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Architectural underpinnings of stochastic intergenerational homeostasis
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Living systems are naturally complex and adaptive and offer unique insights into the strategies for achieving
and sustaining stochastic homeostasis in different conditions. Here we focus on homeostasis in the context
of stochastic growth and division of individual bacterial cells. We take advantage of high-precision long-term
dynamical data that have recently been used to extract emergent simplicities and to articulate empirical intra-
and intergenerational scaling laws governing these stochastic dynamics. From these data, we identify the core
motif in the mechanistic coupling between division and growth, which naturally yields these precise rules,
thus also bridging the intra- and intergenerational phenomenologies. By developing and utilizing techniques
for solving a broad class of first-passage processes, we derive the exact analytic necessary and sufficient
condition for sustaining stochastic intergenerational cell-size homeostasis within this framework. Furthermore,
we provide predictions for the precision kinematics of cell-size homeostasis and the shape of the interdivision
time distribution, which are compellingly borne out by the high-precision data. Taken together, these results
provide insights into the functional architecture of control systems that yield robust yet flexible stochastic
homeostasis.
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I. INTRODUCTION

Robust architecture is a common feature of functional
complex and adaptive systems. Strict constraints on proto-
cols enable a plug-and-play modularity that confers flexibility
to (or deconstrains) the overall systems design [1,2]. Re-
cent high-precision experiments and analysis of extant data
on different microorganisms have shown that stochastic in-
tergenerational homeostasis of cell sizes is constrained by
surprisingly universal and elegant emergent simplicities [3–6],
despite the substantial differences in underlying molecu-
lar circuitry governing growth and division in system- and
environment-specific ways. What robust architectures lead to
the observed intra- and intergenerational emergent simplici-
ties governing stochastic intergenerational homeostasis?

Between successive divisions, cell size increases stochasti-
cally while adhering to an intragenerational scaling law: The
mean-rescaled cell-size distributions of cells at different times
since the last division event undergo a scaling collapse [7,8]
[see Fig. 1(c)]. The mean itself increases exponentially with
time since the last division event [7,8]. Furthermore, inter-
generational size dynamics is Markovian and a scaling law
constrains the precision kinematics of stochastic intergener-
ational homeostasis: The distributions of the mean-rescaled
size at birth in the next generation are independent of the
sizes at birth in the current generation [3,4] [see Fig. 1(d)].
Intuitively, it is clear that these empirically observed scaling
laws or emergent simplicities must reflect key aspects of the
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nature of the coupling of growth to division, but using the ob-
served phenomenology to decipher the underlying mechanism
has remained an open challenge. Here we provide the solution
to this problem.

In addition to yielding the observed emergent simplicities,
the minimal mechanistic model we propose here has inbuilt
constraints that deconstrain, allowing for versatile imple-
mentations with different system-specific details for different
microorganisms (or even growth conditions) while robustly
ensuring that homeostasis will result in each instantiation,
despite the inherent stochasticity in the growth and division
processes. From the point of view of evolvability, conserved
core functional architectures serve to constrain variation that
would break the core mechanism. On the balance, they con-
fer flexibility and robustness to processes that leave the core
intact [1,2].

We start with the minimal model that reproduces the ob-
served universal statistics of cell-size growth, namely, the
stochastic Hinshelwood cycle (SHC) model of stochastic ex-
ponential growth [7–10]. Let X represent the effective SHC
variable undergoing stochastic exponential growth according
to [7,10]

X
kX−→ X + X. (1)

It relates to the cell size a via

a(t ) = X (t )/λ, (2)

where λ is a scaling factor relating the discrete copy numbers
of X to the cell size a. The previously noted intragenerational
scaling law is consistent with this model, since in balanced
growth conditions it naturally yields

P(X, t ) = e−kX t P0(Xe−kX t ), (3)
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FIG. 1. Empirically observed emergent simplicities motivate the mechanistic model for stochastic intergenerational homeostasis.
(a) Stochastic intergenerational homeostasis of cell sizes at birth (highlighted magenta circles) as seen in high-precision data recording an
individual cell’s stochastic growth and division dynamics over multiple generations. (b) Cell sizes in (a) replotted on a log-linear scale versus
time since the last division event �t ; cell sizes undergo stochastic exponential growth between divisions. (c) Distributions of cell sizes at
different times since birth [marked by the gray dashed lines in (b)] plotted after rescaling by their respective mean values. These mean-rescaled
distributions undergo a scaling collapse, an intragenerational scaling law consistent with the stochastic Hinshelwood cycle model of stochastic
exponential growth. (d) Conditional distributions of the next generation’s initial size given the current generation’s initial size plotted for
the specified current initial sizes, after rescaling by their corresponding mean values. These mean-rescaled distributions undergo a scaling
collapse revealing an intergenerational scaling law, which in turn specifies the precision kinematics of stochastic cell-size homeostasis. (e) The
proposed mechanistic model bridges the intra- and intergenerational cell growth and division dynamics. Here X is the effective Hinshelwood
cycle variable corresponding to cell size, while Q represents the thresholding species; X (n)

i and Q(n)
i are the copy numbers of X and Q at birth

in the nth generation and X (n)
f and Q(n)

f are the copy numbers at division. Throughout the cell cycle, X is produced at rate k(n)
X X . Initially, Q is

produced at rate k(n)
Q X , until it crosses the threshold at �, after which time its production rate is reset to k′(n)

Q X . After crossing the threshold,
cell division occurs after time T . Upon division, the next generation’s Xi and Qi values are related to the current generation’s Xf and Qf values
through the division rules given by Eq. (10). The proposed stochastic model naturally yields the observed phenomenologies in (a)–(d) and
(g). (f) Heuristic argument for intergenerational homeostasis in extant models based on the deterministic sizer-timer-adder paradigms. Within
this scheme, the intergenerational final size af vs the initial size ai dynamic is thought to occur as shown: Starting from an initial generation
characterized by the coordinates of the large magenta circle, the cell deterministically adjusts its size to exponentially relax to the target cell size
set by the black dot at the intersection between lines corresponding to the growth and division rules. (g) In contrast to the heuristics suggested
by the extant sizer-timer-adder paradigms [shown in (f)], the experimentally observed high-precision intergenerational af vs ai trajectories
[here taken from the cell shown in (a)] are dramatically and quantitatively different, thus motivating the necessity for a completely revised
framework. (h) In the appropriate ranges of parameter values, the fully stochastic mechanistic model we propose here can recapitulate specific
mean behaviors displayed by the sizer-timer-adder paradigm. For the mean final size given the initial size in the quasideterministic limit, the
slope α f is controlled by the relative rate of production of Q after crossing the threshold k′

Q/kQ. In the deterministic limit, slopes α f = 0, 1, 1/r
(with k′

Q greater than, equal to, and less than kQ, respectively) correspond to sizer, adder, and timer models, where r is the deterministic
division ratio.

where P0 is an initial condition-dependent distribution [7–10].
Since the mean grows as ekX t with time, when this distri-
bution at any given time is rescaled by its mean value, a
time-invariant distribution results.

Additionally, since the cell-size-at-birth distribution must
satisfy the intergenerational scaling governing stochastic
intergenerational homeostasis, so must the copy num-
bers of X at birth, i.e., immediately following a division
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event [3,4],

P1(X (n+1)|X (n) ) = 1

μ(X (n) )
�

(
X (n+1)

μ(X (n) )

)
, (4)

where P1 is the conditional distribution of X (n+1) (the next
generation’s initial copy numbers, i.e., copy numbers at birth)
given X (n) (the current generation’s initial copy numbers), μ is
the next generation’s mean initial copy number as a function
of the current generation’s initial copy number, and � is the
invariant distribution that results after mean rescaling P1. This
emergent simplicity, as we have derived in [4], specifies the
precision kinematics of initial copy numbers over successive
generations through the exact stochastic map

X (n+1) = s(n)μ(X (n) ), (5)

where the s(n)
i are random numbers drawn from the distri-

bution � (with unit mean); the superscript serves to record
the generation as n. In sum, in the formulation we have
presented here, the specific challenge is to bridge intra- and
intergenerational phenomenologies by identifying the correct
mechanistic coupling between growth and division that natu-
rally yields the intergenerational scaling law (4).

