer stacks under conditions of two inde-
pedent dimensionless variables: the ratio of cohesive strength
to particle stiffness, S = γ t

Bκ0
, and the ratio of cohesive stiff-

ness to particle stiffness, G = γ ′′w4t2κ2
0

720B . However, for physical
models of colloid curvamer assembly, we argue that it is more
useful to consider a different ensemble, one in which the two
parameters that describe the particle interactions (γ and γ ′′,
or the respective depth and stiffness of binding) are combined
into a single dimensionless parameter that is independent of
the elastic properties of the particles. As discussed below,
this is motivated by the fact that for colloidal forces that
can be used to drive curvamer binding (e.g., depletion or
surface-functionalized DNA linkers), the range of attractive
interactions is held fixed, even while the strength of attractions
is variable. In such cases, γ and γ ′′ do not vary indepen-
dently and as illustrated in Fig. 2(c), the their ratio defines a
characteristic lengthscale of binding, σeff = √

γ /γ ′′ a generic
measure of the interaction range. To consider the case of
fixed interaction we therefore introduce a new dimensionless
measure of gap stiffness

K ≡ G/S = w4tκ3
0

720
σ−2

eff ∝ 1

tκ0

(
δ

σeff

)2

, (23)

which quantifies the ratio of surface energy in a stack of
thickness r0 to the cost of cohesive strain induced by the
“natural gap” δ � κ2

0 w2t/8 between particles with their ideal
shape.

It is straightforward to recast the thermodynamics of stack
assembly in terms of fixed S and K and solve for the self-
limiting stack size H∗(S, K ) (see Appendix D). In Fig. 9(a),
the total energy density curves from the coarse-grained cur-
vamer simulations are plotted for one choice of interaction
range corresponding to fixed value of K = 82 and a sequence
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FIG. 9. (a) Coarse-grained simulation results for particles with
fixed effective interaction range (σeff/δ = 0.07, K = 82.46). In-
creasing the reduced cohesive strength S increases the self-limiting
stack size (larger circles) until a maximal cohesion, Smax(K ), where
no self-limitation occurs (yellow curve). A minimum is counted as
self-limiting if it is less than the maximum stack size calculated
(50). (b) Comparison of self-limiting sizes with finite interaction
range for the coarse-grained (open circles) and continuum models
(solid lines). Both show increasing self-limiting sizes with S which
deviate away from the curvature focusing, conformally contacting
limit (black curve). Stacks are self-limiting within a finite range of
cohesive strength S which decreases with interaction range. Values
of σeff/δ correspond to K = 35, 82, 131 for orange, red, and purple,
respectively.

of increasing S (here controlled by the ratio of intraparticle
spring stiffness k to LJ attraction strength). In simulations, we
simulate stacks up to N = 50 particles in size, and character-
ize the minima as self-limiting if N∗ < 50. Figure 9(b) shows
plots of (scaled) self-limiting stack sizes H∗ as a function
of the reduced cohesion S for different interaction ranges,
corresponding to distinct fixed K values. Simulation and the-
ory calculations are in qualitative agreement with the fixed-G
behavior shown in Fig. 8(b) and capture the self-limiting
curves pulling away from the curvature focusing, conformal
limit, with the point of deviation occurring at smaller sizes
with increasing attraction range. Although G = KS is not
constant in this sequence, for fixed K it is still the case that
the self-limiting stack size eventually reaches and exceeds the

gap-opening size at an upper limit of cohesion. Beyond this
size range, we again find that self-limiting stack sizes diverge
continuously at some maximal cohesion Smax(K ). We can find
this maximal cohesion at fixed K from our previous solution
for Smax(G) via the solution to

Smax(KS) = S. (24)

For K � 5.0 we find that this relation has two solutions
corresponding Smax(K ) and Smin(K ). The minimal value cor-
responds to a low-S regime where G → 0 so that gaps open,
and assembly becomes unlimited, essentially at all stack sizes.
In practice, this S < Smin(K ) regime corresponds to a narrow,
if not completely negligible, region of the parameter space
for colloidal curvamers. For the upper limit to cohesion, as
S → Smax(K ) we find the same power-law divergence of stack
size as the case of fixed G. Figure 9(b) shows that this maximal
cohesive range decreases with increased range of interactions,
both in the continuum theory (via decreasing K) as well as the
discrete curvamer simulation model (via increasing σ ).

In Fig. 10(a), we plot a phase diagram of self-limiting
behavior in terms of reduced interaction range K−1/2 ∝ σeff

and reduced cohesion S. The continuum model predicts a
transition line (shown in black) that separates self-limiting
assembly (below) from unlimited assembly (above) defined
by the parameterized curve (Smax(G), K = G/Smax(G)). Criti-
cally, there exists a maximum to this transition line at K−1/2 ≈
0.45, predicting that above a maximal interaction range self-
limiting assembly is not possible for any S. Below this critical
interaction range, we see that the range of self-limiting param-
eter space is limited, but widens to arbitrarily large cohesive
range as interaction range goes to zero (i.e., K → ∞). The
maximal value of reduced interaction range K−1/2 falls to zero
exponentially with increasing S.

In Fig. 10(b), we show coarse-grained simulation results
for fixed curvamer dimensions but variable cohesive strength
and interaction range. Notably, simulation results are shown
as filled color circles for the cases where a minimum in the
energy density for N∗ < 50 was found. Parameters sampled
at larger interaction range and cohesive strength where no
such minimum was found are shown as open white circles.
Simulation results are in good qualitative agreement with the
continuum model predictions (transparent background) and
notably also show an upper limit to self-limitation in the phase
diagram, though at a slightly smaller value of the mapped
value of reduced interaction range. Additionally, we find that
the upper cohesive range for self-limitation extends somewhat
below the predicted value of Smax(K ) from the continuum
model, but nevertheless exhibits a similar increase in Smax(K )
as K−1/2 is reduced towards zero.

