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Exact equilibrium properties of square-well and square-shoulder disks in single-file confinement
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This study investigates the (longitudinal) thermodynamic and structural characteristics of single-file confined
square-well and square-shoulder disks by employing a mapping technique that transforms the original system
into a one-dimensional polydisperse mixture of nonadditive rods. Leveraging standard statistical-mechanical
techniques, exact results are derived for key properties, including the equation of state, internal energy, radial
distribution function, and structure factor. The asymptotic behavior of the radial distribution function is explored,
revealing structural changes in the spatial correlations. Additionally, exact analytical expressions for the second
virial coefficient are presented. The theoretical results for the thermodynamic and structural properties are
validated by our Monte Carlo simulations.
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I. INTRODUCTION

The study of the thermodynamic and structural properties
of liquids whose particles interact via simple potentials has
been a field of interest for many years [1–8]. In this con-
text, “simple” refers to pairwise potentials that are relatively
straightforward and uncomplicated in form and mathematical
representation, involving basic functional forms. The primary
rationale behind this focus is to enable a profound understand-
ing of system behavior while retaining key realistic features
similar to those observed in actual fluids.

Within the realm of these elementary potentials, two that
stand out prominently are the square-well (SW) [8–12] and
square-shoulder (SS) [13–16] potentials. They are charac-
terized by an impenetrable hard core paired with either an
attractive well or a repulsive step. The SS potential is purely
repulsive and belongs to the family of the so-called core-
softened potentials, which have been widely used to study
metallic liquids [17] or water anomalies [18–22]. Conversely,
the SW potential comprises a repulsive hard core comple-
mented by an attractive well, making it suitable for modeling
more intricate fluids governed by competing interactions
[6,23].

Although bulk fluids of particles interacting with these
two potentials have been thoroughly studied using different
approaches, to the best of our knowledge, little is still known
about their behavior in confined geometries [24,25]. Confined
liquids manifest in diverse scenarios, spanning from biolog-
ical systems to material science. Unraveling the distinctions
in their properties compared to bulk liquids constitutes a piv-
otal stride toward comprehending their behavior in entirety
[26–29].

*Contact author: anamontero@unex.es
†Contact author: andres@unex.es

This paper focuses on highly confined SW and SS two-
dimensional (2D) systems, where the length of one of the
dimensions is much larger than that of the other one, the
latter being so small as to confine particles into single-file
formation. In such a scenario, the system can be treated as
quasi-one-dimensional (q1D) [25,30–50], and its most rele-
vant properties are the longitudinal ones.

Our study is motivated by experiments on confined q1D
colloidal liquids, which have revealed an attractive poten-
tial well within the effective colloid-colloid interactions [51].
Additionally, it is well established that effective electrostatic
interactions between colloids in colloid-nanoparticle mixtures
can be modeled with a hard-core plus a repulsive potential
[52].

In these circumstances, the advantage of using confined
SW and SS disks over more complex potentials becomes
clear. The significance of confined systems with exact solu-
tions is evident, as they not only facilitate a more profound
exploration of their physical properties, but also serve as a
reliable benchmark for assessing the accuracy of approximate
methods and computer simulations. This, in turn, enhances
their utility in studying more intricate systems [53–56].

While adapting the standard transfer-matrix method
(TMM) [34] to SW and SS potentials allows for the derivation
of thermodynamic quantities, obtaining structural properties
with the TMM is much more challenging. Due to this, we em-
ploy an exact mapping technique that transforms the system
into a one-dimensional (1D) polydisperse mixture of nonaddi-
tive rods with equal chemical potential [48,49]. This approach
differs from the approximate mapping proposed by Post and
Kofke [33] for the hard-disk and hard-sphere cases, where
“...the collision diameter of each pair of rods is given by the
arithmetic mean of their molecular diameters.”

The structure of our paper is the following: Section II
describes the confined system, along with its main proper-
ties, and establishes the equivalence between the confined
system and its 1D mixture counterpart. Section III presents
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FIG. 1. Schematic representation of (a) the SW potential and
(b) the SS potential.

the exact theoretical results for its main (longitudinal) ther-
modynamic and structural properties and a derivation of the
second virial coefficient and the Boyle temperature, while
Sec. IV is devoted to a brief description of our own Monte
Carlo (MC) simulations. In Sec. V, an analysis of all results is
presented, with information on the transverse density profile,
the equation of state, the internal energy, the radial distribution
function, and the structure factor. Finally, some concluding
remarks are provided in Sec. VI.

II. THE CONFINED SW AND SS FLUIDS

A. The 2D system

We consider a 2D system of N particles interacting via a
pairwise potential,

ϕ(r) =

⎧⎪⎨
⎪⎩

∞ if r < 1,

−ϕ0 if 1 < r < r0,

0 if r > r0,

(2.1)

where r0 is the range of interaction and, for simplicity, the
hard-core diameter of the particles defines the unit of length.
The sign of ϕ0 determines whether, in addition to the hard
core, the potential has an attractive corona (ϕ0 > 0, SW) or
a repulsive one (ϕ0 < 0, SS). A schematic representation of
both potentials is shown in Fig. 1. The depth of the well (ϕ0) or
the height of the shoulder (−ϕ0) allows us to define a reduced
temperature T ∗ = kBT/|ϕ0|, where T is the absolute tempera-
ture and kB is the Boltzmann constant. This ensures that T ∗
is always positive. An alternative definition, T ∗ = kBT/ϕ0,
would result in negative values in the SS case, which could
be confusing.

The particles are assumed to be confined in a very long
rectangular channel of width w = 1 + ε, where the excess
pore width (ε) is the available space for the particle cen-
ters, and length L � w. To avoid second-nearest-neighbor
interactions, for any given value of the corona diameter (r0),
the maximum value of the excess pore width is limited to

εmax =
√

1 − r2
0/4, as shown in Fig. 2. Under these condi-

tions, the channel is narrow enough to prevent the particles
from bypassing each other, forcing them into a single file.

FIG. 2. Schematic representation of the particles confined in a
narrow channel.

Note also that the particles interact with the walls only through
the hard core diameter.

In general, if two particles α and α′ are in close con-
tact (i.e., rαα′ = 1) with a transverse separation |yα − yα′ |
between their centers, their longitudinal separation is |xα −
xα′ | = a(yα − yα′ ), where

a(�y) ≡
√

1 − �y2. (2.2)

Similarly, if the coronas of two particles are in contact (i.e.,
rαα′ = r0), then |xα − xα′ | = b(yα − yα′ ), where

b(�y) ≡
√

r2
0 − �y2. (2.3)

Due to the high anisotropy between the transverse and lon-
gitudinal directions of this system, it is often useful to focus
on its longitudinal properties, such as the number of particles
per unit length, λ ≡ N/L [57], the longitudinal pressure P‖ and
the reduced pressure p = εP‖. Note that there exists a close-
packing density, λcp = 1/a(ε), at which pressure diverges.