II. RESULTS

A. Mechanistic underpinnings of stochastic
intergenerational homeostasis

A minimal model consistent with empirical observations
can be articulated as follows (see Fig. 1 for a graphical sum-
mary). As outlined in Eqs. (1) and (2), the copy numbers of
X serve as a proxy for cell size a and undergo stochastic
exponential growth. The mechanism of size control is imple-
mented by an auxiliary growth reporter Q, whose numbers
increase stochastically with a propensity proportional to the
copy numbers of X present:

X
kQ−→ Q + X. (6)

When Q reaches a threshold value of �, the decision to com-
mit to division is taken and a stochastic process commences,
culminating in cell division after a random delay time T . In
this post-threshold period (of duration T ), the X -Q dynamics
continues to proceed as in Eqs. (1) and (6); however, the
propensity of production of Q may differ and is thus denoted
by k′

Q. Here we consider the quantities T , kX , kQ, and k′
Q to

be constant through a given generation, but treat them as in-
tergenerational stochastic variables that vary from generation
to generation (and cell to cell when population-level distri-
butions are constructed). Finally, cell division occurs with
the copy numbers reset according to Eq. (10) and governed
by the division ratio r, a random variable we assume to be
independent of cell size. For symmetrically dividing cells, the
mean division ratio is 1/2.

B. Intragenerational statistics: Exact analytic solution

While several techniques are known for solving for
stochasticity arising due to copy number fluctuations in differ-
ent models [11–17], an exact analytic solution to the problem
of coupled stochastic evolution of X and Q, as encoded in

Eqs. (1) and (6), respectively, is not readily derived via tradi-
tional approaches. Instead, we solve this seemingly intractable
problem (below) through a stochastic rescaling of time. Our
method relies on the fact that while X influences the growth of
Q through the rate kQ × X , Q does not influence the stochastic
growth dynamics of X . Our mathematical technique is broadly
applicable to scenarios where the growth rates for both Q and
X are arbitrary functions of X .

We define a new rescaled time variable tr whose rate of
change with the laboratory time variable t is just the growth
rate of Q:

dtr
dt

= kQX (t ). (7)

When the laboratory time t is replaced by tr , from Eqs. (1)
and (6) we see that the dynamics of Q becomes formally X
independent, while the growth rate of X becomes the ratio of
its laboratory growth propensity to that of Q, also formally
independent of X . Thus, when the time variable is tr , the
dynamics become that of two uncoupled growth reactions,
schematically represented as

φ
kr−→ X, φ

1−→ Q, (8)

with kr = kX /kQ. In terms of this rescaled time, the coevo-
lution of X and Q can be obtained analytically, even though
characterizing their coevolution in laboratory time is difficult.
Specifically, using standard techniques of stochastic processes
[11,12], we have calculated analytically that the distribution
of X = X� when Q reaches the threshold value of �, when
starting from initial values (Xi, Qi ), is a Pascal distribution

PX�
(X�) = (�X + �Q − 1)!

�X !(�Q − 1)!

(kr )�X

(1 + kr )�X+�Q
, (9)

where �X = X� − Xi � 0 and �Q = � − Qi � 1 (see
Appendix 1).

Quasideterministic limit

We now consider an interesting limit of this process, which
is useful for comparison with experimental data. From the
above distribution, the ratio of the standard deviation to the
mean for �X is

√
(1 + kr )/kr�Q. Since kr � 1 is the phys-

ical regime of interest where the numbers of Q are very
small compared to the numbers of X and since in steady state
�Q ∼ � up to a fractional factor 1/2, we find that for large
� the standard deviation becomes negligible compared to the
mean [their ratio becomes approximately

√
(1 + 1/kr )/�].

In this regime, the distribution of �X� � kr�Q becomes an
almost deterministic function of Qi. Furthermore, if k′

Q/kQ

is negligible and division noise is limited, Qi is just a con-
stant times �. In summary, for � � 1 + 1/kr , �X� becomes
quasideterministic; furthermore, when k′

Q � kQ, its value is
a function only of � and kr and thus independent of Xi (see
Appendix 4). In other words, in this limit, a constant amount is
added to Xi during the time taken for Q to reach the threshold.

As outlined previously, once the thresholding of X� occurs,
a division process commences that lasts time T , following
which the cell divides with division ratio r. (Note that both
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T and r are random variables whose values change from
generation to generation.) During this process, X and Q con-
tinue to grow following Eqs. (1) and (6), with kQ → k′

Q. We
have analytically solved the corresponding master equation
and found the joint moment-generating function for the final
predivision copy numbers (Xf , Q f ), starting from the respec-
tive values at the threshold (X�,�) (Appendix 2). Combining
the analytic results [Eq. (9)] for the statistics of X�, we have
analytically calculated the statistics of (Xf , Q f ), given initial
values (Xi, Qi ) (see Appendix 2). These statistics completely
specify the intragenerational stochastic evolution of cell size
in our framework and are used in the following sections.

C. Intergenerational statistics: Homeostasis condition

We now proceed to determine the intergenerational evo-
lution of (X, Q), and hence the cell size. This is provided
by the division rule that converts the final predivision values
in a given generation, (Xf , Q f ), to the initial values (Xi, Qi )
in the next generation. Using the notation A(n) to represent
the value of a random quantity A measured in generation n,
we propose the following division rules that incorporate the
cell-size division ratio r:

X (n+1)
i = r (n)X (n)

f , (10a)

Q(n+1)
i = �

2
+ r (n)

(
Q(n)

f − �
)
. (10b)

For asymmetrically dividing cells, we underscore the subtle
point that a portion of Q, equal to the threshold amount �,
is split equally during division among the daughter cells and
not at the division ratio r. Biochemically, such behavior may
naturally arise, for instance, if an amount � of Q accumulates
around the cell division plane to initiate division. This as-
sumption is not necessary for achieving cell-size homeostasis
but is consistent with the experimentally observed simplici-
ties discussed in the following sections. The implications of
alternate division rules are explored in Appendix 5. In a later
section, we discuss possible biological implementations and
implications in greater detail.

We can now consider the question of the homeostatic sta-
bility of the intergenerational evolution of X and consequently
cell size. Addressing this problem requires consideration of
the intergenerational coevolution of both X and Q. However,
since the absolute amount of Q is constrained at the thresh-
olding point in every generation, Q is trivially in homeostasis.
We can thus simply consider the intergenerational evolution
of the value of X at a fixed point in the cell cycle. Specifically,
we choose to follow the intragenerational evolution of X�,
since at that thresholded event the value of Q must be �

and thus its coevolution is trivial. For a given generational
history of values of T , r, kX , kQ, and k′

Q, we find the follow-
ing intergenerational evolution of the reaction noise-averaged
moments of X�, μm = 〈(X�)m〉 for m � 1 (see Appendix 2 for
details; we define μ0 = 1):

μ(n+1)
m = (A(n) )mμ(n)

m +
m−1∑
m′=0

Ã(n)
mm′μ

(n)
m′ , (11a)

where

A(n) = r (n)

[
ek(n)

X T (n) − k′(n)
Q k(n+1)

X

k(n+1)
Q k(n)

X

(
ek(n)

X T (n) − 1
)]

, (11b)

and Ã(n)
mm′ are bounded quantities whose exact forms are

unimportant for the homeostasis of X� and thus cell size. Un-
der intergenerational evolution in accordance with the above
equations, attainment of stochastic homeostasis is assured,
provided, as n → ∞, all moments μ(n)

m (i) become indepen-
dent of the initial value μ(0)

m and (ii) remain finite. Assuming
that the A(n) are uncorrelated for different n, being indepen-
dent draws of a random variable A, we have derived (see
Appendix 3) the necessary and sufficient conditions for strict
cell-size homeostasis, which we define as the existence of an
initial-condition-independent homeostatic distribution, as the
set of bounds on the moments of A,

∣∣Ak
∣∣ < 1, k = 1, 2, . . . , (12)

where the overline denotes an average over generations. As
shown previously in [4], this sequence of conditions is equiv-
alent to a simple bound on A: |A|max � 1. (The inequality is
strict only if A is deterministic. If the inequality is violated for
k = k0, all moments μk with k � k0 are unstable, i.e., do not
reach homeostatic initial-condition-independent finite steady-
state values [4].) These general conditions are reminiscent
of conditions derived in the phenomenological theory in [4],
corresponding to emergent simplicities in cell-size homeosta-
sis observed in experiments [3]. We note that the existence
of an initial-condition-independent homeostatic distribution
necessitates that all moments exist. When a subset of these
conditions is violated, the divergent higher-order moments
would lead to a fat-tailed distribution resulting in occurrences
of abnormally large cells albeit with low probability, which in
principle could be biologically possible.