Figure 10(b) shows that there are quantitative differences
between the predictions of the continuum model and the
simulated stacks of coarse-grained curvamers. Most obvious
is the depression of the range of self-limitation in terms
of reduced interaction range K−1/2. For the coarse-grained,
discrete curvamers, we find an upper limit of K−1/2 ≈ 0.22
which is roughly half of the value predicted by the continuum
theory. While there are several nonlinearities neglected in the
continuum model that likely limit its accuracy, we expect
the principle discrepancy derives from the harmonic approx-
imation of the intercurvamer surface potential. Specifically,
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FIG. 10. (a) Phase diagram of self-limiting assembly for curvamers with fixed interaction range. Above a maximal reduced interaction
range 1/

√
K∗ ≈ 0.447, self-limiting behavior vanishes completely. (b) Coarse-grained simulations qualitatively match the continuum model

phase diagram and see vanishing self-limiting behavior above a critical reduced interaction range. Filled circles represent self-limiting stacks.
Open white circles represent choices of K and S which did not see a minimum below the maximum stack size simulated (50) and are considered
unlimited assembly. (c) The green bordered stack is the self-limiting state for K = 82 and S = 0.19. For a longer interaction range at the same
S, the self-limiting stack size is larger (red square, K = 24).

as illustrated in Appendix G, the true plate-to-plate potential
is reasonably described by a quadratic approximation only
very close to its minimum, while sampled assemblies expe-
rience strains far outside of this quadratic regime, especially
near the self-limiting-unlimited boundary. Notwithstanding
the limitations of our minimal description of cohesive strain,
the continuum theory captures the nontrivial features of the
self-limiting phase diagram, notably the exponential depen-
dence of maximal interaction range on cohesive strength, as
well as the generic dependence of self-limiting stack size on
cohesion.

V. DISCUSSION AND CONCLUSION

In this article, we have studied two theoretical approaches
to model the stacking assembly of flexible, curved, colloidal
curvamers, in particular to assess the role of relative compli-
ance of interparticle forces (cohesion) to intraparticle shape
(curvature). In summary, the main theoretical result is that any
measure of interparticle compliance leads to a new mode of
“frustration escape,” in which assembly thermodynamics tran-
sitions from favoring self-limited stacks to unlimited stacks of
uniform shape. Furthermore, this transition is characterized by
a threshold (reduced) stack size Hgap(G), which is controlled
by the dimensionless ratio of cohesive to particle-shape stiff-
ness, G. For H � Hgap(G), interparticle gaps are suppressed
and curvature-focusing in the stack leads to elastic energy that
accumulates superextensively, i.e., faster than linearly with
stack size. For H � Hgap(G), gaps open in the bulk of stacks
facilitating the saturation of elastic energy growth which ul-
timately becomes uniform for asymptotically large stacks.
Since the role of the excess energy generated from frustra-
tion within the assembly is to counteract the cohesive drive
to assemble, the self-limiting size of curvamer stacks with
compliant interactions will grow with the dimensionless ratio

of cohesive strength to intraparticle stiffness, S, up to Hgap(G)
after which the stack size will continuously diverge at a finite
value Smax(G). Consequently, the result of compliant interac-
tions and the interparticle mode of elastic deformation is to
limit the practical maximum self-limiting size to Hgap(G) and
reduce the range of self-limiting cohesive strength to Smax(G)
by reducing the overall level of frustration. Notably, both
Hgap(G) and Smax(G) increase with gap stiffness G, meaning
that assemblies with stiffer interactions will have large ranges
of self-limiting size and cohesive strength. Additionally, for
assemblies with fixed cohesive strength S, the self-limiting
size will grow as interactions are made more compliant, di-
verging as the maximum self-limiting cohesion shrinks to
Smax(G) → S, a consequence of the decreasing levels of frus-
tration. We analyzed the effects of this variable cohesive range
for the case of fixed interaction range, which is characterized
by a distinct dimensionless quantity K = G/S ∼ 1

tκ0
( δ
σeff

)2,
inversely proportional to the square of cohesive range σeff .
In a similar fashion, curvamer stacks are predicted to be
self-limiting for cohesive strengths up to an upper threshold
Smax(K ) that increases with K . Most significantly, we find
that self-limitation only occurs below a maximal effective
interaction range σeff (max) � 0.13 δ/

√
tκ0, where δ is the

“natural gap” between two nonoverlapping curvamers of the
same preferred shape. In effect, sufficiently short-ranged co-
hesive interactions are required in order to transfer “shape
misfit” from one particle to the next. For highly compli-
ant gaps, long-range interactions maintain sufficient cohesion
without gradients in particle curvature that accumulate with
size. Given this, self-limiting assembly is only possible for a
cohesive interaction range below the critical value, and more
generally, the cohesive range of self-limitation grows as the
interaction becomes shorter ranged and effectively stiffer. Be-
low we discuss experiment implications of this result in the
context of distinct colloidal designs of curvamer particles.

