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Enzyme-substrate kinetics form the basis of many biomolecular processes. The interplay between substrate
binding and substrate geometry can give rise to long-range interactions between enzyme binding events. Here
we study a general model of enzyme-substrate kinetics with restricted long-range interactions described by an
exponent −γ . We employ a coherent-state path integral and renormalization group approach to calculate the
first moment and two-point correlation function of the enzyme-binding profile. We show that starting from
an empty substrate the average occupancy follows a power law with an exponent 1/(1 − γ ) over time. The
correlation function decays algebraically with two distinct spatial regimes characterized by exponents −γ on
short distances and −(2/3)(2 − γ ) on long distances. The crossover between both regimes scales inversely with
the average substrate occupancy. Our work allows associating experimental measurements of bound enzyme
locations with their binding kinetics and the spatial conformation of the substrate.

DOI: 10.1103/PhysRevE.110.024404

I. INTRODUCTION

The binding of enzymes to substrates can catalyze chem-
ical reactions. Enzyme-substrate kinetics therefore form the
basis of many biochemical processes. Such kinetics include,
for example, the binding of polymerase molecules to the DNA
for the transcription of genes to messenger ribonucleic acid
molecules [1], the binding of oxidase enzymes to the outer
membrane of mitochondria for the oxidation of monoamines,
or the multisite phosphorylation of proteins [2].

Enzymes can interact in many ways when binding to the
substrate. Transcription factors, which control the transcrip-
tion of genes, often need to bind combinatorically together
with other transcription factors in order to initiate transcrip-
tion [3]. Some enzymes seem to slide diffusively along the
substrate, such as the DNA methyl transferase DNMT1 [4]. In
many biologically relevant scenarios, the substrate undergoes
conformational changes when bound by an enzyme [5]. This
is, for example, used to increase the specificity of enzyme
binding in a kinetic proofreading scheme [6]. Many enzymes
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that bind to the DNA, including chromatin modifiers, cause
conformation changes thereof, most notably the compaction
and decompaction of the DNA [7]. Positions that are far apart
measured along the DNA sequence might then be close in
physical space. Due to the feedback of enzyme binding with
chromatin conformation, this gives rise to effective long-range
interactions between binding events. Long-range interactions
originating from fluctuating substrates are also known to drive
the formation of ParB condensates in bacterial cells [8–10]
and the formation of epigenetic domains via chromatin re-
modeling [11,12].

Experimentally, novel technologies in molecular biology
allow quantifying the binding locations of enzymes to sub-
strates like membranes or the DNA in a static manner. These
technologies include super-resolution microscopy such as
DNA Paint [13], which can image a wide range of enzyme
binding events with the resolution of individual enzymes
[14]. For one-dimensional substrates, single-cell sequencing
technologies allow measuring the consequences of enzyme
binding, such as chemical modifications of the DNA or hi-
stone tails, with the resolution of single base pairs and in
individual cells [15,16]. A theoretical prediction about the
relation between the statistics of bound positions on the sub-
strate and the kinetics of enzyme binding would set the basis
for concluding the enzyme kinetics and substrate conforma-
tion from such experiments.

In thermal equilibrium, the binding and unbinding of en-
zymes are strictly constrained by the condition of detailed
balance. In this case, the equilibrium enzyme binding profile is
predicted by the Gibbs free energy [17]. In the context of cell
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biology, enzyme-substrate kinetics is often out of equilibrium.
Prominent examples of such kinetics are chromatin modifiers,
which catalyze the irreversible deposition of epigenetic marks
on the DNA or histone tails and may lead to conformational
changes of the DNA. In these cases, a description in terms
of thermodynamic potentials is not feasible and the theory
of stochastic processes provides a general framework for de-
scribing nonequilibrium enzyme-substrate kinetics [18–21].