1. Quasideterministic limit

The quasideterministic limit applies when the copy num-
bers of X and Q are large enough that the reactions in Eqs. (1)
and (6) proceed deterministically. This applies when Xi, Qi �
1 (consistent with the condition � � 1 + 1/kr considered
earlier). In this limit, intragenerational dynamics proceed de-
terministically, and the primary source of noise in the system
is due to the intergenerational variation of reaction rates kX ,
kQ, and k′

Q and the duration between threshold crossing and
division, T . By Eq. (1) our model cell undergoes quasideter-
ministic exponential growth, in agreement with high-precision
experimental observations of exponential growth in bacte-
rial cells under constant nutrient-rich growth conditions [8].
Meanwhile, intergenerational evolution of cell size is en-
capsulated in the relation between initial sizes of successive
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FIG. 2. Parameter estimation, with theoretical predictions validated by experimental data. (a) Experimentally measured mean (red circles,
with error bars) of the next generation’s initial area plotted as a function of the current generation’s initial area. The only fitting parameter
in the model, kr�/λ, is estimated as twice the intercept over the slope of the linear fit to the mean [see Eq. (17)]. The light teal scatter plot
in the background shows the next generation’s initial area versus the current generation’s initial area for different cell cycles in the data.
(b) Experimentally measured mean (red circles, with error bars) of the division time plotted as a function of the initial area. The teal curve is
the analytic model prediction given by Eq. (23). Note that the error bars are small compared to the marker size and hence are not visible.

generations (see Appendix 4):

a(n+1)
i = r (n)ek(n)

X T (n)

(
k(n)

X �

2k(n)
Q λ

+
[

1 − k′(n−1)
Q k(n)

X

k(n)
Q k(n−1)

X

(
1 − e−k(n−1)

X T (n−1))]
a(n)

i

)
. (13)

2. Recapitulating known results for mean behaviors

The mean of the final size a f given the initial size ai

is found to vary linearly with the initial size for nearly all
bacterial species studied [18],

〈a f |ai〉 = α f ai + β f , (14)

for constants α f and β f that are species and condition depen-
dent. Traditional deterministic homeostasis models consider
the final size a f of a cell with initial size ai to be equal
to 〈a f |ai〉 and hence to follow the deterministic map a(n+1)

i =
αa(n)

i + β ≡ μ(a(n)
i ), where α and β are equal to 〈r〉α f and

〈r〉β f , respectively; 〈r〉 is the average division ratio; and μ

is the mean function in Eq. (5). For such a deterministic
map, an converges to a finite value independent of a0 as
n → ∞ if and only if |α| < 1 [19,20]. This formulation has
been used for the adder (α = 〈r〉), timer (α = 1), and sizer
(α = 0) models [21–26] [Figs. 1(f) and 1(h)]. Although these
models adequately describe mean trends, they fundamentally
fail to capture the observed stochastic dynamics, governed by
the stochastic map given by Eq. (5), which results from the
intergenerational scaling law (4). That the mythical “average”
cell fails to capture the stochastic behaviors of the individ-
ual bacterial cell is increasingly well appreciated in different
contexts [3,4,6,27–32]. Starting with Eq. (13), taking an inter-
generational average over the stochastic variables kX , kQ, k′

Q,
and T results in the prediction that the conditional mean of
the next generation’s initial size given the current generation’s
initial size varies linearly with the current generation’s initial
size, consistent with observations above. Moreover, the ratio
k′

Q/kQ can be used to tune the slope α [Fig. 1(h)]. Slopes
between the pure adder and pure timer require k′

Q < kQ, the
slope for the pure adder requires k′

Q = kQ (or trivially when

T = 0 and the model becomes k′
Q independent), and slopes

between the pure sizer and pure adder can be obtained when
k′

Q > kQ.

D. Comparison with data: Emergent simplicities
and parameter extraction

Incorporating into Eq. (5) the observed linear dependence
of the mean μ(a) = αa + β, which is also reproduced by
our model (see the preceding section), the significant emer-
gent simplicity governing intergenerational cell-size evolution
is [3,4]

a(n+1)
i = s(n)

(
αa(n)

i + β
)
, (15)

where a(n)
i is the initial newborn size in the nth genera-

tion, the numbers {s(n)} are independent random instantiations
of a random variable s with unit mean and a growth
condition-dependent probability distribution, and (α, β ) are
the growth condition-dependent constants determining the
mean μ [Fig. 2(a)]. This simplicity straightforwardly emerges
from our model in the quasideterministic limit when k′

Q =
0 and � � 1 + 1/kr (also X � Q). Here we can set k′

Q
to zero since the experimental data showing this emergent
simplicity are obtained from Caulobacter crescentus cells.
For these cells, the slope of the conditional mean of the
next generation’s initial size given the current generation’s
initial size lies between those of the pure adder and pure
timer; hence k′

Q = 0 satisfies the required constraint k′
Q < kQ.

Since k′
Q = 0, at the end of each cell generation Q = Q f =

�. Using Eq. (10), in steady state the initial amount of Q
is always Qi = �/2. As observed previously, when � �
1 + 1/kr , X� is quasideterministic and results from adding a
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constant amount to Xi: X� � Xi + kr�Q = Xi + kr�/2. Due
to quasideterministic exponential growth through the period
T of the subsequent division process, X increases further to
Xf = ekX T X� = ekX T (Xi + kr�/2). Converting from X to cell
size a using Eq. (1) and applying Eq. (10), our model yields

a(n+1)
i = r (n)ek(n)

X T (n)(
a(n)

i + kr�/2λ
)
. (16)

Taking into account the intergenerational stochasticity of r,
T , and kX , this stochastic map is equivalent to the emergent
scaling law for intergenerational cell-size control [Eq. (15)],
obtained from experimental data. We can identify the ob-
served constants in this law with the parameters of our model:

α = rekX T , λβ = rekX T kr�/2,

s(n) = r (n)ek(n)
X T (n)

rekX T
. (17)

As before, the overline denotes an intergenerational average
and kr = kX /kQ (assumed constant). Conversely, we can esti-
mate the following model parameters and distributions from
intergenerational growth and division data [see Fig. 2(a)]:

kr�

λ
= 2β

α
, T (n) = 1

k(n)
X

ln

(
a(n)

f

a(n)
i + β/α

)
. (18)

Note that the first relation of (18) applies not only in the
quasideterministic limit, but also in the nonapproximate case
(see Appendix 6). We have extracted the values of α and β

from experimental data in Fig. 2(a) and shown a match in the
predictions consistent with Eq. (14) in Fig. 2(b).

In conclusion, kX is the experimentally measured cell-size
growth rate, k′

Q = 0, and kQ is proportional to kX with a
constant of proportionality kr = kX /kQ. The constant kr�/λ

is the only fitted parameter in our model, obtained through
Eq. (18) and the extracted values of α and β from the data fit in
Fig. 2(a). Once this is obtained, T can be measured from indi-
vidual cell cycles through Eq. (18), and the joint distributions
of r, T , and kX compiled. The data do not yield values of �,
kr (or equivalently kQ = kX /kr), or λ individually; however,
these are constrained by our assumption of intragenerational
noise-free growth (� � 1 + 1/kr) and allow for a range of
combinations that provide data-theory matches. Combining
with Eq. (18), we require for self-consistency

� � 1

1 − α
2βλ

, kr � 2βλ

α
− 1. (19)

For large values of βλ, which correspond to large numbers of
X in the cell, the first condition becomes simply � � 1, i.e.,
the cell contains a large number of Q, even though these may
be far fewer in number than X .

E. Exact solution and robust predictions

With k′
Q = 0, the exact solution for the distribution of copy

numbers of X at division, Xf , given initial copy numbers Xi is

(see Appendix 6)

Pf (Xf |Xi )

=
Xf∑

x=Xi

(
Xf − 1

x − 1

)
(1 − e−kX T )Xf −xe−xkX T

×
(

x − Xi + �/2 − 1

�/2 − 1

)[
kr

1 + kr

]x−Xi
[

1

1 + kr

]�/2

.

(20)

The above distribution is the predicted distribution for a single
cell cycle with given kX and T values. The overall distribution
can be obtained by taking the intergenerational average with
respect to the (observed) joint distribution of kX and T . From
this analytic result we can find the distribution of the next
generation’s initial size by multiplying the current genera-
tion’s final size (equal to Xf /λ) by the division ratio r and
then taking the intergenerational average with respect to the
observed joint distribution of kX , T , and r.

Our analytic results for the distribution of the next genera-
tion’s initial cell size, conditioned on the current generation’s
initial cell size, are compared with experimental data in Fig. 3.
There is superb agreement between experiment and theory.
The exact size distributions predicted by our model also un-
dergo the experimentally observed intergenerational scaling
collapse. Our mechanistic model can thus generate the exper-
imentally observed multigenerational size data on single cell
growth and division with quantitative accuracy. Furthermore,
we reiterate that our model predictions robustly match these
dynamics irrespective of the exact choice of model param-
eters, provided the chosen parameters satisfy the constraints
given by Eqs. (18) and (19) (see Figs. 7–9).

1. Condition for stochastic intergenerational size homeostasis

Given the scaling rule (15) for the intergenerational evo-
lution of cell size, the conditions governing strict cell-size
homeostasis have been shown to be [4]

(αs)k < 1, k = 1, 2, . . . . (21)

Since obtaining Eq. (15) from our model necessitates set-
ting k′

Q → 0, using this condition in Eqs. (17) and (11a), we
find that αs = A. Thus the experimentally relevant cell-size
homeostasis conditions (21) are identical to the more gen-
eral conditions corresponding to homeostasis in our model
[Eq. (12)] in the limit where our model is consistent with
experimental data.