024602-13



SULLIVAN, HAYWARD, AND GRASON PHYSICAL REVIEW E 110, 024602 (2024)

We consider three class of particle designs, (a) photolitho-
graphically fabricated polymeric microshells [40–43], (b)
banana-shaped colloidal particles [10,44,45] and (c) curved
particles derived from DNA origami [46,47]. These exam-
ples differ primarily in terms of structural dimensions with
lithographically defined shells and banana colloids having
width and thickness ranges of w ≈ 5–15 µm and t ≈ 100–
500 nm, whereas DNA origami based curved particles can be
made at order of magnitude smaller size w ≈ 50–500 nm and
t ≈ 5–50 nm. Knowing the approximate dimensions and cur-
vature of a curvamer design, we can apply the results of
Sec. IV B and solve for the maximal effective interaction
σeff (max) that permits self-limiting assembly. Here, we cal-
culate the maximal range by assuming the particles are in a
highly curved state with a radius of curvature such that the par-
ticle width forms approximately 45% the circumference of a
circle. In general, the maximal interaction range will decrease
for flatter particles so these estimates should provide good
upper bound estimates for the range of attraction necessary
for self-limiting curvamer stacks. In the case of polymeric
shells (a) with approximate radius of curvature r0 = 2 µm,
the maximum effective interaction range which allows for
self-limitation is σeff (max) ≈ 47 nm. Banana-shaped colloids
(b) with radius of curvature r0 = 6 µm would need interac-
tions less than σeff (max) ≈ 180 nm long to be self-limiting.
DNA origami particles (c) with approximate radius of cur-
vature r0 ≈ 180 nm, on the other hand would need cohesive
interactions with ranges less than σeff (max) ≈ 12 nm to be
self-limiting. This range of interaction lengths suggests short-
ranged attractions such as depletion and single-stranded DNA
oligmers as two possible candidates for attractive interactions
between physical curvamers. In particular, depletion induced
attraction might be well suited to the lithographic polymer
shell and banana colloid particle systems as the interaction
range (estimated as the depletant diameter) can vary from
∼5 nm for SDS micelles and up to 100 nm and beyond for
nonadsorbing polymeric depletants and hard spheres made
of polystyrene or silica [48,49]. Similarly, single stranded
DNA oligomers (ssDNA) are well suited to the DNA origami
system as they can programed into the surface of a particle and
hybridize with a complementary set of ssDNA on a separate
particle’s surface to form a bond with an interaction range
(estimated as the length of the ssDNA) of approximately
5–20 nm [49–51].

In addition to the design considerations raised by our cur-
vamer model, the predicted limit on the interaction range
for self-limiting behavior likely raises additional questions
about kinetic constraints for reaching self-limiting equilib-
rium states. At present, our coarse-grained curvamer model
has been used to sample the energetic ground states prepared
by prealigned stacks in close contact. And while there is
prior evidence that these states are stable to some measure
of thermal fluctuations [33], it remains to be understood how
the shape of curvamers and the straining of inter- and in-
traparticle bonds in equilibrium stacks influences the time
scales necessary to find these equilibrium states. In particu-
lar, the requirement for sufficiently short-ranged interactions
may place additional constraints for reaching self-limiting
equilibrium under experimentally relevant conditions of as-
sembly at fixed concentration and temperature initiated for

randomly dispersed states. In general, as the range of at-
tractive interactions is lowered, the kinetic cross sections for
two particles to bind decreases considerably, slowing down
even unfrustrated assembly [52,53]. Additionally, it is gener-
ically true that self-limiting stacks themselves will likely be
able to bind into hierarchical “superstacks,” due to the weak
and imperfect attractions between misfitting ends. The pos-
sibility of “weak binding” of self-limiting domains through
defective bonds is a generic feature of many discrete par-
ticle models of frustrated assembly [31,32]. The effect of
weak binding in 1D frustrated assembly (e.g., stacking) has
recently been predicted to lead to a minimal temperature
for stable self-limitation, below which finite-size assemblies
condensed into effectively unlimited chains [54]. The stability
of “weak binding” between self-limiting stacks of curvamers,
as well as the influence of interaction range on kinetically
accessible states of self-limitation motivate the need for
finite-temperature dynamical simulation studies of curvamer
assembly.

We conclude by noting that the frustration mechanisms
underlying self-limiting assembly of curvamers is shared
by a broader range of physical systems. Indeed, the source
of frustration in curvamers is common to a broad class
of liquid crystalline systems, such as bent-core mesogens,
whose shapes favor bending of the nematic director, without
splay [55]. The resulting “bend nematic” states and their geo-
metric frustration is well appreciated [56–58], leading to bulk
states where frustration is either resolved by shape-flattening
or defect-mediated modulated states. However, curvamer as-
sembly is more precisely related to smectic phases with
preferred layer curvature [34], as intercurvamer attractions
penalize distortion or local spacing, as opposed to local align-
ment, of neighbor curvamers. The effect of frustration in the
multilayer stacking by preferred curvature has been previ-
ously studied [35], particularly in the cases smectic liquid
crystal layers with preferred curvature [59–61], and more re-
cently, in the stacking assembly of nanosheets [22,62], where
it has been argued to give rise to finite-domain size selection
via a similar competition between elastic and surface energies.
Interestingly, in these examples, the preferred shapes have
zero mean curvature and negative Gaussian curvature, and
take the form of locally twisted helicoids. This raises the basic
question about how the nature of frustration propagation in
stacking assembly varies for particles with preferred nonzero
Gaussian curvature. Geometric constraints of uniform layer
stacking [35] require variable Gaussian curvature in a stack
where any layer has nonzero Gaussian curvature, distinct from
the present case of cylindrical curvature which requires only
gradients in mean curvature. Because changes of Gaussian
curvature require changes in the metric of the layer, vari-
able Gaussian curvature in conformal stacks would therefore
require additional costs associated with layer stretching and
will likely reshape the nature of excess energy accumula-
tion. Unlike cylindrical shells it is impossible for saddle- or
sphere-shaped shells to escape frustration by flattening with-
out potentially large costs of intralayer stretching. Therefore,
it remains to be explored whether curvamers with nonzero
Gaussian curvatures instead exhibit wholly distinct modes of
frustration escape and qualitatively different regimes of self-
limiting behavior.