For a given corona diameter r0, the control parameters can
be chosen as the excess pore width ε, the reduced temperature
T ∗, and the linear density λ (or, equivalently, the product βp,
where β ≡ 1/kBT ). In the high-temperature limit (T ∗ → ∞),
the attractive or repulsive corona becomes irrelevant and thus
the system reduces to a pure hard-disk (HD) fluid, which
has been well studied [29–49]. To make this property more
explicit, suppose that X is a quantity of dimensions (length)m;
then,

lim
T ∗→∞

X SW(λ, T ∗; r0, ε) = lim
T ∗→∞

X SS(λ, T ∗; r0, ε)

= X HD(λ; ε). (2.4)

In the opposite low-temperature limit (T ∗ → 0), the SS parti-
cles become equivalent to HDs of diameter r0; therefore,

lim
T ∗→0

X SS(λ, T ∗; r0, ε) = rm
0 X HD(λr0; ε/r0). (2.5)

B. Equivalent 1D system

In Appendix A, we argue that the properties of the confined
2D system described in Sec. I can be exactly matched to
those of an equivalent 1D polydisperse mixture, where the
transverse coordinate of each particle, −ε/2 < y < ε/2, plays
the role of the dispersity parameter, and where the chemical
potential of all components of the mixture is the same. While
the original application of this equivalence was in the context
of a HD fluid [48,49], it can be readily extended to any
interaction potential ϕ(r), with the caveat that interactions are
constrained to nearest neighbors.
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Although the equivalence holds precisely when the 1D
mixture features a continuous distribution of components,
practical considerations often demand the discretization of
the system for numerical computations. Therefore, it usu-
ally proves more pragmatic to examine a 1D mixture with a
discrete but adequately large number of components, M, to ac-
curately characterize the system. The theoretical expressions
valid for the original continuous case can then be derived by
considering the limit M → ∞.

In this discrete M-component mixture, each 1D compo-
nent, indexed as i = 1, 2, . . . , M, corresponds to a mapping
of 2D particles with a transverse coordinate,

yi = −ε

2
+ (i − 1)δy, δy ≡ ε

M − 1
. (2.6)

In turn, the 2D interaction potential ϕ(r) translates into the 1D
potential

ϕi j (x) = ϕ(
√

x2 + (yi − y j )2)

=

⎧⎪⎨
⎪⎩

∞ if x < ai j,

−ϕ0 if ai j < x < bi j,

0 if x > bi j,

(2.7)

where

ai j ≡ a(yi − y j ), bi j ≡ b(yi − y j ). (2.8a)

Within this framework, one can precisely ascertain the
properties of the 1D mixture and directly map them back onto
the original 2D system.

III. EXACT SOLUTION

Most of the properties of 1D mixtures are derived in the
isothermal-isobaric ensemble and can be described through
the Laplace transform of the Boltzmann factor [58],

	i j (s, β ) =
∫ ∞

0
dx e−sxe−βϕi j (x), (3.1)

which, in the case of the 1D mixture described by Eq. (2.7),
yields

	i j (s, β ) = eβ∗

s
[e−ai j s − (1 − e−β∗

)e−bi j s]. (3.2)

Here, β∗ ≡ βϕ0. Note that β∗ = 1/T ∗ > 0 for SW but β∗ =
−1/T ∗ < 0 for SS. This way, henceforth, all expressions in-
volving β∗ apply equally to both SW and SS cases.

In the standard theory of liquid mixtures, mole fractions
are considered pre-determined thermodynamic variables. Yet,
in the 1D mixture under consideration, the requirement for
identical chemical potentials imposes specific conditions on
the values of the mole fractions for each component. Let φ2

i
denote the mole fraction of component i. Then, the set {φi} is
obtained by solving the eigenvalue equation∑

j

	i j (βp, β )φ j = 1

A2
φi, (3.3)

where A is a quantity directly related to the chemical potential
as βμ = ln(A2�dB), �dB = √

β/2πmh being the thermal de
Broglie wavelength.

While Eqs. (3.1) and (3.3) emerge autonomously from the
polydisperse 1D framework [49], they turn out to coincide
with the results one would obtain by applying the TMM. In the
latter context, the Laplace transform of the Boltzmann factor
evaluated at s = βp, 	i j (βp, β ), is not but the i j element of
the transfer matrix.

A. Thermodynamic properties

Two of the paramount thermodynamic quantities essential
for computation in any equilibrium system are the equa-
tion of state and the excess internal energy per particle. The
equation of state establishes a connection between pressure,
density, and temperature, while the excess internal energy per
particle encompasses the potential energy per particle (which,
combined with the ideal-gas kinetic energy uid = 1

2 kBT , con-
tributes to the overall internal energy per particle).

In general terms, the compressibility factor, Z ≡ βp/λ, and
the excess internal energy per particle, uex, of any given 1D
mixture with equal chemical potentials are given by [58]

Z = −A2βp
∑
i, j

φiφ j

[
∂	i j (βp, β )

∂βp

]
β

, (3.4a)

uex = −A2
∑
i, j

φiφ j

[
∂	i j (βp, β )

∂β

]
βp

. (3.4b)

Using Eq. (3.2), Eqs. (3.4) become

Z = 1 + A2eβ∗ ∑
i, j

φiφ j

× [ai je
−βpai j − bi j (1 − e−β∗

)e−βpbi j ], (3.5a)

uex

ϕ0
= −1 + A2

βp

∑
i, j

φiφ je
−βpbi j , (3.5b)

where we have used Eq. (3.3) and the normalization condition∑
i φ

2
i = 1.

B. Structural properties

Contrary to thermodynamic properties, which relate to the
global quantities of the system, structural properties are pri-
marily concerned with the arrangements and configurations
of the particles. The key advantage of the 1D mapping over
the TMM lies precisely in its ability to access these structural
properties. The fundamental structural property that can be ex-
amined is the (longitudinal) radial distribution function (RDF)
gi j (x), which, in Laplace space, is given by [49]

G̃i j (s) =
∫ ∞

0
dx e−sxgi j (x)

= A2

λφiφ j
[Ω(s + βp) · [I − A2Ω(s + βp)]−1]i j, (3.6)

where Ω is the M × M matrix of elements 	i j and I is the
unit matrix. Henceforth, for enhanced clarity, we will omit the
second argument (β) in 	i j .

The RDF in real space can be obtained by performing
the inverse Laplace transform on Eq. (3.6). The structure of
the analytical form of gi j (x) is presented in Appendix B. At
a practical level, we have used Eq. (B2) for x � 3a(ε). For
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x > 3a(ε), however, we have found preferable to invert G̃i j (s)
numerically [59]. Once the partial RDFs gi j (x) are known, the
total RDF is obtained as

g(x) =
∑
i, j

φ2
i φ

2
j gi j (x). (3.7)

The structure factor is another pivotal quantity that, al-
though conveying the same physical information as the RDF,
can be experimentally accessed through diffraction experi-
ments. The 1D structure factor is directly linked to the Fourier
transform of the total correlation function h(x) ≡ g(x) − 1,

S(q) = 1 + 2λ

∫ ∞

0
dx cos(qx)h(x). (3.8)

In our scheme, this is equivalent to

S(q) = 1 + λ[G̃(s) + G̃(−s)]s=ıq, (3.9)

where G̃(s) = ∑
i, j φ

2
i φ

2
j G̃i j (s) and ı is the imaginary unit.