In [3] we show that the stochastic map (15) accu-
rately predicts the observed dynamics of initial cell sizes
over successive generations, leading to cell-size homeostasis.
However, we have shown above that this stochastic map is
also obtained in the quasideterministic limit of our mech-
anistic model, which should enable us to generate the full
intergenerational evolution of cell sizes. In Fig. 4 we show
this evolution starting from different initial sizes. Our model
accurately predicts the observed distributions of cell sizes over
successive generations leading to cell-size homeostasis.
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FIG. 3. Intergenerational scaling law: experimental data and predictions from the mechanistic model. (a) Conditional distributions of the
next generation’s initial areas a(n+1)

i given the current generation’s initial areas a(n)
i plotted for four different current initial areas (marked

by different colors). The solid lines are the results of exact model simulations, while the points represent experimental data. (b) Both
experimentally measured and theoretically calculated distributions in (a) overlap when rescaled by their respective mean values.

2. Division time distribution

Using the quasideterministic limit (18), the cell division
time τ = ln(a f /ai )/kX becomes

τ = T + 1

kX
ln

(
1 + β/α

ai

)
. (22)

Here τ , T , kX , and ai are from the same generation. From this
we predict that when ai is fixed, the mean division time is just

〈τ 〉ai = 〈T 〉 +
〈

1

kX

〉
ln

(
1 + β/α

ai

)
, (23)

where 〈·〉 and 〈·〉ai denote averaging over all generations
or generations restricted by initial-size value ai, respec-
tively. This predicted functional form is compared against
experimental values of 〈τ 〉ai in Fig. 2(b), showing excellent
agreement.

Furthermore, using the experimentally measured joint dis-
tribution of kX and T , PkX ,T (kX , T ), and the model-predicted
steady-state initial-size distribution Pai (ai ) obtained through
numerical methods described above and shown as the theoret-
ical initial condition-independent homeostatic distribution in
Fig. 4(f), our framework yields both the detailed conditional
division time distribution for a given initial size Pτ (τ |ai ) and,
by averaging over ai using the homeostatic size distribution,
the full steady-state division time distribution Pτ,SS(τ ):

Pτ (τ |ai ) =
∫

dkX PkX ,T

[
kX , τ − 1

kX
ln

(
1 + β/α

ai

)]
,(24a)

Pτ,SS(τ ) =
∫

daiPτ (τ |ai )Pai (ai ). (24b)

In Fig. 5 we show both conditional and full steady-
state division time distributions obtained through the exact
Gillespie simulations of our mechanistic model. While the
chosen model parameters (the same as used to derive ana-
lytic results in previous sections) satisfy the conditions for
the quasideterministic limit, the simulations are exact and
do not assume quasideterministic simplifications. Once again,
predictions match compellingly with the corresponding exper-
imental data (see Fig. 5).

3. Biological identities of X and Q

Bacterial cell division involves assembly of the division
machinery (divisome) followed by cell wall constriction and
ultimate cleavage [33]. One of the earliest models of cell
division hypothesized a diffusible factor that initiates divi-
sion upon accumulation to a critical level [34]; this factor
was later suggested to be the tubulin homolog FtsZ, whose
assembly dynamics is driven by cell growth rate [35]. FtsZ
is a critical player in recruiting and regulating members of
the divisome, including cell wall remodelers responsible for
synthesis and placement of peptidoglycan (PG) at the site
of constriction [36,37], via formation of the Z ring at the
future division site [38]. FtsZ exists in two conformations,
found in monomer form or in (proto)filaments, respectively
[39], which exhibit cooperative assembly such that additional
monomers above a critical concentration increase only the
polymer concentration [40,41]. The structure of the Z ring
is dynamic, with FtsZ exhibiting treadmilling (continuous
polymerization and depolymerization at opposite ends of a
filament) [42], typically at a rate of 30–40 nm/s, although the
details are species specific [43]. FtsZ treadmilling has been
hypothesized to distribute PG synthesis and coordinate con-
struction of the nascent endcaps by moving proteins around
the division site [33]; indeed, its dynamics has been confirmed
to correlate with populations of moving PG enzyme com-
plexes in Escherichia coli [44] and Bacillus subtilis [45], and
in C. crescentus the FtsZ-binding partner FzlA links it to PG
synthesis [46]. In B. subtilis, FtsZ treadmilling is essential to
mediate condensation of diffuse FtsZ filaments into a dense
Z ring and to initiate constriction [47]. Numerous lines of
evidence suggest that FtsZ’s intrinsic capacity for polymer-
ization provides the capability for Z-ring assembly, whereas
its intrinsic GTPase activity is responsible for treadmilling
dynamics, independent of other proteins or the cell cycle [48].

We propose that Q in our model may be identified with
FtsZ, with the threshold value of � being the amount required
for constriction initiation and the time delay T the interval
between constriction initiation and cell division. To support
this proposition, we consider the supporting evidence first for
E. coli and then for C. crescentus. In E. coli, FtsZ is produced
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FIG. 4. Precision kinematics of stochastic intergenerational homeostasis: experimental data and predictions from the mechanistic model.
Conditional distributions of initial sizes after n generations a(n)

i , conditioned on the starting generation’s initial size a(0)
i , plotted for (a) n = 1,

(b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5, and (f) n = 6. The four different starting initial areas a(0)
i correspond to different colors. The solid

lines are theoretical predictions based on exact simulations of the mechanistic model, while the points are experimentally measured data. The
diamonds denote the experimentally measured populationwide homeostatic initial area distribution. All conditional distributions converge to
this distribution as n increases, irrespective of the starting initial area.

at a constant rate per unit volume, with cells accumulating
FtsZ molecules constitutively to maintain a constant concen-
tration of FtsZ [49]. Constriction initiation coincides with
maximal Z-ring intensity [50], followed by rapid proteolytic
degradation at the end of division [51]. These observations
are consistent with the picture in which FtsZ is produced at a
rate proportionate to cell volume (represented by the effective
stochastic Hinshelwood cycle variable X ), with kQ depending
on condition-specific factors [38]. Furthermore, a recent large-
scale phenotyping study of E. coli across a range of nutrient
conditions and perturbations observed that FtsZ is required for
constriction initiation, which occurs after a constant mean cell

length has been added, and that division follows constriction
initiation with a constant time delay [52], consistent with our
model.

In the asymmetrically dividing C. crescentus, the pic-
ture is more complicated, as FtsZ levels are regulated in a
cell-cycle-dependent manner [53], with synthesis beginning
slightly before swarmer cells differentiate into stalked cells
and concentration reaching a maximum at the beginning of
cell division, followed by a precipitous drop [54]. Transcrip-
tion of ftsZ in swarmer and predivisional cells is repressed by
the master cell-cycle regulator CtrA [55], with transcription
rates of ftsZ in stalked cells modulated by additional factors

024405-8



ARCHITECTURAL UNDERPINNINGS OF STOCHASTIC … PHYSICAL REVIEW E 110, 024405 (2024)

FIG. 5. Shape of the interdivision time distribution, with experimental data and predictions from the mechanistic model. (a) Division time
distributions disambiguated by initial area plotted for different initial areas (distinguished by different colors). The solid lines are the theoretical
predictions from the mechanistic model, while the points are experimentally measured data. (b) Full division time distribution.

such as nitrogen and carbon availability [56]. Although FtsZ
is stable in the daughter stalked cell following cell division,
it is cleared from the daughter swarmer cell [55,57] via a
regulated proteolysis that appears intrinsic to the asymmetric
cell division of C. crescentus [58]. Despite the complexity of
this picture, we note that our model as written applies only to
stalked daughter cells, in which case the FtsZ dynamics sat-
isfies the general requirements. Interestingly, in slow-growing
E. coli, FtsZ synthesis displays a cell-cycle dependence sim-
ilar to that observed in C. crescentus swarmer cells [51]. A
future extension of our framework to incorporate these similar
additional layers of control could yield insights into their
implications for cell-size homeostasis.