024602-14



SELF-LIMITING STACKS OF CURVATURE-FRUSTRATED … PHYSICAL REVIEW E 110, 024602 (2024)

ACKNOWLEDGMENTS

The authors are grateful to M. Stevens, M. Minnis, M.
Wang, and N. Hackney for valuable discussions and input.
This work was supported by U.S. National Science Founda-
tion through Award No. NSF DMR-2028885 and the Brandeis
Center for Bioinspired Soft Materials, an NSF MRSEC,
DMR-2011846.

APPENDIX A: CALCULATING CURVAMER STACKS
IN MECHANICAL EQUILIBRIUM

The total energy density of a stacking assembly of cur-
vamers depends on the shape profile of the particles in
the stack, specifically for the excess energy term which
determines how both particle shape and interparticle gap de-
formations are to be penalized. By optimizing the excess
energy functional of Eq. (13) with respect to the shape profile,
we also minimize the stacking energy for a curvamer stack of
scaled size H with dimensionless ratios of cohesion to particle
stiffness S, and cohesive stiffness to particles stiffness G. To
find this optimal (dimensionless) curvature profile κ̃ (h) as a
function of scaled height in the stack h, we take the variation
of the excess energy functional of Eq. (13), rewritten here as

εex[κ̃ (h)] = 1

H

∫ H

0
L(κ̃ (h), κ̃ ′(h)) dh, (A1)

with

L
(
κ̃ (h), κ̃ ′(h)

) = 1

2
(κ̃ − 1)2 + G

2
(κ̃ ′ + κ̃2)2, (A2)

and find

δεex = 1

H

∫ H

0

(
∂L
∂κ̃

− d

dh

∂L
∂κ̃ ′

)
δκ̃ (h) dh

+ ∂L
∂κ̃ ′ (H )δκ̃ (H ) − ∂L

∂κ̃ ′ (0)δκ̃ (0). (A3)

We then set δεex = 0 for all δκ̃ (h), and find three equa-
tions which much be satisfied. The first we identify as the
Euler-Lagrange equation

κ̃ ′′ − 2κ̃3 − 1

G
(κ̃ − 1) = 0, (A4)

that governs curvature profiles of energy optimizing stacks
which necessarily are in mechanical equilibrium. The second
and third we identify as the free boundary conditions,

κ̃ ′(H ) = −κ̃2(H ), (A5)

κ̃ ′(0) = −κ̃2(0), (A6)

at the top (H) and bottom (0) ends of the stack. We note that
both Eqs. (A5) and (A6) are of the form of Eq. (2) in the
continuum limit, which describes a curvature focused stacking
configuration. Thus, we see that the ends of the stacks must be
curvature focusing with closed gaps between particles.

Multiplying Eq. (A4) by κ̃ ′ and integrating with respect to
h, we obtain the squared rate of change of curvature in the
stack

(κ̃ ′)2 = κ̃4 + 1

G
(κ̃2 − 2κ̃ ) + C, (A7)

in terms of a conserved quantity C. Evaluation at the ends of
the stack using Eqs. (A5) and (A6) reveals

C = − 1

G

{
[κ̃ (H ) − 1]2 − 1

} = − 1

G

{
[κ̃ (0) − 1]2−1

}
, (A8)

and we find

|κ̃− − 1|2 = |κ̃+ − 1|2, (A9)

where we’ve defined κ̃− ≡ κ̃ (0) and κ̃+ ≡ κ̃ (H ) to be the
curvature at the bottom and top of the stack, respectively. This
surprising result tells us that the degree of deviation away
from the preferred shape at the bottom of that stack equals
that of the top of the stack and relates the end curvatures in a
simple way,

κ̃+ = 2 − κ̃−. (A10)

We now write the squared rate of change of curvature in the
stack in terms of the bottom curvature κ̃−, and find

T (κ̃, G, κ̃−) =
(

dκ̃

dh

)2

= κ̃4 + 1

G

[
(κ̃ − 1)2 − (κ̃− − 1)2].

(A11)
It is straightforward to solve the above equation by separa-

tion of variables to find the curvature κ̃ (h) at scaled position h
in the stack

h = −
∫ κ̃ (h)

κ̃−

d κ̃√
T (κ̃, G, κ̃−)

. (A12)

The total stack size H can similarly be found by integrating
over the full range of curvature from κ̃− to κ̃+ with

H (G, κ̃−) = −
∫ κ̃+=2−κ̃−

κ̃−

d κ̃√
T (κ̃, G, κ̃−)

. (A13)

We note that in this formulation, the stack size depends on the
reduced gap stiffness G and is effectively parameterized by
the bottom curvature κ̃−, with H → 0 for κ̃− → 1 for all G,
and H → ∞ for κ̃− → κ̃max

− (G). This divergence of stack size
at a maximal bottom curvature κ̃max

− is shown in more detail
in Appendix B.

The excess energy density of an infinite stack can also be
calculated. By taking particle shapes to be uniformly shaped
with curvature κ̃∞ at all points in the stack, we can set κ̃ ′ = 0
in Eq. (13) and find

ε∞
ex (G) = 1

2
(κ̃∞ − 1)2 + G

2
κ̃4

∞. (A14)

Finding the curvature which minimizes this energy involves
solving for the roots of the equation cubic shown in Eq. (20).
Doing so, we find only one real root,

κ̃∞(G) = 3

√
1

4G
+

√
1

16G2
+ 1

216G3

+ 3

√
1

4G
−

√
1

16G2
+ 1

216G3
. (A15)

The behavior of κ̃∞(G) and ε∞
ex (G) are shown in Figs. 11

and 12, respectively. We note that for infinitely stiff gaps
(G → ∞), the particles in the infinite stack become com-
pletely flattened κ̃∞ → 0 and the stack has energy density
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FIG. 11. The (dimensionless) uniform curvature κ̃∞ of particles
in an infinite stack as a function of reduced gap stiffness G. Stacks
with extremely compliant gaps (G → 0) will have particles near their
preferred shape (κ̃∞ → 1), while stacks with infinitely stiff gaps
(G → ∞) will have particles that are completely flattened (κ̃∞ → 0).