C. Compressibility factor in terms of the RDF

For an arbitrary (nearest-neighbor) interaction potential
ϕi j (x), the compressibility factor Z is given by Eq. (3.4a),
while the RDF g(x) is given by Eqs. (3.6) and (3.7). In both
cases one first needs to evaluate the Laplace transform 	i j (s).
The interesting question is, can one express Z directly in
terms of density and integrals involving g(x)? An affirmative
response can be found in Appendix C, with the outcome

Z =
1 − λ

∫ r0

a(ε) dx g(x)

1 − λ
[
r0 − λ

∫ r0

a(ε) dx (r0 − x)g(x)
] . (3.10)

Equation (3.10), which generalizes Eq. (2.13) of Ref. [25], can
be conveniently employed in NVT simulations.

D. Continuous polydisperse mixture

To take the continuum limit, let us define the transverse
density profile of the original 2D system by φ2(yi ) = φ2

i /δy,
as well as the parameter � = (βp/A2)δy. Also, Eq. (3.2) can
be written as

	(y, y′; s) = eβ∗

s

[
e−a(y−y′ )s − (1 − e−β∗

)e−b(y−y′ )s]. (3.11)

Now, taking the limit M → ∞ (which implies δy → 0),
Eqs. (3.3) and (3.5) become∫

ε

dy′ 	(y, y′; βp)φ(y′) = �

βp
φ(y), (3.12a)

Z = 1 + βp

�
eβ∗

∫
ε

dy
∫

ε

dy′ [a(y − y′)e−βpa(y−y′ )

− b(y − y′)(1 − e−β∗
)e−βpb(y−y′ )]φ(y)φ(y′),

(3.12b)

uex

ϕ0
= −1 + 1

�

∫
ε

dy
∫

ε

dy′ e−βpb(y−y′ )φ(y)φ(y′). (3.12c)

Here, we have adopted the notation convention
∫
ε

dy · · · ≡∫ ε
2

− ε
2

dy · · · .

In what concerns the structural properties, let us first
rewrite Eq. (3.6) in the equivalent form

φ j G̃i j (s)

A2
= 	i j (s + βp)

λφi
+

∑
k

φkG̃ik (s)	k j (s + βp),

(3.13)
and define g(yi, y j ; x) = gi j (x) in real space and G̃(yi, y j ; s) =
G̃i j (s) in Laplace space. Then, in the limit M → ∞ we get the
following linear integral equation of the second kind,

�φ(y′)G̃(y, y′; s)

βp
=	(y, y′; s + βp)

λφ(y)
+

∫
ε

dy′′ φ(y′′)

× G̃(y, y′′; s)	(y′′, y′; s + βp). (3.14)

In turn, Eq. (3.7) becomes

g(x) =
∫

ε

dy
∫

ε

dy′ φ2(y)φ2(y′)g(y, y′; x). (3.15)

Note that Eq. (3.10) is still applicable in the continuum
limit.

It is noteworthy that, within the TMM framework, the
physical � in Eq. (3.12a) is the largest eigenvalue. The second
largest eigenvalue (in absolute value), �1, provides valuable
insights into transverse correlations among nth neighbor par-
ticles [38]. Let us consider a reference particle 0 with a
transverse coordinate y0. The transverse correlation function
〈y0yn〉, where yn is the transverse coordinate of the nth neigh-
bor, is expected to be negative (positive) for odd (even) n
and to asymptotically decay exponentially with n: 〈y0yn〉 ∼
(−1)ne−n/ξ⊥ . Here, ξ⊥ = 1/ ln |�/�1| is the transverse corre-
lation degree [60], a dimensionless quantity measuring the
number of neighbors after which transverse positions become
uncorrelated. In the equivalent polydisperse 1D framework,
ξ⊥ quantifies the decay of correlations between the identities
(or “species”) of nth-neighbor particles.

E. Asymptotic behavior of the RDF

The asymptotic behavior of g(y, y′; x) is related to the
nonzero poles, {sn}, of G̃(y, y′; s) and their associated residues.
In general,

g(y, y′; x) = 1 +
∞∑

n=1

An(y, y′)esnx, (3.16a)

An(y, y′) ≡ Res[G̃(y, y′; s)]sn

=
[

∂

∂s

1

G̃(y, y′; s)

]−1

s=sn

. (3.16b)

The asymptotic decay of the total correlation function
h(y, y′; x) ≡ g(y, y′; x) − 1 is then determined by either the
nonzero real pole s = −κ or the pair of conjugate poles −κ ±
ıω with the smallest value of κ . In this framework, ξ = κ−1

represents the correlation length, measuring the scale of decay
of the correlation function h(y, y′; x) [61]. If the dominant
poles are complex, ω represents the asymptotic oscillation
frequency and one has

h(y, y′; x) ≈ 2|A(y, y′)|e−κx cos(ωx + δ), (3.17)

for asymptotically large values of x, where A(y, y′) =
|A(y, y′)|e±ıδ is the complex residue. Equation (3.17)
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describes an oscillatory decay of h(y, y′; x). If, however, the
dominant pole is real (i.e., ω = 0), then

h(y, y′; x) ≈ A(y, y′)e−κx, (3.18)

where the residue A(y, y′) is also a real number and therefore
the asymptotic decay is purely monotonic.

F. Second virial coefficient

In the low-density (or low-pressure) regime, the compress-
ibility factor can be expressed as

Z = 1 + B2λ + O(λ2)

= 1 + B2βp + O(βp2), (3.19)

where B2 is the second virial coefficient.
In general, the behavior of 	(y, y′; s) for small s is of the

form

	(y, y′; s) = s−1 + �(y, y′) + O(s), (3.20)

where �(y, y′) does not need to be specified at this stage. By
following steps analogous to those in Appendix B of Ref. [48],
one can prove that the low-pressure solution to the eigenvalue
problem in Eq. (3.12a) is

φ(y) = 1√
ε

[1 + φ1(y)βp + O(βp2)], (3.21a)

� = ε[1 − B2βp + O(βp2)], (3.21b)

where

φ1(y) = B2 + 1

ε

∫
ε

dy′ �(y, y′), (3.22a)

B2 = − 1

ε2

∫
ε

dy
∫

ε

dy′ �(y, y′). (3.22b)

In the particular case of the SW or SS potentials, from
Eq. (3.11) we can easily identify the function �(y, y′) as

�(y, y′) = −eβ∗
a(y − y′) + (eβ∗ − 1)b(y − y′). (3.23)

Insertion into Eq. (3.22b) yields

B2(T ∗; r0, ε) = eβ∗
BHD

2 (ε) − (eβ∗ − 1)r0BHD
2 (ε/r0), (3.24)

where

BHD
2 (ε) = 2

3

(
1 + ε2

2

)√
1 − ε2 − 1

ε2
+ sin−1(ε)

ε
(3.25)

is the second virial coefficient of the confined
HD fluid. As expected from Eqs. (2.4) and (2.5),
limT ∗→∞ BSW

2 (T ∗; r0, ε)= limT ∗→∞ BSS
2 (T ∗; r0, ε)=BHD

2 (ε)
and limT ∗→0 BSS

2 (T ∗; r0, ε) = r0BHD
2 (ε/r0).

In the SS case (β∗ < 0), the second virial coefficient is pos-
itive definite. However, in the SW case (β∗ > 0), it changes
from negative to positive values as temperature increases; the
temperature at which BSW

2 = 0 defines the Boyle temperature

T ∗
B = − 1

ln
[
1 − BHD

2 (ε)/r0BHD
2 (ε/r0)

] . (3.26)

At fixed r0, T ∗
B increases as ε increases from ε = 0 to ε =

εmax =
√

1 − r2
0/4.