Alternatively, we may connect the identities in our model
directly to the growth of cell surface, a complex process in-
volving synthesis of PG precursors in the cytosol followed by
final PG units at the cell surface [59]. The PG precursor syn-
thesis is expected to occur in a cell-cycle-independent manner
and has been proposed as a regulator between growth and divi-
sion, with accumulation of excess PG precursor material serv-
ing as a potential checkpoint for constriction initiation [60].
Intriguingly, a mechanical homeostatic mechanism has been
proposed to balance surface PG synthesis with overall cell
growth rate [61]. In stalked C. crescentus cells, PG synthesis
occurs in an FtsZ-dependent manner, leading to medial elon-
gation prior to Z-ring formation and predominantly midcell
constriction thereafter [36,62]. In E. coli, preseptal synthesis is
less important to cell elongation [63], although a similar com-
petition between elongation and constriction for PG synthesis
has been reported [64]. In this picture, we may connect Q to a
component of PG synthesis (such as nonseptal PG subunits),
with � and T remaining the initiation of constriction and
the interval between constriction initiation and cell division,
respectively. The FtsZ dynamics then plays an essential role
in controlling the onset of constriction, with the thresholded
species Q connecting cell elongation to the cell division ma-
chinery via an unknown mechanism. Further experiments are
needed to distinguish between these possibilities.

4. Stochastic behavior of T

We now consider stochasticity in the intergenerational evo-
lution of size arising from the division process duration T .

Inspired by the phenomenon of FtsZ treadmilling, in which
it has been observed that divisome proteins follow tread-
milling filaments by a diffusion-and-capture mechanism as
the process of cell wall constriction occurs [65], we speculate
that the constriction-controlled division process may be ap-
proximately modeled as one-dimensional drift combined with
diffusion, where the traveling entity must traverse a certain
distance to complete the process of division. (Perhaps the
division machinery must move with the treadmilling FtsZ
filaments around the Z ring a certain number of times.) In this
scenario, T can be modeled as a first-passage time (FPT) for
one-dimensional drift with diffusion, whose distribution is an
inverse Gaussian [16,66]

PFPT(T ) =
√

PeT

2(T )3
e−Pe(T −T )2/2T T , (25)

where Pe is the dimensionless Péclet number characterizing
the drift-diffusion process and T is the mean FPT. (If the
process involves drift velocity v, diffusion constant D, and
traversal length 
, then the Péclet number Pe = 
v/D.) The
experimentally determined T distribution along with its fit
with an inverse Gaussian is shown in Fig. 6. From the fit,

FIG. 6. Experimentally observed distribution of T , compared
with an inverse Gaussian fit, with Eq. (25) corresponding to a FPT
process involving one-dimensional diffusion and drift. The fit yields
Péclet number Pe ≈ 14 and mean FPT T ≈ 20 min.
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we deduce a rough estimate of the Péclet number Pe ≈ 14
governing the underlying process (mean FPT T ≈ 20 min).

III. CONCLUSION

Observations of single C. crescentus cells with genetically
and chemically perturbed constriction rates have demon-
strated a role for constriction rate in size control and
homeostasis [67]. Future studies applying our framework to
observations of single cells with perturbed constriction rates,
i.e., modified T distributions, will yield further insights into
the mechanism of stochastic intergenerational homeostasis
under diverse conditions.

We have three primary reasons for not using previous
models [68,69] and introducing the time delay T . First, C.
crescentus does not follow adder, timer, or sizer models
[3,18]. In our model, having nonzero T is essential for model-
ing C. crescentus cells since setting T = 0 results in adderlike
behavior. Second, existing models (without T ) do not explain
the observed intergenerational scaling law that the conditional
next generation’s initial-size distribution given current gener-
ation’s initial size, when rescaled by its mean value, results
in an invariant distribution invariant of current generation’s
initial size. This scaling law is central to the stochastic inter-
generational dynamics of cell-size homeostasis, as shown in
[3,4]. Finally, we have identified FtsZ as a strong candidate
for Q, and the recruitment of FtsZ to the division plane to
initiate constriction as the thresholding process of Q. In this
scenario, the time taken for constriction is represented by T .

The mechanistic scheme we have proposed here displays
the common property of control systems that the set of pa-
rameter values that give rise to the same emergent dynamics
[constrained by Eqs. (18) and (19)], though infinitely large,
is vanishingly thin compared to the set of all possible pa-
rameter values. This point is underscored in Figs. 7, 8, and
9, which show that our predictions are robust irrespective of
specific choice of model parameters within their permitted
ranges. This allows for large situation-dependent variation
in internal parameters while conserving the intergenerational
size dynamics. In addition, preserving the constraints on cer-
tain protocols in our model allows for deconstraining other
aspects of cellular processes while robustly maintaining cell-
size homeostasis. As growth conditions and the quality of
available nutrients change, different underlying molecular cir-
cuitry may be involved in condition specific ways. Thus,
the net effect may be to alter the underlying stochastic
Hinshelwood cycle and hence the rates kX , kQ, and k′

Q and also
T . However, these alterations do not result in a breakdown of
homeostasis since the homeostasis mechanism is indifferent to
specific values of the rates of production of Q and X , provided
the basic feature of initiation of division upon Q crossing the
threshold is retained across conditions.

The data sets for constant growth conditions at 34 ◦C uti-
lized in this paper are published in [8].
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APPENDIX

1. Distribution of X when Q crosses the threshold

In the rescaled time coordinates [Eq. (7)], X and Q are de-
coupled [Eq. (8)]. Thus, the distribution of X� (copy numbers
of X when Q crosses threshold �) can be obtained by first
finding the FPT of Q crossing the threshold and then finding
the distribution of copy numbers of X at this FPT. The proba-
bility that this FPT lies between 0 and τ is equal to the proba-
bility that the value of Q at τ is greater than or equal to �,∫ τ

0
P�(t )dt =

∞∑
�

PQ(Q, τ ), (A1)

where P�(t ) is the probability density that Q first crosses
the threshold � at time t and PQ(Q, t ) is the probability
distribution of Q at time t . Differentiating with respect to τ ,

P�(t ) = −
�−1∑

0

∂PQ(Q, t )

∂t
. (A2)

Replacing the right-hand side using the master equation for Q
given by

∂PQ(Q, t )

∂t
= PQ(Q − 1, t ) − PQ(Q, t ), (A3)

we obtain

P�(t ) = PQ(� − 1, t ). (A4)

The master equation for a simple birth process [Eq. (A3)],
when solved using the method of characteristics on the
generating function, gives the simple Poisson solution

PQ(Q, t ) = tQ−Qi e−t

(Q − Qi )!
, (A5)

where Qi is the value of Q at birth (t = 0). Substituting this
in Eq. (A4), we get

P�(t ) = t�−Qi−1e−t

(� − Qi − 1)!
. (A6)

024405-10



ARCHITECTURAL UNDERPINNINGS OF STOCHASTIC … PHYSICAL REVIEW E 110, 024405 (2024)

FIG. 7. Intergenerational scaling law, where model predictions robustly match experimental data irrespective of the exact choice of model
parameters. (a) Conditional distributions of the next generation’s initial areas a(n+1)

i , given the current generation’s initial areas a(n)
i ), plotted for

four different current initial areas (marked by different colors). The solid lines are the results of exact model simulations with the parameters
kr = 10 and λ = 5000 µm−2 (same as Fig. 3), the dashed lines show simulation results with the parameters kr = 30 and λ = 10 000 µm−2,
and the points represent experimental data. (b) Both experimentally measured and theoretically calculated distributions in (a) overlap when
rescaled by their respective mean values.

Now, similar to Eq. (A5), the solution for the simple birth
process for X [Eq. (8)] is given by

PX (X, t ) = (krt )X−Xi e−krt

(X − Xi )!
, (A7)

where Xi is the initial value of X at birth (t = 0). Finally,
the distribution of X� (copy numbers of X when Q crosses
threshold �) is given by

PX�
(X�) =

∫ ∞

0
PX (X, t )P�(t )dt . (A8)

Solving this equation by substituting Eqs. (A6) and (A7)
results in Eq. (9).

2. Conditional moments of X (n+1)
� given X (n)

�

a. Moments of X� given Xi and Qi

For a cell starting with initial copy numbers Xi and Qi of X
and Q, respectively, with the change of variables �Q = � −
Qi, the generating function corresponding to the probability
distribution distribution in Eq. (9) is

G�(z|Xi,�Q) = zXi [1 + kr (1 − z)]−�Q. (A9)

To find the moments, first consider the operator z∂z applied to
the generating function

z∂zG�(z|Xi,�Q) = XiG�(z|Xi,�Q)

+ kr�QG�(z|Xi + 1,�Q + 1). (A10)

Thus, we can define the coefficients Cm,k as

(z∂z )mG�(z|Xi,�Q) =
m∑

k=0

Cm,k (Xi,�Q)

× G�(z|Xi + k,�Q + k) (A11)

such that

〈
X m

�

∣∣Xi,�Q
〉 =

m∑
k=0

Cm,k (Xi,�Q). (A12)

Now consider two operators F0 and F1 such that

F0G�(z|a, b) = aG�(z|a, b), (A13a)

F1G�(z|a, b) = krbG�(z|a + 1, b + 1). (A13b)

Thus, F0 leaves G� unchanged, F1 raises the index of G�

by 1, and

(z∂z )mG�(z|Xi,�Q) = (F0 + F1)mG�(z|Xi,�Q). (A14)

The coefficient Cm,k is determined by the sum of all per-
mutations of different orderings of F0 and F1 applied to G�

such that there are a total k of F1 and m − k of F0. Since
F0 does not change the index of G�, the contribution to
the coefficient from F1’s is fixed, independent of the ordering.
The contribution of any F0 depends only on how many F1’s
came before it in that ordering. Denoting the positions of F0’s
in a given ordering by pi, we have

Cm,k (Xi,�Q) = kk
r

(�Q + k − 1)!