ε∞
ex = 1/2, which corresponds to the (dimensionless) bend-

ing energy for a completely flattened curvamer. Conversely,
for infinitely compliant gaps (G → 0), the particles maintain
their preferred shapes with κ̃∞ → 1. In general, stacks with
uniform particles at their preferred shape have energy den-
sity ε∞

ex = G/2 which is the per particle cost associated with
stretching interparticle gaps to the natural gap size δ. In the
case of completely compliant gaps, we see ε∞

ex → 0.

APPENDIX B: DIVERGING STACK SIZE

The squared rate of curvature change function T (κ̃, G, κ̃−)
of Eq. (A11) has a minimum at κ̃ = κ̃∞. If this minimum
is positive so that T (κ̃, G, κ̃−) has no real roots, then the
integrand in Eq. (A13) is well behaved and the stack size
can be evaluated. However, if T (κ̃, G, κ̃−) develops a real
root, then the integrand of Eq. (A13) contains a singularity at
κ̃ = κ̃∞. To understand how this effects the stack size, we first

FIG. 12. The (dimensionless) excess energy per particle of an in-
finite stack. The excess energy goes to zero for stacks with infinitely
compliant gaps (G → 0) as particles go to their preferred curvature.
Stacks with infinite gap stiffness (G → ∞) will have conformally
stacking particles that have completely flattened meaning the excess
energy is just the flattening energy, ε∞

ex → 1/2. Here the excess
energy is normalized, by Bwκ2

0 which is twice the flattening energy.

FIG. 13. The maximum bottom curvature for a stack with re-
duced gap stiffness G. Stack size is parameterized by the curvature at
the bottom of the stack κ̃− ∈ [1, κ̃max

− ]. As κ̃− → κ̃max
− , the stack size

continuously diverges H → ∞.

see if there is choice of the bottom curvature κ̃− that causes a
real root to develop. Indeed, we find T (κ̃∞, G, κ̃max

− ) = 0 for

κ̃max
− = 1 +

√
(κ̃∞ − 1)2 + Gκ̃4∞ = 1 + √

2ε∞
ex (G). (B1)

As seen in Fig. 13, in the limit of G → ∞, we see that
κ̃max

− → 2, which agrees with the results of Ref. [33] for con-
formally contacting, curvature focusing stacks. For infinitely
compliant bonds, G → 0, we see the bottom curvature achieve
its preferred shape, κ̃max

− → 1.
We now expand T (κ̃, G, κ̃−) about its minimum to second

order and define this approximation as

T ∗(κ̃, G, κ̃−) = a(G, κ̃−) + b(G)(κ̃ − κ̃∞)2, (B2)

with coefficients

a(G, κ̃−) = T (κ̃∞, G, κ̃−)

= κ̃4
∞ + 1

G

[
(κ̃∞ − 1)2 − (κ̃− − 1)2

]
= 1

G

[
(κ̃max

− − 1)2 − (κ̃− − 1)2
]

, (B3)

and

b(G) = 1

2

∂2T (κ̃, G, κ̃−)

∂κ̃2

∣∣∣∣
κ̃=κ̃∞

= 6κ̃2
∞ + 2

G
. (B4)

The integrand of Eq. (A13) can now be written as

1√
T (κ̃, G, κ̃−)

= 1√
T ∗(κ̃, G, κ̃−)

+
(

1√
T (κ̃, G, κ̃−)

− 1√
T ∗(κ̃, G, κ̃−)

)
,

(B5)

so that the stack size integral can be separated into into two
terms

H (G, κ̃−) = H1(G, κ̃−) + H2(G, κ̃−). (B6)

Here we define the first term as

H1(G, κ̃−) = −
∫ κ̃+

κ̃−

d κ̃√
T ∗(κ̃, G, κ̃−)

, (B7)

024602-16



SELF-LIMITING STACKS OF CURVATURE-FRUSTRATED … PHYSICAL REVIEW E 110, 024602 (2024)

and the second term as

H2(G, κ̃−) = −
∫ κ̃+

κ̃−

(
1√

T (κ̃, G, κ̃−)
− 1√

T ∗(κ̃, G, κ̃−)

)
d κ̃ .

(B8)

Notably, as κ̃− → κ̃max
− , a(G, κ̃−) → 0 and T ∗(κ̃, G, κ̃−) has

a single real root at κ̃ = κ̃∞, and hence the integrand in
H1(G, κ̃−) singular, while the integrand in H2(G, κ̃−) is finite
in this limit.