The thermodynamic Maxwell relation βp(∂u/∂βp)β =
(∂Z/∂β )βp allows us to obtain uex/ϕ0 = (∂B2/∂β∗)βp +
O(βp2). From Eq. (3.25) we get ∂B2/∂β∗ =
−eβ∗

[r0BHD
2 (ε/r0) − BHD

2 (ε)].
It is known that truncation of the virial series in powers of

pressure is much more accurate than truncation of the series
in powers of density [48,62]. Thus, truncating at the order
of the second virial coefficient in the expansion in powers of
pressure yields the following approximate equations,

Z ≈ 1

1 − B2λ
,

uex

ϕ0
≈ (∂B2/∂β∗)λ

1 − B2λ
. (3.27)

IV. MONTE CARLO SIMULATIONS

To test the theoretical results presented in Sec. III for the
thermodynamic properties (compressibility factor and internal
energy), we have performed isothermal-isobaric (NPT) MC
simulations on the original 2D confined system, in which the
excess pore width ε and the longitudinal pressure p are kept
fixed but the longitudinal length L fluctuates. For the investi-
gation of structural properties, we found it more convenient to
employ canonical (NVT) MC simulations.

We have checked the equivalence of results between the
NVT and NPT ensembles for both thermodynamic and struc-
tural properties, as well as the consistency with the NVT MC
data reported in Ref. [25]. Whereas NVT simulations do not
provide direct access to the equation of state, the compress-
ibility factor can be computed from g(x) through Eq. (3.10).
Nevertheless, from a practical point of view, the values of Z
computed in this manner for large densities become extremely
sensitive to numerical errors in the evaluation of the integrals∫ r0

a(ε) dx g(x) and
∫ r0

a(ε) dx (r0 − x)g(x) [25], which makes the
NPT ensemble much more suitable to compute the equation of
state.

In general, 107 samples were collected from a system with
102 particles, after an equilibration process of at least 107

configurations and with an acceptance ratio of roughly 50%.

V. RESULTS

As shown in Sec. II A, a SW or SS interaction potential
of range r0 sets the maximum value of the excess pore width

to εmax =
√

1 − r2
0/4. The two limiting cases for these values

correspond to the pure 1D system (r0 = 2, ε = 0) and to the
confined HD fluid (r0 = 1, ε = √

3/2 � 0.866), both of them
already studied exactly in the literature [34,48,49,58,63].

As a compromise between introducing a nonnegligible
corona and, at the same time, departing from the pure 1D
system, we have chosen the values r0 = 1.2 and ε = εmax =
0.8, in which case λcp � 1.67. The open-source C++ code
employed to obtain the results in this section is available for
access through Ref. [64].

An observation is worth mentioning. When delving into the
theoretical expressions presented in Secs. III A and III B, it be-
comes imperative to assign a finite value to M. As emphasized
in Ref. [48], opting for M = 251 typically proves sufficiently
large to render finite-M effects practically negligible. Con-
versely, to eliminate any potential impact of a finite M, we
systematically computed the relevant quantities for various
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FIG. 3. Plot of (a) Z and (b) g(1) versus 1/M for T ∗ = 1 (circles)
and T ∗ = 5 (squares), in both cases with λ = 1. The lines (solid for
SW and dashed for SS) are linear fits to the numerical data. The open
symbols at 1/M denote the extrapolations to M → ∞.

M values (specifically, M = 51, 101, 151, 201, 251), modeled
them as linear functions of 1/M, and ultimately approached
the limit 1/M → 0 in the extrapolations. This procedure is
illustrated in Fig. 3 for Z and g(1) at T ∗ = 1 and 5 with λ = 1.
As observed, the local values of the RDF are notably more
sensitive to finite M than the thermodynamic quantities.

A. Transverse density profile

The transverse density profile φ2(y), computed from
Eq. (3.12a), is shown in Fig. 4 for both potentials at differ-
ent densities and temperatures. In general, the density profile
tends to be almost uniform at low densities, but becomes
more abrupt, with more particles near the walls and fewer
in the center of the pore, as the density increases. As close
packing is approached, all particles tend to arrange in a zigzag
configuration at both the top and bottom walls of the channel.
Figure 4(a) shows that, at low temperatures and medium or
high densities, the profiles are sharper in the case of the SS
potential, where the excluded volume effects are more dom-
inant. At high temperatures, however, SW and SS fluids are
nearly equivalent, as both behave essentially like HD fluids.

B. Equation of state and excess internal energy

The compressibility factor, Eq (3.12b), for different tem-
perature values is shown in Fig. 5(a). In the SW case, due to

FIG. 4. Transverse density profiles at λ = 0.6, 1.0, 1.1, and 1.2
(from top to bottom in the region near y = 0) for (a) T ∗ = 0.3
and (b) T ∗ = 5.0. Solid and dashed lines represent the SW and SS
systems, respectively. Symbols (closed for SW, open for SS) are MC
simulation results.

FIG. 5. (a) Compressibility factor and (b) excess internal energy
as functions of density at different representative temperatures for
SW (solid lines) and SS (dashed lines) potentials. The black dotted
lines represent the limit at infinite temperature (HD fluid with a
hard-core diameter of 1 and an excess pore width of ε = 0.8), while
the black dash-dotted line in panel (a) represents the limit of the SS
fluid at zero temperature (HD fluid with a diameter of r0 = 1.2 and
an excess pore width ε/r0 � 0.67). The temperatures are (from top
to bottom in the SS case and from bottom to top in the SW case)
(a) T ∗ = 0.1, 0.3, 0.5, 1.0, and 5.0, and (b) T ∗ = 0.3, 0.5, 1.0, and
5.0. Symbols represent MC simulation results.

the attractive part of the potential, there exists a range of tem-
peratures, 0 < T ∗ < T ∗

B � 0.59 [see Eq. (3.26)], for which
Z < 1 at low densities, whereas Z > 1 is always fulfilled for
every value of temperature and density in the SS case.

In agreement with Eq. (2.4), in the limit T ∗ → ∞, both
SW and SS fluids recover the equation of state of a con-
fined HD fluid of unit diameter and pore width ε = 0.8, as
can be observed in Fig. 5(a). As expected, at high densities
and a nonzero temperature, the compressibility factor of both
systems tends to that of a HD fluid, with Z diverging at
λ = λcp � 1.67. It is also observed that, in agreement with
Eq. (2.5), in the SS case at zero temperature (T ∗ → 0) we also
recover the solution of a confined HD system, where the disks
have a hard-core diameter r0 = 1.2, the excess pore width
is ε/r0 � 0.67, and the density is λr0 = 1.2λ. Therefore, in
the limit T ∗ → 0, the compressibility factor of the SS fluid
does not diverge at λcp = 1/a(ε) � 1.67, but at a smaller
value λ′

cp = 1/r0a(ε/r0) = 1/b(ε) � 1.12. If T ∗ is small but
nonzero, as is the case with T ∗ = 0.1 in Fig. 5(a), the SS
compressibility factor is practically indistinguishable from
that at zero temperature for densities smaller than λ′

cp � 1.12.
However, for higher densities, the curve deviates from the
zero-temperature one and diverges at the true close-packing
value λcp � 1.67.