(�Q − 1)!

×
∑

1�p1<p2<···<pm−k�m

∏
j

(Xi + p j − j),

(A15)

where the term outside the summation is the contribution from
the k F1’s, and the jth F0 has p j − j F1’s before it in the
ordering (a total of p j − 1 operators before it, out of which
j − 1 are F0’s). Thus,

〈X m
� |Xi,�Q〉 =

m∑
i=0

ki
r

(�Q + i − 1)!

(�Q − 1)!

×
∑

1�p1<p2<···<pm−i�m

m−i∏
j=1

(Xi + p j − j).

(A16)
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FIG. 8. Precision kinematics of stochastic intergenerational homeostasis, where model predictions robustly match experimental data
irrespective of the exact choice of model parameters. The conditional distributions of initial sizes after n generations a(n)

i , conditioned on the
starting generation’s initial size a(0)

i , plotted for (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5, and (f) n = 6. The four different starting
initial areas a(0)

i correspond to different colors. The solid lines are theoretical predictions based on exact simulations of the mechanistic model
with the parameters kr = 10 and λ = 5000 µm−2 (same as Fig. 4), the dashed lines are theoretical predictions with the parameters kr = 30
and λ = 10 000 µm−2, and the points are experimentally measured data. The diamonds denote the experimentally measured populationwide
homeostatic initial area distribution.

Keeping only the leading powers of Xi and �Q gives us

〈
X m

�

∣∣Xi,�Q
〉 =

m∑
i=0

ki
r[�Qi + o(�Qi−1)]

×
[(

m

m − i

)
X m−i

i + o
(
X m−i−1

i

)]
. (A17)

b. Joint moments of Xf and Qf given X�

After Q crosses the threshold, starting from copy numbers
X� and � of X and Q, respectively, here we first find the joint
generating function of their copy numbers at the time of divi-

sion, Xf and Q f . Division occurs at time T after the crossing
of the threshold (which we mark as t = 0 for this section),
following reactions given by Eqs. (1) and (6) with modified
post-threshold rate k′

Q instead of kQ. For this problem, we
cannot decouple the reactions using the equivalence method
anymore, because time is involved. The master equation for
these reactions is

∂P(X, Q, t )

∂t
= kX (X −1)P(X− 1, Q, t ) + k′

QXP(X, Q −1, t )

− (kX + k′
Q)XP(X, Q, t ). (A18)

024405-12



ARCHITECTURAL UNDERPINNINGS OF STOCHASTIC … PHYSICAL REVIEW E 110, 024405 (2024)

FIG. 9. Shape of the interdivision time distribution, where model predictions robustly match experimental data irrespective of the exact
choice of model parameters. (a) Division time distributions disambiguated by initial area plotted for different initial areas (distinguished by
different colors). (b) Full division time distribution. The solid lines are theoretical predictions based on exact simulations of the mechanistic
model with the parameters kr = 10 and λ = 5000 µm−2 (same as Fig. 5), the dashed lines are theoretical predictions with the parameters
kr = 30 and λ = 10 000 µm−2, and the points are experimentally measured steady-state data.

We convert this to a differential equation for the generating
function instead, using the transformation

G(zx, zq, t ) =
∑
X,Q

zX
x zQ

q P(X, Q, t ). (A19)

Thus,

∂t G = kX z2
x∂zx G + k′

Qzxzq∂zx G − (kX + k′
Q)zx∂zx G. (A20)

Solving this through the method of characteristics and set-
ting t = T , we get the joint generating function of Xf

and Q f ,

G(zx, zq|X�) = zX�

x f X�

q z�
q [ fqe fqT + kX (1 − e fqT )zx]−X�,

(A21a)

fq ≡ kX + k′
Q(1 − zq). (A21b)

Now, proceeding similarly to the method in Appendix 2 a, we
get

(zx∂zx )mG(zx, zq|X�)

=
m∑

i=0

(X� + i − 1)!

(X� − 1)!
ki

X

(
e fqT − 1

fq

)i

G(zx, zq|X� + i)

×
∑

1�p1<p2<···<pm−i�m

m−i∏
j=1

(X� + p j − j). (A22)

Now we can take the limit zx = 1,

(zx∂zx )mG(zx, zq|X�)|zx=1

=
m∑

i=0

(X� + i − 1)!

(X� − 1)!
ki

X

(
e fqT − 1

fq

)i

G(1, zq|X� + i)

×
∑

1�p1<p2<···<pm−i�m

m−i∏
j=1

(X� + p j − j). (A23)

We have〈
X mx

f Q
mq

f

∣∣X�

〉 = (zq∂zq )mq
[(

zx∂zx

)mx G(zx, zq|X�)|zx=1]|zq=1.

(A24)

Thus, we need to find (zq∂zq )m( e fqT −1
fq

)iG(1, zq|X� + i). First,

consider an expression of the form (z∂z )mu(z)[v(z)]−X |z=1

such that v(1) = 1. To get the coefficient of largest power of
X , each time we differentiate by parts, we only do so to the
[v(z)]−X term and ignore all other terms. Thus, the term with
the leading coefficient is

(−1)m (X + m − 1)!

(X − 1)!
[v(z)]−X−m[∂zv(z)]mu(z)zm. (A25)

Thus, the largest power of X is m and the coefficient of X m at
z = 1 is,

u(1)[−∂zv(z)|z=1]m. (A26)

Applying this to our system, the coefficient largest
power of X� (X m

� ) in (zq∂zq )m( e fqT −1
fq

)iG(1, zq|X� + i) is

(k′
Q)m[ ekX T −1

kX
]m+i. Inserting this back into Eq. (A24),

〈
X mx

f Q
mq

f

∣∣X�

〉 = emxkX T

[
k′

Q

kX
(ekX T − 1)

]mq

X
mx+mq

�

+ o
(
X

mx+mq−1
�

)
. (A27)

c. Incorporating the division rule

Applying the division rule given by Eq. (10) to Eq. (A17),〈(
X (n+1)

� )m
∣∣X (n)

f , Q(n)
f

〉
=

m∑
i=0

(
k(n+1)

r

)i[
(−r (n) )i

(
Q(n)

f

)i + o
([

Q(n)
f

]i−1)]

×
[(

m

i

)
(r (n) )m−i

(
X (n)

f

)m−i + o
([

X (n)
f

]m−i−1)]
. (A28)
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Combining with Eq. (A27), we get

〈(
X (n+1)

�

)m∣∣X (n)
�

〉 =
m∑

j=0

c(n)
j;m

(
X (n)

�

) j
, (A29a)

c(n)
m;m =

(
r (n)

[
ek(n)

X T (n) − k′(n)
Q

k(n)
X

k(n+1)
r (ek(n)

X T (n) − 1)

])m

≡ [A(n)]m, (A29b)

where c j;m’s are finite functions of kX , kQ, k′
Q, �, and r, which

are all finite positive stochastic variables (except k′
Q, which is

finite and non-negative).

3. Necessary and sufficient condition for cell-size homeostasis

For cell size to be in homeostasis, starting from any given

X (0)
� , 〈(X (n+1)

� )m|X (0)
� 〉 should tend to the same finite value as

n tends to infinity irrespective of the starting X (0)
� value. Here

the overline represents averaging over the ensemble of kX , kQ,
k′

Q, �, and r values.

a. Forgetting the initial condition

One of the conditions for cell size to be in homeostasis is
that 〈(X (n+1)

� )m|X (0)
� 〉 should not depend on X� as n tends to

∞. From Eq. (A29),〈(
X (n+1)

�

)m∣∣X (n)
�

〉 = [A(n)]m
(
X (n)

�

)m + o
((

X (n)
�

)m−1)
. (A30)

Continuing the expansion of the above series, we get

〈(
X (n+1)

�

)m∣∣X (0)
�

〉 =
[

n∏
k=0

A(k)

]m(
X (0)

�

)m + o
((

X (0)
�

)m−1)
,

(A31)

where the overline represents averaging over the ensemble of
all possible values of A(k). Thus, for the dependence on X (0)

�

to vanish as n tends to ∞, it is necessary to have

lim
n→∞

[
n∏

k=0

A(k)

]m

= 0. (A32)

To simplify the calculation, we assume all A( j)’s are inde-
pendent and identically distributed variables. This requires
all variables r, kX , k′

Q, kr , and T in any given generation to
not depend on their values in the previous generation and
for kr to be independent of other variables even within the
same generation. Here kQ = kX /kr ; thus we are requiring that
kQ and kX are correlated, but kr is independent. Under these
assumptions, the above relation can be rewritten as

lim
n→∞ an

m = 0, (A33)

where am is the mth moment of A, and the above relation
must be satisfied for all moments. Thus, |am| < 1 ∀ m is a
necessary condition for cell-size homeostasis. In [4] we show
that this condition is equivalent to saying that the maximum
possible value of A is less than or equal to 1, unless A is Dirac
δ distributed (in which case, the maximum possible value is

strictly less than 1). Next we prove that this condition is also

sufficient for 〈(X (n)
� )m|X (0)

� 〉 to tend to the same finite value as
n tends to infinity irrespective of the starting X (0)

� value, for all
moments m, through the principle of mathematical induction.

b. Convergence of the first moment

Substituting m = 1 in Eq. (A16),

〈X�|Xi,�Q〉 = Xi + kr�Q. (A34)

Substituting m = 1 in Eq. (A23),

zx∂zx G(zx, zq|X�)|zx=1

= G(1, zq|X�)X� + X�kX

(
e fqT − 1

fq

)
G(1, zq|X� + 1).