We are now interested in what happens to these two
terms as κ̃− → κ̃max

− . For H1, first we evaluate the integral in
Eq. (B7) and simplify with an addition formula obtaining

H1(G, κ̃−) = 1√
b(G)

arcsinh(q(G, κ̃−) u(G, κ̃−)), (B9)

where we have defined

q(G, κ̃−) =
[

b(G)

a(G, κ̃−)

]1/2

, (B10)

and

u(G, κ̃−) =
√

x2− + q2(G, κ̃−)x2−x2+

−
√

x2+ + q2(G, κ̃−)x2−x2+, (B11)

with

x− = κ̃− − κ̃∞, (B12)

x+ = κ̃+ − κ̃∞. (B13)

We note that the bottom curvature is always greater than
the top curvature κ̃− > κ̃+ = 2 − κ̃− for stacks of size H>0,
which implies u(G, κ̃−)>0. Only in the case of stacks of
zero size do we have κ̃− = κ̃+ = 1, which would imply
u(G, κ̃−) = 0. By taking κ̃− → κ̃max

− (G), we see q(G, κ̃−) →
∞ since T (κ̃∞, G, κ̃max

− ) = 0 by definition. Thus, we see that
H1(G, κ̃−) continuously diverges as κ̃− → κ̃max

− . Finally, we
note that by construction, H2(G, κ̃−) has no singularity and in-
tegrating over the finite range κ̃ ∈ [2 − κ̃max

− , κ̃max
− ] means that

H2 will always be finite in value. Thus we conclude that the
mechanically equilibrated stack size H (G, κ̃−) of Eq. (A13)
continuously diverges as the bottom curvature approaches a
maximal value κ̃− → κ̃max

− (G), which depends on the dimen-
sionless ratio of interparticle to intraparticle stiffness.

APPENDIX C: EXCESS ENERGY AND SELF-LIMITATION
WITH FINITE GAP STIFFNESS

The self-limiting stack size H∗ is the size which minimizes
the total energy density

ε = −ε + S

H
+ Eex

H
, (C1)

where we have defined the total (dimensionless) excess en-
ergy as Eex[κ̃ (h)] = H · εex[κ̃ (h)]. Therefore we can obtain
an equation of state that describes self-limitation by taking
∂ε
∂H = 0 and find

S(H∗) = H2
∗

dεex

dH

∣∣∣∣
H=H∗

. (C2)

However, in Appendix A we showed that the stack size
H (G, κ̃−) is parameterized by the bottom curvature of the
stack κ̃−. Thus by taking ∂ε

∂κ̃−
= 0 we can find a form of the

equation of state which is easier to evaluate,

S = H
∂Eex

∂κ̃−

(
∂H

∂κ̃−

)−1

− Eex. (C3)

For a given stack size H (G, κ̃−) and reduced gap stiff-
ness G, this gives us the reduced cohesion S that makes
H∗ = H (G, κ̃−) the minimum of Eq. (C1), a.k.a. the self-
limiting stack size.

The excess energy can be simplified to a form that can
be evaluated directly. By starting from Eq. (13) and utilizing
Eq. (A11), it is straightforward to find

Eex(G, κ̃−) = − G
∫ κ̃+

κ̃−

√
T (κ̃, G, κ̃−)d κ̃

+ H

2
(κ̃− − 1)2 + G

3
(κ̃3

+ − κ̃3
−). (C4)

To calculate the derivative of the excess energy with respect
to κ̃−, we make use of the Leibniz integral rule and find

E ′
ex = H ′

2
(κ̃− − 1)2. (C5)

Substituting Eqs. (C4) and (C5), we now find

SSLA(G, κ̃−) = G
∫ κ̃+

κ̃−

√
T (κ̃, G, κ̃−)d κ̃ + G

3
(κ̃3

− − κ̃3
+),

(C6)

where we denote SSLA(G, κ̃−) to be the function that returns
the value of reduced cohesion which makes H (G, κ̃−) the self-
limiting stack size.

As shown in Appendix B, stack size diverges at a max-
imum bottom curvature κ̃max

− (G). We can see what value of
S corresponds to when H∗ → ∞ by taking κ̃− → κ̃∞

− (G) in
Eq. (C6)

Smax(G) = SSLA(G, κ̃max
− ). (C7)

Alternatively, following the results of Sec. III.B.1 of Ref. [26]
for limits of self-limitation, we can define the maximal
cohesion as

Smax(G) = lim
H∗→∞

H∗
[
ε∞

ex (G) − εex(G, H∗)
]
. (C8)

We are now interested in how the self-limiting stack size
H∗ diverges as S → Smax. For large H∗, we know that the
excess energy will be near the infinite energy ε∞

ex . Following
Ref. [26], we assume that the residual energy

�ε(H∗) = ε∞
ex − εex(H∗), (C9)

vanishes with H∗ according to a power law. Plotting the resid-
ual energy in Fig. 14(a), we find the excess energy density can
be approximated as

εex(H∗) � ε∞
ex (G) − C1(G)

H∗
. (C10)

Solving for C1(G) in the limit of large H∗ yields

C1(G) = Smax(G), (C11)
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FIG. 14. (a) The residual energy �ε = ε∞
ex − εex(H ) decreases

as ∼1/H in the limit of large H . (b) The residual energy �ε1(H ) =
εex(H ) − ε∞

ex + Smax
H decreases exponentially in the limit of large H .

Curves shown correspond to values of G = 10, 100, 1000.

according to Eq. (C8). Next, we consider a higher order cor-
rection to the excess energy in the limit of large H∗. We define
a new residual energy to be the difference between the excess
energy and Eq. (C10),

�ε1(H∗) = εex(H∗) − ε∞
ex + Smax

H∗
, (C12)

which, plotted in Fig. 14(b), reveals �ε1(H∗) ∼ e−m(G)H∗ for
some constant m(G) that depends on G. We can now write the
total energy density in the limit of large H∗ as

ε(H∗) � −ε + ε∞
ex − Smax − S

H∗
+ C2(G)e−m(G)H∗ . (C13)

Since H∗ is the stack size that minizes of the energy density,
we see that for reduced cohesion S near Smax the self-limiting
stack size diverges as

H∗ ∼ − ln(Smax − S). (C14)