The excess internal energy per particle, as derived from
Eq. (3.12c), is shown in Fig. 5(b) in units of ϕ0 for both
the SW potential, where uex is always negative due to the
attractive well (ϕ0 > 0), and for the SS potential, where it is
always positive (ϕ0 < 0). As density increases, uex/ϕ0 tends
to −1 since the coronas of neighbor particles are overlapped
in the high-density regime. This effect is more pronounced
for lower temperatures in the SW case. In contrast, it is more
accentuated for higher temperatures in the SS case because
overpassing the repulsive barrier requires high enough tem-
peratures. The black dotted line in Fig. 5(b) actually represents
a nominal excess energy for a HD fluid since it is obtained
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FIG. 6. (a) Transverse correlation degree as a function of density
at different representative temperatures for SW (solid lines) and SS
(dashed lines) potentials. The black dotted line represents the limit
at infinite temperature (HD fluid with a hard-core diameter of 1 and
an excess pore width of ε = 0.8), while the black dash-dotted line
represents the limit of the SS fluid at zero temperature (HD fluid
with a diameter of r0 = 1.2 and an excess pore width ε/r0 � 0.67).
The temperatures are (from top to bottom in the SS case and from
bottom to top in the SW case) T ∗ = 0.1, 0.3, 1.0, and 5.0. Symbols
represent MC simulation results. (b) Illustration of the evaluation of
ξ⊥ in simulations from the slope of |〈y0yn〉| (in logarithmic scale)
vs n.

from Eq. (3.12c) by using the HD eigenvalue � and eigenfunc-
tion φ(y), even though b(�y) keeps being defined by Eq. (2.3).

While not included in Fig. 5, we have checked that, de-
spite their simplicity, the approximations given by Eq. (3.27)
perform generally well for low to moderate densities. For
instance, at λ = 0.5, the relative deviations in the SW (SS)
compressibility factor are 99% (0.6%), 57% (1%), 27% (1%),
8% (2%), and 0.2% (1%) for T ∗ = 0.1, 0.3, 0.5, 1, and 5,
respectively. The respective deviations in the excess internal
energy are 1% (12%), 29% (11%), 33% (8%), 25% (1%),
and 13% (8%). Note that the large deviations in Z for the
low-temperature SW fluid are due to the small values of Z
at λ = 0.5, specifically Z = 0.030 and Z = 0.69 for T ∗ = 0.1
and 0.3, respectively.

C. Transverse correlation degree

The transverse correlation degree ξ⊥ is plotted in Fig. 6(a)
as a function of the linear density at T ∗ = 0.1, 0.3, 1.0, and
5.0. Figure 6(b) illustrates the behavior of |〈y0yn〉| and the
evaluation of ξ⊥ in our MC simulations.

At a given density, ξ⊥ increases with increasing tempera-
ture in the SW case, while the opposite trend is present in the
SS case. In the limit T ∗ → ∞ both the SW and SS curves
collapse to the curve corresponding to the HD interaction,
while a related collapse occurs in the limit T ∗ → 0 for the
SS fluid. We observe that ξ⊥ < 0.3 if λ < 0.5. This indicates
that the transverse coordinates of first-neighbor particles are
minimally correlated within this regime. However, ξ⊥ rapidly
increases with increasing density, indicating that the trans-
verse positions of distant neighbors become progressively
more correlated.

FIG. 7. Total RDF for the SW fluid at different temperatures for
several values of density: (a) λ = 0.6, (b) λ = 1.0, (c) λ = 1.1, and
(d) λ = 1.2. Symbols are MC simulation results.

D. Radial distribution function

1. Total RDF

The RDF is one of the most important structural quantities
in any system, as it measures how the local density around a
reference particle varies with distance.

In Fig. 7, the total RDF for the SW potential is illustrated
across varying densities and temperatures. Notably, at lower
densities, temperature emerges as a key factor influencing
the amplitude of the oscillations. However, this dependency
diminishes substantially at higher densities, where the RDF
undergoes minimal alteration with temperature variations,
resembling closely the RDF of the HD fluid at equivalent
density. The positions of the minima and maxima are partic-
ularly influenced by density but exhibit minimal sensitivity to
temperature changes. Specifically, our observations indicate
that the first peak occurs around x = 1 at λ = 0.6 and λ =
1.0, while a local maximum emerges near x = a(ε) = 0.6 at
λ = 1.1. Notably, this local maximum becomes the absolute
maximum at λ = 1.2.

For the SS potential, the RDF is presented in Fig. 8, with
the same densities and temperatures as depicted in Fig. 7. Due
to the repulsive nature of the potential, temperature plays a
larger role in the position of the peaks than in the SW case, es-
pecially at low densities (λ = 0.6), where the first peak shifts
from x = r0 = 1.2 to x = 1.0 with increasing temperature. At
higher densities, lower temperatures result in a significantly
less ordered structure. For λ = 1.0 and T ∗ = 5.0, the peak
of g(x) is located at x ≈ 1. However, at lower temperatures
(T ∗ = 1.0 and T ∗ = 0.3), a secondary peak appears near
x = a(ε) ≈ 0.6. When the density is increased to λ = 1.1, the
peak at x ≈ a(ε) becomes more prominent, while the peak
at x ≈ 1 becomes secondary and then disappears at λ = 1.2,
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FIG. 8. Total RDF for the SS fluid at different temperatures for
several values of density: (a) λ = 0.6, (b) λ = 1.0, (c) λ = 1.1, and
(d) λ = 1.2. Symbols are MC simulation results.

except if T ∗ = 0.3. This phenomenology is consistent with
the observation that, as density increases, the structural prop-
erties of the SW and SS fluids progressively resemble those
of the HD fluid. This tendency is more pronounced at higher
temperatures.

2. Partial RDFs

In contrast to the total RDF, partial RDFs describe spatial
correlations between particles at fixed transverse coordinates.
Out of all possible partial RDFs, g(y, y′; x), the most interest-
ing ones correspond to y, y′ = ± ε

2 , that is,

g++(x) ≡ g
(ε

2
,
ε

2
; x

)
= g

(
−ε

2
,−ε

2
; x

)
, (5.1a)

g+−(x) ≡ g
(ε

2
,−ε

2
; x

)
= g

(
−ε

2
,
ε

2
; x

)
. (5.1b)

While g++(x) encodes spatial correlations between two par-
ticles both located at the top (or bottom) part of the channel,
g+−(x) measures the spatial correlations between a particle
in contact with one wall and a particle in contact with the
opposite wall. Note that near close packing, all particles are
very close to the walls, so that g(x) � 1

2 [g++(x) + g+−(x)].
Figures 9 and 10 show g++(x) and g+−(x) for the SW

and SS potentials, respectively, at the same temperatures and
densities as in Figs. 7 and 8. We have included MC simulation
data for the density λ = 1.2 only because, for λ � 1.1, the
accumulation of particles at the walls is not high enough (see
Fig. 4) to ensure good statistics in the evaluation of g++(x)
and g+−(x). In both classes of potentials, g++(x) = 0 if x < 1
and g+−(x) = 0 if x < a(ε) = 0.6, as expected. Also in both
cases, the disappearance of the peak in g++(1+) when den-
sity is increased is directly related to the disappearance of
defects in the zigzag structure that arises in the close-packing

FIG. 9. Partial RDFs g++(x) (solid lines) and g+−(x) (dashed
lines) for the SW fluid at different temperatures for several values of
density: (a) λ = 0.6, (b) λ = 1.0, (c) λ = 1.1, and (d) λ = 1.2. Sym-
bols in panel (d) are MC simulation results. Note that the oscillations
tend to become more pronounced as T ∗ decreases.