(A35)

Now, from Eq. (A24),

〈Xf |X�〉 = [(zx∂zx )G(zx, zq|X�)|zx=1]|zq=1

= ekX T X�, (A36a)

〈Q f |X�〉 = zq∂zq G(1, zq|X�)|zq=1

= � + k′
Q

kX
(ekX T − 1)X�. (A36b)

Combining the above equations with Eq. (A34) using the
division rules [Eq. (10)],

〈
X (1)

�

∣∣X�

〉 = rekX T

[
1 − k′

Q

kX
k(1)

r (1 − e−kX T )

]
X� + k(1)

r

�

2
.

(A37)

Defining M1 as the maximum possible value of k(1)
r

�
2 , con-

sider the stochastic map

xn+1 = A(n)xn + M1, (A38)

with x0 = X (0)
� . If the above series converges to a finite value

as n tends to ∞, 〈X (n)
� |X (0)

� 〉 will also converge due to the
relation 〈

X (n)
�

∣∣X (0)
�

〉
� xn ∀ n, (A39)

from the definition of M1. By continuing to expand the series
to x0 and taking the ensemble average over A values, we get

xn+1 = an+1
1 x0 + M1

n∑
j=1

a j
1. (A40)
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Since we have the condition |a1| < 1, the above converges to

the finite value M1/(1 − a1) as n → ∞. Thus, 〈X (n)
� |X (0)

� 〉 also
converges to a finite value. Furthermore, the largest power of

X (0)
� in 〈X (n)

� |X (0)
� 〉 is 1, and in the previous section we have

already shown that the coefficient of leading power goes to

0 as n tends to ∞ and thus 〈X (n)
� |X (0)

� 〉 becomes independent
of X (0)

� .

c. Convergence of higher moments

Here we prove the necessary condition |am| < 1 ∀ m is also
sufficient through the principle of mathematical induction. We
have already proved that this condition is sufficient for the
convergence to a finite initial-condition-independent value of
the first moment m = 1. Next, assuming it is sufficient for all
moments m = 1 to k, we need to show that it must also be
sufficient for m = k + 1. Thus, as n tends to ∞, 〈(X (n)

� ) j |X (0)
� 〉

for j � k all tend to their finite steady-state values, say, y j ,
that are independent of X (0)

� . From Eq. (A29),

lim
n→∞

〈
(X (n+1)

� )k+1
∣∣X (0)

�

〉

= lim
n→∞(A(n) )k+1

〈(
X (n)

�

)k+1∣∣X (0)
�

〉 + k∑
j=0

c(n)
j;k+1y j . (A41)

Now consider the series

zn+1 = (A(n) )k+1zn +
k∑

j=0

c j;k+1y j, (A42)

with some arbitrary initial condition z0, where c j;k+1 are
the maximum possible values of c(n)

j;k+1. If this series
converges to the same finite value independent of z0,
limn→∞〈(X (n)

� )k+1|X (0)
� 〉 also converges to that value due to

Eq. (A41). First, consider that since there are finite terms in
the summation and each term is finite, the summation term
has a finite upper bound, say, Mk+1. Then consider the series

xn+1 = (A(n) )k+1xn + Mk+1, (A43)

with the initial condition x0 = z0. This satisfies

zn � xn ∀ n. (A44)

Thus, if xn converges to a finite value as n tends to ∞, zn must
converge to a finite value too. By further expanding the series
to x0 and taking the ensemble average over A values we get

xn+1 = an+1
k+1x0 + Mk+1

n∑
j=1

a j
k+1. (A45)

Since we have the condition |ak+1| < 1, the above converges
to the finite value Mk+1/(1 − ak+1) as n → ∞. Thus, zn also
converges to a finite value that is less than or equal to this
value. Next, expanding the series for zn+1 [Eq. (A42)] until z0

and taking the ensemble average over A values, we find that
the only term containing z0 is an+1

k+1z0, which goes to zero as n
tends to ∞ when |ak+1| < 1. Thus, zn tends to a finite value

independent of z0 and hence 〈(X (n)
� )k+1|X (0)

� 〉 also tends to a
finite value independent of X (0)

� , thus completing the proof.

4. Quasideterministic limit

In the quasideterministic limit, the copy numbers of X and
Q are considered large enough such that the reactions given
by Eqs. (1) and (6) proceed deterministically for a given cell
cycle. Thus, the primary source of noise in the system is due
to the intergenerational variation of reaction rates kX , kQ, and
k′

Q, as well as the time between the crossing of threshold and
division T .

a. Conditional moments of X�

Consider the smaller conditional moments of X� in the
limit that the copy numbers of X and Q are large, i.e.,
Xi,�Q � m � 1. In Eq. (A16), setting Xi + p j − j ≈ Xi etc.,

〈
X m

�

∣∣Xi,�Q
〉 ≈

m∑
i=0

ki
rni

(
m

m − i

)
X m−i

i

= (Xi + kr�Q)m. (A46)

Applying the division rules [Eq. (10)] to the above,〈(
X (n+1)

�

)m∣∣X (n)
f , Q(n)

f

〉
≈ [

r (n)X (n)
f + k(n+1)

r

((
1
2 + r (n)

)
� − r (n)Q(n)

f

)]m
.

(A47)

Next, in order to find joint moments of Xf and Q f given X�

by solving Eq. (A24) using Eq. (A23), first consider

zq∂zq

(
e fqT − 1

fq

)i

G(1, zq|X� + i)

= zq∂zq (e[kX +k′
Q (1−zq )]T − 1)iz�

q [kX + k′
Q(1 − z)]X

× [kX + k′
Q(1 − zq)e[kX +k′

Q (1−zq )]T ]−X−i. (A48)

Consider (z∂z )mu(z)z�[v(z)]−X� |z=1 such that v(1) = 1. Since
X 2

� � X� and �2 � �, all other terms are insignificant com-
pared to the terms with highest powers of X� and � added.
First,

z∂zu(z)z�[v(z)]−X� |z=1 ≈ u(1){�z�[v(z)]−X�

− X�[v(z)]−X�−1[∂zv(z)]}|z=1.

(A49)

Now, since we are keeping only the highest powers of X� and
� added, we will not further differentiate ∂zv(z) on subse-
quent steps (since it would result in terms with lower powers
of X�), treating it as a constant. Thus,

(z∂z )mu(z)z�[v(z)]−X� |z=1

≈ u(1)
m∑

i=1

(X� + i − 1)!

(X� − 1)!
[−∂zv(z)|z=1]i

(
m

i

)
�m−i

≈ u(1)
m∑

i=1

X i
�[−∂zv(z)|z=1]i

(
m

i

)
�m−i

= u(1)[� − ∂zv(z)|z=1X�]m. (A50)
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Applying this to our problem, we get

〈
X mx

f Q
mq

f

∣∣X�

〉 ≈
mx∑
i=0

(X� + i − 1)!