APPENDIX D: SELF-LIMITATION WITH FINITE
INTERACTION RANGE

To recast our theory in terms of finite interaction ranges,
we introduced the dimensionless variable K in Eq. (23) which
quantifies the ratio of surface energy in a stack of height r0

to the cost of cohesive strain induced by the natural gap δ

between particles with their ideal curvature, and depends on a
characteristic binding length scale σeff = √

γ /γ ′′, or effective
interaction range. This new variable was derived by taking

FIG. 15. Parameter space of self-limitation. The self-limiting
stack size diverges at maximal cohesion Smax(G) (black curve), thus
values of S and G below Smax(G) represent self-limiting states.
Above Smax(G), only unlimited assembly occurs. Lines of constant
K = G/S represent fixed interaction range. Below a minimal
K∗ � 5.0, self-limitation completely vanishes (yellow line). For
fixed K > K∗, there is a finite range of S that permits self-limitation
[between Smin(K ) and Smax(K )] which increases with K .

the ratio of G to S to eliminate the particle stiffness B in
favor of the purely cohesive variables γ and γ ′′ which define
σeff . Since K = G/S, by considering stacks of curvamers with
fixed interaction range (and hence fixed K) we see that the
reduced gap stiffness G must change as the reduced cohesion
S is varied. This means that our current methods for calculat-
ing stack size using Eq. (A13) and the reduced cohesion from
Eq. (C6) must be modified.

Additionally, we saw in Appendix C there is a maximum
value of cohesion Smax(G) at which the self-limiting stack size
diverges. In Fig. 15, we plot Smax(G) (black curve) against
G and note that choices of S and G that lie below Smax(G)
correspond to self-limiting states, while those on or above the
curve are unlimited. We also see that some lines of constant
K = G/S can intersect the Smax curve multiple times, and oth-
ers smaller than a critical value, K∗ � 5, are completely above
the curve. Since K ∼ σ−2

eff , this implies that self-limitation
vanishes above some maximum interaction range. If K > K∗,
then these lines intersect twice at the points Smin(K ) and
Smax(K ) which satisify

Smax(KS) = S, (D1)

where we substituted G = KS into Eq. (C7). These values
represent the bounds of the finite window of cohesive strength
that permit self-limitation, and can be seen as the dashed
vertical lines in Fig. 9. We numerically solve for the roots of
Eq. (D1) which gives us Smin(K ) and Smax(K ).

For a given K and S ∈ (Smin(K ), Smax(K )), we would like
to calculate the self-limiting stack size. To do so, we utilize
Eq. (C6) and solve for the value of κ̃− which satisfies

SSLA(KS, κ̃−) = S. (D2)

Again we accomplish this numerically, and plug in this value
of the bottom curvature into Eq. (A13) to find the self-limiting
stack size H∗ = H (KS, κ̃−).
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APPENDIX E: MEASURING GAPS IN THE STACK

To quantify the degree of gap-opened stacking and the
stack size at which an assembly transitions from gap-closed to
gap-opened stacking, we must calculate the gap size between
curvamer surfaces in a stack. To do this with our contin-
uum model, we take the discrete surface-surface separation
of Eq. (4) at the minimal center-center separation distance
�z∗ = t + 1

24 (κ−
n+1 − κ+

n )w2 in the continuum limit and find
the center of the gap (x = 0) at a height h in the stack to have
size

�(h) = tw2κ2
0

24

[
κ̃ ′

∗(h) + κ̃2
∗ (h)

]
. (E1)

Consequently, we see that the uniform gap associated with an
infinite stack is

δ∞ = tw2κ2
0

24
κ̃2

∞(G), (E2)

and normalizing the center gap by δ∞, we obtain

�(h)

δ∞
= κ̃ ′

∗(h) + κ̃2
∗ (h)

κ̃∞(G)
. (E3)

We define a stack of size H to be “gap opened” when
�(H/2) = 0.5δ∞, so therefore must calculate what the cur-
vature is halfway through a stack of a given size. To do this
we specify G, and κ̃− and thus get the stack size H (G, κ̃−)
according to Eq. (A13). We then numerically solve for the
choice of curvature κ̃ (H/2) for the upper limit of integration
in Eq. (A12) that makes h = H/2. We can then calculate
κ̃ ′

∗(H/2) by substituting κ̃ (H/2) into Eq. (A11) and thus find
the center gap in the middle of a stack.

Measuring gap distances is more straightforward in the
coarse-grained model. After the conjugate gradient energy
minimization protocol has finished for a given stack, we find
the positions of the five beads in the center of the top surface of
the nth curvamer in the stack. Similarly, we find the positions
of the five beads in the center of the bottom surface of the
nth + 1 curvamer in the stack. We then calculate the distances
between these corresponding beads on the two different cur-
vamers and average together to find the center gap between
curvamer surfaces. This procedure is then performed for the
two curvamers in the middle of the stack to obtain �(H/2). If
there are an odd number of curvamers in the stack (and thus an
even number of gaps), then we perform the above procedure
on the two gaps nearest the middle of the stack and average
them together. Finally, to roughly estimate the infinite gap
size, we take δ∞ to be the center gap halfway up a stack of
50 curvamers, which is the largest stack size we consider.

TABLE I. Structural thickness, width, attractive patch width and
preferred radius of curvature of coarse-grained curvamers.

Parameter Value

t0 1.4
w 13.27
l 4.423
r0 8.45

TABLE II. Values of interaction range, spring constant, bending
modulus, reduced cohesion, and gap stiffness used in Figs. 4 and
6(a).