FIG. 10. Partial RDFs g++(x) (solid lines) and g+−(x) (dashed
lines) for the SS fluid at different temperatures for several values of
density: (a) λ = 0.6, (b) λ = 1.0, (c) λ = 1.1, and (d) λ = 1.2. Sym-
bols in panel (d) are MC simulation results. Note that the oscillations
tend to become more pronounced as T ∗ decreases.
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FIG. 11. Plot of (a) the inverse correlation length and (b) the
oscillation frequency as functions of density at different temperatures
for the SW fluid.

configuration [49]. In fact, we have checked that at λ = 1.5 =
0.90λcp (not shown in Figs. 9 and 10), the functions g++(x)
and g+−(x) are hardly distinguishable from those of a HD
fluid, as displayed in Fig. 6 of Ref. [49].

3. Asymptotic behavior

As elaborated in Sec. III E, the large-x asymptotic behavior
of the RDF is determined by the dominant poles of G̃(y, y′; s).
To obtain them, we have started from the discrete version with
finite M [see Eq. (3.6)] and found the zeros of det[I − A2Ω(s +
βp)] closest to the imaginary axis. Then, the limit M → ∞
was taken by following the extrapolation method illustrated in
Fig. 3.

Figures 11 and 12 show the evolution of the values of κ

and ω associated with the leading pole as functions of den-
sity. The inverse correlation length, κ , is always continuous
but the oscillation frequency, ω, does present discontinuous
jumps that correspond to structural changes. In the case of the
SW potential [see Fig. 11(b)], as density increases for very
low temperatures (T ∗ = 0.1 and 0.3), a first discontinuous
jump from ω = 0 to ω �= 0 represents a Fisher–Widom tran-
sition [63] from monotonic to oscillatory decay of h(y, y′; x)
[see Eqs. (3.18) and (3.17)]. Although not apparent on the
scale of Fig. 11(b), this transition persists at very low den-
sities for higher temperatures (e.g., T ∗ = 1 and T ∗ = 5). The
Fisher–Widom transition from monotonic to damped oscilla-
tory decay signals a competition between the attractive and
repulsive parts of the interaction [65,66]. Consequently, this

FIG. 12. Plot of (a) the inverse correlation length and (b) the
oscillation frequency as functions of density at different temperatures
for the SS fluid.

FIG. 13. Phase diagram for the SW fluid on the plane T ∗ vs λ.
The circles represent the states considered in Fig. 14.

transition is absent in the SS fluid, regardless of temperature.
However, a jump from a higher frequency ωI to a smaller
nonzero frequency ωII takes place at λ ≈ 1 for any tempera-
ture and both types of interaction. The latter transition reflects
a competition between the two distance scales (1 and r0) in
the interaction potential, as described in Eq. (2.1).

The abrupt shifts in ω stem from the crossing of two com-
peting poles with identical real parts, leading to distinctive
kinks in κ . At the density λ ≈ 1 where the transition ωI ↔ ωII

occurs and κ exhibits a kink, the asymptotic behavior of
h(y, y′; x) is of the form ∼e−κx[cos(ωIx + δI ) + C cos(ωIIx +
δII )], where C is the ratio between the two amplitudes. Analo-
gously, at the Fisher–Widom transition ω = 0 ↔ ω �= 0 in the
SW case, one has h(y, y′; x) ∼ e−κx[cos(ωx + δ) + C]. How-
ever, these transitions and kinks of κ do not manifest in the
thermodynamic quantities.

The phase diagram illustrating the types of asymptotic
decay of h(y, y′; x) for the SW fluid is presented in Fig. 13.
Three distinct regions can be discerned on the T ∗ vs λ plane.
For densities less than λ � 0.9612 and sufficiently low tem-
peratures, the decay is exclusively monotonic, owing to the
prevailing influence of the attractive part of the interaction
potential. This region is demarcated from the oscillatory de-
cay region by the Fisher–Widom line [63]. Subsequently, the
oscillatory decay region is partitioned into two subregions
by a crossover line [67]. Upon traversing this crossover line
with increasing density, the oscillation frequency undergoes
a sudden transition from a value ωI ≈ 2π � 6.3 (oscillatory
region I) to a smaller value ωII ≈ 4 (oscillatory region II),
mirroring the behavior observed in the HD case [49].

The transition between oscillatory regions I and II occur-
ring at λ ≈ 1 may be linked to recent discussions about the
critical role of this value [50]. At a given excess pore width
ε > 0, configurations can be strictly linear if λ < 1, whereas
configurations must exhibit a certain zigzag ordering if λ > 1.
This might explain the sudden change in oscillation frequency
at λ ≈ 1.

To corroborate the insights obtained from the leading-
pole analysis as applied to the SW case, Fig. 14 juxtaposes
the complete total correlation function h++(x) with its
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FIG. 14. Plot of h++(x) for the SW fluid with T ∗ = 0.1 and
(a) λ = 0.5, (b) λ = 1.05, and (c) λ = 1.15 (see circles in Fig. 13).
The solid lines correspond to the full functions, while the dashed
lines represent the asymptotic behaviors [see Eqs. (3.17) and (3.18)].

asymptotic expressions derived from Eqs. (3.17) and (3.18).
The comparison is conducted for three particular states identi-
fied with circles in Fig. 13, specifically T ∗ = 0.1 and λ = 0.5,
1.05, and 1.15. The convergence of the complete functions
to the anticipated asymptotic forms for extended distances
is evident. In instances of asymptotic monotonic decay, as
illustrated in Fig. 14(a), the agreement necessitates a more
extended range of distances compared to cases where the
decay exhibits oscillations, whether with a higher frequency
[Fig. 14(b)] or a lower frequency [Fig. 14(c)].

As mentioned earlier, the purely repulsive SS system lacks
a FW line but exhibits crossover transitions between two
distinct oscillation frequencies (see Fig. 12). The crossover
lines for the SW and SS fluids are presented in Fig. 15.
With increasing temperature, both lines converge toward the
crossover density (λ = 1.016) of the HD fluid with a unit
diameter and the same excess pore width ε = 0.8, consistent
with the general property indicated by Eq. (2.4). Additionally,

FIG. 15. Structural crossover lines delineating transitions be-
tween two distinct oscillation frequencies (oscillatory regions I
and II) are depicted for the SW fluid (right curve) and SS fluid
(left curve). The dashed and dash-dotted vertical lines indicate
the crossover densities at λ = 1.016 and λ = 1.060/r0 = 0.883,
respectively, corresponding to two confined HD fluids: HD (1), char-
acterized by a hard-core diameter of 1 and an excess pore width of
ε = 0.8, and HD (r0), with a diameter of r0 = 1.2 and an excess pore
width ε/r0 � 0.67.

FIG. 16. Structure factor at different temperatures and for den-
sities (a, c) λ = 0.6 and (b, d) λ = 1.2. Panels (a, b) pertain to the
SW fluid, while panels (c, d) pertain to the SS fluid. Symbols are MC
simulation results.

at the opposite low-temperature limit, the SS line terminates
at λ = 1.060/r0 = 0.883, aligning with the expected value
for a HD system comprising particles with a diameter of
r0 = 1.2 and an excess pore width ε/r0 � 0.67, as predicted
by Eq. (2.5).