(X� − 1)!
(ekX T − 1)i

(
� + k′

Q(ekX T − 1)

kX
X�

)mq ∑
1�p1<p2<···<pmx−i�mx

mx−i∏
j=1

(X� + p j − j)

≈
mx∑
i=0

X i
�(ekX T − 1)i

(
� + k′

Q(ekX T − 1)

kX
X�

)mq(
mx

mx − i

)
X mx−i

�

= emxkX T X mx
�

(
� + k′

Q(ekX T − 1)

kX
X�

)mq

. (A51)

Thus, in Eq. (A47), expanding in powers of Xf and Q f and then replacing Xf by ekX T X� and Q f by � + k′
Q (ekX T −1)

kX
X� and

recombining, we get

〈(
X (n+1)

�

)m∣∣X (n)
�

〉 ≈
(

A(n)X (n)
� + k(n+1)

r �

2

)m

∀ m � X�,�, (A52)

where A is as defined in Eq. (A29).

b. Variation of X (n)
f and X (n+1)

i with X (n)
i

From Eq. (A51),

Xf = ekX T X�. (A53)

Applying the division rule [Eq. (10)],

X (n)
i = r (n−1)ek(n−1)

X T (n−1)
X (n−1)

� . (A54)

Also, from Eqs. (A53) and (A52),

X (n)
f = ek(n)

X T (n)

(
A(n−1)X (n−1)

� + k(n)
r �

2

)
. (A55)

Replacing X� from Eq. (A54),

X (n)
f = ek(n)

X T (n)

[
1 − k′(n−1)

Q

k(n−1)
X

k(n)
r

(
1 − e−k(n−1)

X T (n−1))]
X (n)

i + ek(n)
X T (n) k(n)

r �

2
. (A56)

Next, using the division rule (10),

X (n+1)
i = r (n)ek(n)

X T (n)

[
k(n)

r �

2
+

(
1 − k′(n−1)

Q

k(n−1)
X

k(n)
r

(
1 − e−k(n−1)

X T (n−1)))
X (n)

i

]
. (A57)

c. Emergent simplicity: Scaling collapse of conditional
initial-size distributions

If and only if rescaling the conditional next generation’s
initial-size distribution given the current generation’s initial
size results in a distribution invariant of the current genera-
tion’s initial size, the stochastic map takes the form [4]

a(n+1)
i = snμ

(
an

i

)
, (A58)

where ai is the initial size (size at birth), μ is a deterministic
function, and s(n)’s are independent and identically distributed
stochastic variables. If we are to write Eq. (A57) in this form,
the stochastic part of both the coefficient of Xi and the constant
on the right-hand side must be the same and must be indepen-
dent and identically distributed across generations. This is true
when (i) k′

Q = 0; (ii) the rates kX and kQ are proportional, i.e.,
they both have noise but their ratio is constant kr ; and (iii) �

has negligible noise. If these conditions are satisfied,

X (n+1)
i = r (n)ek(n)

X T (n)[
X (n)

i + 1
2 kr�

]
. (A59)

This results in the stochastic map given by Eqs. (15) and
(17). Thus, the invariant mean-rescaled distribution of the next
generation’s initial sizes given the current generation’s initial
size is given by

Ps(s) =
∫∫∫

dr dkX dT Pr,kX ,T (rekX T , kX , T )δ

(
s − rekX T

rekX T

)
,

(A60)

where the overline denotes an intergenerational average and
Pr,kX ,T is the joint distribution of r, kX , and T .
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5. Alternate division rules

a. A constant amount of Q is split evenly and the rest is split
according to division ratio

Consider a general alternative to Eq. (10),

Q(n+1)
i = C

2
+ r (n)

[
Q(n)

f − C
]
, (A61)

where a constant C amount of Q f is divided equally among
the daughter cells at division and the remainder is divided
according to the size division ratio r. Here, for consistency,
C must not be greater than the minimum possible value of Q f ,
which is �. Thus, C � �. First, consider the effect on cell-
size homeostasis. Since the coefficient of Q f remains the same
irrespective of C, Eq. (A28) does not change, and hence the
necessary and sufficient condition for cell-size homeostasis
[given by Eq. (12)] remains the same.

Next consider the dynamics in the quasideterministic limit.
Applying the new division rule to Eq. (A47), Eq. (A52) now
results in

X (n+1)
� = A(n)X (n)

� + k(n+1)
r

[
� − C

2
+ r (n)(C − �)

]
.

(A62)

Thus, Eq. (A57) becomes

X (n+1)
i = r (n)ek(n)

X T (n)

(
k(n)

r

[
� − C

2
+ r (n−1)(C − �)

]

+
[

1 − k′(n−1)
Q

k(n−1)
X

k(n)
r (1 − e−k(n−1)

X T (n−1)
)

]
X (n)

i

)
.

(A63)

The constraint of mean rescaling of the distribution of X (n+1)
i

given X (n)
i requires the stochastic part of both terms to be

proportional in order to express the above equation in the form
given by Eq. (A58). Thus, k′

Q = 0, kr is constant, and C = �.
Thus, the division rule with C = � in Eq. (10) is not required
to maintain cell-size homeostasis, but is needed for the mean
rescaling of conditional initial-size distributions.

b. All of Q is split evenly

Consider another alternative to Eq. (10),

Q(n+1)
i =Q(n)

f

2
, (A64)

where all of Q f is divided equally among the daughter cells
at division. Applying this altered division rule to Eq. (A17),
Eq. (A28) now becomes〈(

X (n+1)
�

)m∣∣X (n)
f , Q(n)

f

〉
=

m∑
i=0

(
k(n+1)

r

)i{
2−i

(
Q(n)

f

)i + o
([

Q(n)
f

]i−1)}

×
[(

m

i

)
(r (n) )m−i(X (n)

f )m−i + o([X (n)
f ]m−i−1)

]
. (A65)

Combining with Eq. (A27), Eq. (A29) is modified to

〈(
X (n+1)

�

)m∣∣X (n)
�

〉 =
m∑

j=0

c′(n)
j;m

(
X (n)

�

) j
, (A66a)

c′(n)
m;m = r (n)ek(n)

X T (n) − k(n+1)
r k′(n)

Q

2k(n)
X

(
ek(n)

X T (n) − 1
)

≡ A′(n). (A66b)

The rest of the derivation of the necessary and sufficient
condition for cell-size homeostasis does not change. Thus, the
necessary and sufficient condition is still given by Eq. (12),
except that A is replaced by A′ as defined above.

Next consider the dynamics in the quasideterministic limit.
Applying the new division rule to Eq. (A47), Eq. (A52) now
results in

X (n+1)
� =A′(n)X (n)

� + k(n+1)
r

�

2
. (A67)

Thus, Eq. (A57) becomes

X (n+1)
i = r (n)ek(n)

X T (n)

[
k(n)

r �

2

+
(

1 − k(n)
r

2r (n−1)

k′(n−1)
Q

k(n−1)
X

(
1 − e−k(n−1)

X T (n−1)))
X (n)

i

]
.

(A68)

The constraint of mean rescaling of the distribution of X (n+1)
i

given X (n)
i requires the stochastic part of both terms to be

proportional in order to express the above equation in the form
given by Eq. (A58). Thus, k′

Q = 0 and kr is constant. Note that
for the special case k′

Q = 0, this alternate division rule given
by Eq. (A64) is exactly identical to the original division rule
[Eq. (10)] because Q f = �.

6. Exact solution for k′
Q = 0

For k′
Q = 0, we have Qi = �Q = �/2 and Q f = �. Set-

ting �Q = �/2 in Eq. (9),

PX�
(X�|Xi )

=
(

X� − Xi + �/2 − 1

�/2 − 1

)[
kr

1 + kr

]X�−Xi
[

1

1 + kr

]�/2

,

(A69)

where X� � Xi. Thus, X� = Xi + ξ0, where ξ0 is drawn from
a Pascal distribution with the parameters �/2 and 1/(1 + kr ).
Next, setting k′

Q = 0 in Eq. (A21), the generating function of
Xf given X� is

G(z, t ) = zX�e−X�kX t [1 − (1 − e−kX t )z]−X�. (A70)

From this generating function, we get the conditional distri-
bution of Xf given X�,

Pf ;�(Xf |X�) =
(

Xf − 1

X� − 1

)
(1 − e−kX T )Xf −X�e−X�kX T , (A71)

for Xf � X�. Thus, Xf = X� + ξ , where ξ is drawn from
a Pascal distribution with the parameters X� and e−kX T .
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Combining this with Eq. (A69), the distribution of Xf given
Xi is

Pf (Xf |Xi )

=
Xf∑

x=Xi

(
Xf − 1

x − 1

)
(1 − e−kX T )Xf −xe−xkX T

×
(

x − Xi + �/2 − 1

�/2 − 1

)[
kr

1 + kr

]x−Xi
[

1

1 + kr

]�/2

.

(A72)

Using the properties of Pascal distributions, from Eq. (A69),

〈Xf |X�〉 = X�ekX T . (A73)

Applying this to Eq. (A71),

〈Xf |Xi〉 = ekX T

(
Xi + kr�

2

)
. (A74)

Rewriting the above equation in terms of cell size instead of
copy numbers by scaling X by 1/λ, and taking the intergener-
ational average,

〈a f |ai〉 = ekX T

(
ai + kr�

2λ

)
, (A75a)

〈
a(n+1)

i

∣∣a(n)
i

〉 = rekX T

(
a(n)

i + kr�

2λ

)
. (A75b)
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