σeff/δ kh Bw S G

0.13 50×103 57 911 0.343 8.263
0.13 280×103 324 402 0.061 1.476

APPENDIX F: COARSE-GRAINED
SIMULATION PARAMETERS

The coarse-grained model we employ to test our continuum
theory is adapted from the one introduced by Tanjeem and
coworkers in Ref. [33], with only a few notable differences.
The first is the geometry of the curvamer which has been
scaled down, although is proportionally the same. For con-
venience, we set the minimum of all bead-bead interactions
(hard core diameter) to dcore = 1, whereas in Ref. [33] it
was set to 3.55. We measure all lengths in units of dcore and
all energies in units of ε0, where the bead-bead interaction
strength is ε = α ε0. When measured in units of dcore our cur-
vamer design matches that of Ref. [33]. We list the geometric
parameters used in this article in Table I. The interaction cutoff
distance for the bead-bead potentials is set to t0 + 2 dcore so
that beads in one curvamer only interact with the beads in
the neighboring curvamer directly above and below and not
next nearest neighbors. The bead-bead interaction energies are
shifted so that the energy is zero at the cutoff distance. Ad-
ditionally, interactions between beads in the same curvamer
are turned off. The value of the bead-bead interaction strength
ε is set so that the minimum of the interaction energy be-
tween two flat curvamer plates is always −γw = 1000 ε0 (see
Appendix G for more details). We then make use of the
conjugate gradient method in LAMMPS to minimize the energy
of a curvamer stack with stopping energy tolerance 10−14,
maximum number of iterations 105, maximum number of
force-energy evaluations 106, and the stopping force tolerance
turned off by setting it to zero. The methods used for mea-
suring the radius of curvature of particles in a stack and for
measuring the bending modulus are the same as those used in
Ref. [33].

The values of the coarse-grained variables used in Figs. 4
and 6(a) are listed in Table II along with the continuum model

TABLE III. Values of spring constant, bending modulus, reduced
cohesion, and gap stiffness used in Fig. 9(a).

kh Bw S G

200×103 231 645 0.086 7.092
160×103 185 316 0.108 8.906
120×103 138 987 0.144 11.875
80×103 92 658 0.216 13.194
60×103 69 493 0.288 23.749
40×103 46 329 0.432 35.624
28×103 32 430 0.617 50.879
24×103 27 797 0.720 59.373
20×103 23 164 0.864 71.247
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TABLE IV. Mapping from the coarse-grained model to contin-
uum model parameters used in Fig. 10(b) and throughout this article.

σ ε σeff/δ t γ ′′w K

2.0 0.874 0.145 2.343 116 413 19.467
1.95 0.881 0.141 2.344 122 441 20.4861
1.9 0.889 0.136 2.345 129 178 21.624
1.8 0.906 0.130 2.348 143 940 24.122
1.7 0.925 0.123 2.350 161 772 27.139
1.6 0.948 0.115 2.353 182 951 30.726
1.5 0.973 0.108 2.355 209 261 35.182
1.4 1.001 0.100 2.358 241 867 40.709
1.3 1.034 0.093 2.360 283 200 47.718
1.1 1.115 0.078 2.366 402 180 67.921
1.0 1.166 0.070 2.369 487 669 82.462
0.9 1.227 0.063 2.372 604 352 102.320
0.8 1.298 0.056 2.375 771 478 130.778
0.7 1.386 0.048 2.378 1 027 336 174.363
0.6 1.495 0.041 2.381 1 428 495 242.747
0.5 1.636 0.034 2.383 2 089 178 355.443
0.4 1.827 0.027 2.386 3 189 258 543.359

counterparts. Those used in Fig. 9(a) are listed in Table III.
Table IV lists a mapping between the coarse-grained inter-
action range σ and strength ε to various continuum model
parameters used in the creation of Fig. 10(b), and applies to all
instances of the coarse-grained model mentioned throughout
this article.

APPENDIX G: MEASURING COHESION
BETWEEN TWO FLAT PLATES

To measure the cohesive potential in the coarse-grained
model for a particular choice of the bead-bead interaction
range σ , we initialize two flat curvamers with a separation
distance �y between the curvamer midlines. We then perform
an energy minimization of this configuration with the con-
straint that all the forces on the beads are set to zero. This
allows LAMMPS to sum over the bead-bead interactions be-
tween curvamers and calculate the total energy for this
specific configuration in only one step as the minimized state

FIG. 16. The cohesive energy between two flattened coarse-
grained curvamers as calculated in simulations as a function of
center-center plate separation. The dashed black line represents the
harmonic approximation −γw + 1

2 γ ′′w(�y − t )2 at the minimum of
the potential well, which was determined by performing a parabolic
fit to points in the range t − 0.02σ to t + 0.02σ (red dashed lines).
The blue dots shown are for σeff/δ = 0.07.

is trivially the initial configuration. Crucially, we set the
preferred curvature and spring constants to zero so that the
energy measured is exclusively due to cohesive interactions.
In Fig. 16, we show the measured cohesive energy for a
range of midline separation distances �y. We utilize a golden-
section search to locate the minimum of the potential which
represents the curvamer thickness t to an accuracy of 10−3.
The value of the plate-plate interaction −γw = 1000 ε0 at its
minimum is kept constant for all choices of the bead-bead
interaction range σ , by choosing the appropriate bead-bead
strength ε.

Mapping from bead-bead potential variables ε and σ to
our dimensionless parameters G and K , requires the second
derivative of the plate-plate interaction at the minimum, γ ′′w.
To do these we fit a parabola to the interaction energy near the
minimum of the well with twenty evenly spaced separation
distances between t − 0.02σ and t + 0.02σ to obtain a value
of γ ′′w. As shown in Fig. 16, this provides a good harmonic
approximation (black dashed line) of the plate-plate interac-
tion near the minimum.
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