We have observed that, in the high-density regime, the
asymptotic oscillations of h++(x) and h+−(x) are out of phase
by half a wavelength. As a consequence the asymptotic be-
havior of h(x) is governed by the subdominant pole.

E. Structure factor

The importance of the structure factor lies in the fact that
it is directly related to the intensity of radiation scattered by
the fluid and can be therefore directly accessed via scattering
experiments. Figure 16 shows the structure factor for several
representative densities and temperatures for the SW and SS
systems. In general, relative maxima are closer to one another
at low densities, while they become more spaced out with
increasing density. In parallel with what was observed in
Figs. 7 and 8, the role of temperature is more important at
low densities than at high densities, especially in the case of
the SW potential. In the latter case, the structure factor at high
density is practically independent of temperature.

VI. CONCLUDING REMARKS

In this study, we have investigated the impact of attrac-
tive and repulsive coronas on hard-core disks within confined
geometries. Employing the SW and SS pairwise interac-
tions between disks confined in an extremely narrow channel
(q1D configuration), we have precisely examined their ther-
modynamic and structural properties. This exploration is
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facilitated through an exact mapping of the q1D system onto a
nonadditive polydisperse mixture of rods with equal chemical
potential, allowing for a detailed analysis of the system’s
behavior.

Our initial focus was on investigating the fundamental
thermodynamic properties, including the equation of state
and excess internal energy. We explored their dependence
on density and temperature while examining their limit-
ing behaviors at both very high and low temperatures.
Additionally, we derived the second virial coefficient and
determined the Boyle temperature for the SW potential,
providing a comprehensive understanding of the system’s
thermodynamic characteristics.

Furthermore, we delved into the structural properties, en-
compassing the RDF, both total and partial, and the structure
factor. An analytical expression for the RDF at short distances
was successfully derived. Our investigation extended to the
asymptotic large-distance behavior, where we computed the
correlation length and the oscillation frequency of the RDF.
The results demonstrated a full consistency with the com-
plete functions, underscoring the robustness of our analytical
approach in capturing the system’s structural characteristics
across various length scales.

While phase transitions do not manifest in these q1D
systems, our investigation revealed discontinuous structural
changes concerning the asymptotic oscillation frequency for
both potentials. Additionally, the FW line, characterizing the
transition from monotonic to oscillatory asymptotic decay in
the SW system, was identified. These findings highlight subtle
yet significant structural transformations in the system’s be-
havior, enriching our understanding of its complex dynamics
in confined geometries.

To affirm the accuracy of the q1D→1D mapping, we
conducted NPT and NVT MC simulations of the actual 2D
system. The comparison between the theoretical predictions
and the simulation results serves as a robust confirmation of
the fidelity of our mapping approach, enhancing the reliability
of our theoretical predictions in capturing the features of the
true confined 2D system.

While the emphasis of this paper has been on longitudi-
nal properties, it is noteworthy that the mapping technique
employed enables the derivation of transverse properties as
well. A detailed exploration of these transverse properties is
presented in a separate work [68], providing a comprehensive
examination of the system’s behavior in both longitudinal and
transverse dimensions.
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APPENDIX A: ON THE MAPPING q1D↔1D

Let us consider a q1D system of 2D interacting particles
subject to a an external wall potential that constraints them
to single-file formations, such that any particle α can only
interact with its two adjacent neighbors α − 1 and α + 1. The
longitudinal and transverse lengths of the system are L and
ε, respectively. For convenience, we consider here the grand
canonical ensemble, whose associated partition function is
[58]

�q1D(β, L, ε, μ) = 1 +
∞∑

N=1

eβμN

�2N
dB

Qq1D
N (β, L, ε), (A1)

where the canonical configuration integral is

Qq1D
N (β, L, ε) =

∫
ε

dy1

∫
ε

dy2 · · ·
∫

ε

dyN

∫ L

0
dx1

∫ L

x1

dx2

× · · ·
∫ L

xN−1

dxN e−β�N ({xα,yα}) (A2)

and the total potential energy is

�N ({xα, yα}) =
N∑

α=1

ϕ(rα,α+1), (A3)

with rα,α′ ≡
√

(xα − xα′ )2 + (yα − yα′ )2 and where ϕ(r) is the
pair interaction potential. Note that, in Eq. (A3), we have
applied periodic boundary conditions in the longitudinal di-
rection, so that xN+1 = x1 + L and yN+1 = y1.

To make the contact with a 1D system more direct, let us
discretize the transverse coordinate as in Eq. (2.6). In that
case, Eq. (A2) becomes

Qq1D
N (β, L, ε) = (δy)N

M∑
i1=1

M∑
i2=1

· · ·
M∑

iN =1

∫ L

0
dx1

∫ L

x1

dx2

× . . .

∫ L

xN−1

dxN e−β
∑N

α=1 ϕiα ,iα+1 (xα+1−xα ), (A4)

where, as a generalization of Eq. (2.7), we have called

ϕi j (x) = ϕ(
√

x2 + (yi − y j )2). (A5)

Now we consider an M-component 1D mixture where par-
ticles of species i and j interact via the pair potential given by
Eq. (A5). The corresponding grand partition function is

�1D(β, L, {μi}) = 1 +
∞∑

N=1

M∑
i1=1

M∑
i2=1

· · ·
M∑

iN =1

× eβ
∑M

i=1 μiNi

�N
dB

Q1D
N,{iα}(β, L), (A6)

where μi and Ni are the chemical potential and the number of
particles of species i, respectively, and

Q1D
N,{iα}(β, L) =

∫ L

0
dx1

∫ L

x1

dx2 . . .

∫ L

xN−1

dxN

× e−β
∑N

α=1 ϕiα ,iα+1 (xα+1−xα ). (A7)
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Next, we assume that the reservoir in contact with the 1D
system has the same chemical potential for all the species,
i.e., μi = μ. In that case, the combination of Eqs. (A1) and
(A4) is equivalent to the combination of Eqs. (A6) and (A7),
except for the irrelevant term (δy/�dB)N [69]. Of course, this
equivalence is preserved in the continuum limit M → ∞.

In summary:
(i) The transverse position, y, and the transverse distri-

bution, φ2(y), in the original q1D system correspond to the
dispersity parameter and the associated mole fraction, respec-
tively, in the 1D polydisperse system.

(ii) The 1D interaction potential between two particles of
species y and y′, ϕyy′ (x), is directly related to the interaction
potential of the 2D system, ϕ(r), as ϕyy′ (x) = ϕ(r) with r =√

x2 + (y − y′)2.
(iii) If the hard-core diameter of the 2D particles is de-

noted as r = 1, meaning that the interaction potential ϕ(r)
becomes infinite for r < 1, then the minimum separation be-
tween 1D particles of species y and y′ can be expressed as
ayy′ =

√
1 − (y − y′)2.

(iv) The 1D system is considered nonadditive because
ayy′ �= 1

2 (ayy + ay′y′ ). This contrasts with the approximate ad-
ditive mixture considered in Ref. [33].

(v) Since the transverse coordinates of particles in the
original q1D system are not fixed, the species identities in
the equivalent 1D system are also not fixed. This necessitates
the condition of equal chemical potential in the 1D system.
Therefore, we utilize the grand canonical ensemble in this Ap-
pendix as the simplest way to enforce this common chemical
potential requirement. However, it is important to note that the
equivalence holds with any other ensemble in the thermody-
namic limit, N → ∞, L → ∞, with λ = N/L = const.

Regarding the latter point, the exact properties of 1D
systems are most effectively derived within the isothermal-
isobaric ensemble framework. In this context, the probability
distribution function for the first neighbor of a particle of
species i to be located at a distance x and belonging to species

j is given by P(1)
i j ∝ e−βpe−βϕi j (x) [58]. The �th-neighbor dis-

tribution, P(�)
i j (x), can be obtained by successive convolutions

of P(1)
i j (x). Consequently, the Laplace transform, P̃(�)

i j (s), of

P(�)
i j (x) is expressed as the �th power of the matrix P̃(1)

i j (s) ∝
	i j (s + βp). Finally, using λφ2

j gi j (x) = ∑∞
�=1 P(�)

i j (x), one
obtains Eq. (3.6) in Laplace space.

APPENDIX B: RDF IN REAL SPACE

By formally expanding in powers of A2, Eq. (3.6) can be
rewritten as

G̃i j (s) = A2

λφiφ j

∞∑
n=1

A2(n−1)[Ωn(s + βp)]i j . (B1)

Equation (B1) implies that

gi j (x) = A2

λφiφ j

�x/a(ε)�∑
n=1

A2(n−1)γ
(n)

i j (x), (B2)

where the function γ
(n)

i j (x) denotes the inverse Laplace trans-

form of [Ωn(s + βp)]i j . As will be shown later, γ
(n)

i j (x) = 0
when x � na(ε), providing justification for the inclusion of
the floor function �x/a(ε)� in the upper limit of the summation
in Eq. (B2).

From Eq. (3.2), note first that

	i j (s + βp) = eβ∗
[R̃(1)(s; ai j ) − νR̃(1)(s; bi j )], (B3)

where

R̃(n)(s; α) ≡ e−(s+βp)α

(s + βp)n
, ν ≡ 1 − e−β∗

. (B4)

The inverse Laplace transform of R̃(n)(s; α) is

R(n)(x; α) = e−βpx

(n − 1)!
(x − α)n−1�(x − α). (B5)

The matrices R̃(1)(s; ai j ) and R̃(1)(s; bi j ) do not commute. As a consequence, the expansion of Ωn(s + βp) generates 2n

independent terms involving the function R̃(n)(s; α). In particular,

[Ω2(s + βp)]i j = e2β∗ ∑
k

[R̃(2)(s; aik + ak j ) − νR̃(2)(s; aik + bk j ) − νR̃(2)(s; bik + ak j ) + ν2R̃(2)(s; bik + bk j )], (B6a)

[Ω3(s + βp)]i j = e3β∗ ∑
k1,k2

[
R̃(3)

(
s; aik1 + ak1k2 + ak2 j

) − νR̃(3)
(
s; aik1 + ak1k2 + bk2 j

) − νR̃(3)
(
s; aik1 + bk1k2 + ak2 j

)
−νR̃(3)(s; bik1 + ak1k2 + ak2 j

) + ν2R̃(3)(s; aik1 + bk1k2 + bk2 j
) + ν2R̃(3)(s; bik1 + ak1k2 + bk2 j

)
+ν2R̃(3)

(
s; bik1 + bk1k2 + ak2 j

) − ν3R̃(3)
(
s; bik1 + bk1k2 + bk2 j

)]
. (B6b)

Consequently, in real space,

γ
(1)

i j (x) = eβ∗
[R(1)(x; ai j ) − νR(1)(x; bi j )], (B7a)

γ
(2)

i j (x) = e2β∗ ∑
k

[R(2)(x; aik + ak j ) − νR(2)(x; aik + bk j ) − νR(2)(x; bik + ak j ) + ν2R(2)(x; bik + bk j )], (B7b)

and so on.
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It is noteworthy that, for any pair i j, both ai j and bi j can-
not be smaller than a(ε). Hence, all distinct functions of the
form R(n)(x; α) that contribute to γ

(n)
i j (x) satisfy α � na(ε).

As a consequence, the presence of the Heaviside function
in Eq. (B5) establishes that γ

(n)
i j (x) = 0 when x � na(ε), as

anticipated earlier. In particular, only γ
(1)

i j (x) is needed in

Eq. (B2) if x � 2a(ε), while only γ
(1)

i j (x) and γ
(2)

i j (x) con-
tribute if x � 3a(ε).

APPENDIX C: DERIVATION OF EQ. (3.10)

Consider a generic 2D potential ϕ(r) with the constraints
(i) ϕ(r) = ∞ if r < 1 and (ii) ϕ(r) = 0 if r > r0. Then, the 1D
potential defined by Eq. (A5) fulfills (i) ϕi j (x) = ∞ if x < ai j

and (ii) ϕi j (x) = 0 if x > bi j . The smallest value of the set
{ai j} is a(ε), which corresponds to |yi − y j | = ε. Analogously,
the maximum value of the set {bi j} is r0, corresponding to
yi = y j . To guarantee that interactions are restricted to nearest
neighbors, one must have r0 < 2a(ε).

Under the above conditions, the Laplace transform defined
by Eq. (3.1) can be written as

	i j (s) =
∫ r0

a(ε)
dx e−sxe−βϕi j (x) + e−sr0

s
, (C1)

whose derivative is

∂s	i j (s) = −
∫ r0

a(ε)
dx xe−sxe−βϕi j (x) − e−sr0

s

(
r0 + 1

s

)
.

(C2)

Our aim is to express the equation of state in terms of the
integrals

In ≡ λ

∫ r0

a(ε)
dx xng(x), n = 0, 1. (C3)

To that end, note that, in the interval ai j < x < 2ai j , only the
first-neighbor distribution function contributes to the partial
RDF gi j (x) [49,58], i.e., gi j (x) = (A2/λφiφ j )e−βpxe−βϕi j (x).
Therefore, the total RDF in the range a(ε) < x < 2a(ε) is

g(x) = A2

λ

∑
i, j

φiφ je
−βpxe−βϕi j (x), a(ε) < x < 2a(ε).

(C4)
As a consequence,

In = A2
∑
i, j

φiφ j

∫ r0

a(ε)
dx xne−βpxe−βϕi j (x). (C5)

From Eqs. (C1) and (C2) we have

I0 = A2
∑
i, j

φiφ j

[
	i j (βp) − e−βpr0

βp

]

= 1 − A2 e−βpr0

βp

∑
i, j

φiφ j, (C6a)

I1 = −A2
∑
i, j

φiφ j

[
∂	i j (βp)

∂βp
+ e−βpr0

βp

(
r0 + 1

βp

)]

= 1

λ
− A2 e−βpr0

βp

(
r0 + 1

βp

) ∑
i, j

φiφ j, (C6b)

where in the second steps we have used Eqs. (3.3) and
(3.4a), respectively. Eliminating A2(e−βpr0/βp)

∑
i, j φiφ j be-

tween both equations, we get

I1 = 1

λ
−

(
r0 + 1

βp

)
(1 − I0). (C7)

Finally, using βp = Zλ, Eq. (C7) yields

Z = 1 − I0

1 − λ[r0(1 − I0) + I1]
, (C8)

which is the same as Eq. (3.10).
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