Biological substrates and enzymes are often highly nonlin-
ear and the spatial dimensions cannot be neglected [21–26].
In these cases, standard approximation schemes of master
equations and Langevin equations do not exist or are diffi-
cult to use. In these cases, path-integral representations of
stochastic processes provide a versatile and powerful frame-
work for studying stochastic processes. These include the
Martin-Siggia-Rose-Janssen-de Dominicis functional integral
representation of stochastic differential equations and the
coherent-state path integral representation of master equa-
tions [27]. In both cases, expectation values of observables
can be expressed in terms of deterministic path integrals over
a pair of conjugated fields. Path-integral representations allow
for the application of powerful theoretical tools, such as per-
turbation theory and renormalization group theory [28], in the
context of stochastic processes.

In this work, we develop a theoretical framework of
the out-of-equilibrium enzyme-binding kinetics on substrates.
Specifically, we use a coherent-state path-integral approach in
combination with renormalization-group calculations to ob-
tain the moments of the distribution of enzymes bound on the
substrate. We show that the first moment, the fraction of bound
sites, increases according to a power law with an exponent
depending on the decay exponent of long-range interactions.
The two-point correlation function decays in two temporal
regimes characterized by different exponents. For short dis-
tances, it is dominated by active feedback between enzyme
binding events, and for long distances by conservative noise.

II. MODEL DEFINITION

We consider a general model for enzyme-substrate ki-
netics. In this model, the substrate is represented by a
one-dimensional lattice of size N . On this lattice, each po-
sition is a potential binding site indexed by i ∈ {1, . . . , N}.
Enzymes can bind to and unbind from lattice sites with rates
that depend on the positions of other bound enzymes. This
dependence of the binding rates is encoded in an interaction
kernel Ji j which gives the contribution of a bound enzyme at
position j to the enzyme binding rate at position i [Fig. 1(a)].

We here restrict interactions to the nearest bound sites,
specifically, if the nearest bound sites are at positions j1 and
j2, then the interaction kernel is Ji, j1 + Ji, j2 , where the two
terms correspond to the contribution from the left and right
bound neighbor, respectively. Such interactions are in the lit-
erature known as restricted long-range interactions [29–31].
A restriction of the interaction range is plausible both for
physical and biological reasons. Physically, a restriction of the
interaction range is required to adequately define the thermo-
dynamic limit for interactions that decay with an exponent
that is smaller than the dimension of the system [32]. Bi-
ologically, interactions are often restricted in range due to
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FIG. 1. (a) Schematic depicting the stochastic enzyme-substrate
model. In this model, enzymes bind to a substrate with a binding rate
that depends on the distance to the nearest bound sites. In the context
of cell biology, substrates like DNA have dynamic geometries, such
that local interactions in space lead to long-range interactions along
the linear lattice. (b) If the size of compacted regions of the substrate
is associated with a characteristic length scale, then long-range inter-
actions are restricted to that length scale.

an effectively finitely sized substrate. For example, in the
formation of epigenetic domains the presence of nucleosomes
limits the interaction between enzymes [33] to regions much
smaller than the total length of the DNA molecule. On the
scale of tens of nanometers nucleosomes from structures that
have been described as clutches and that are separated by
regions of open chromatin [34]. Beyond a length scale that
is defined by the characteristic size of these clutches the rate
of interactions between genomic loci is reduced [Fig. 1(b)].
While the statistics of chromatin interactions on the scale of
tens of nano meters is poorly understood the restricted long-
range interactions we study in this manuscript describe such
scenarios heuristically.

We further only consider translationally invariant kernels
of the form J (|i − j|). The unbinding rate of the enzyme is
constant and we denote it by u. In equilibrium, the binding
and unbinding rates would be related by the condition of
detailed balance. Here, since many enzymatic processes are
microscopically irreversible through the conversion of ATP to
ADP, we do not make this assumption and take the unbinding
rate to be independent. We further allow enzymes to perform
random walks along the substrate with a rate ε.

With this, the state of the system is described by a random
vector σ with entries representing enzyme occupancy: σi = 1
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if site i is bound and σi = 0 otherwise. The time evolution of the probability of finding a given binding profile σ at a time t then
follows a master equation of the form

∂P(σ )

∂t
=

N∑
i=1

N∑
l=i+1

Ji,i+l

⎛
⎝ l−1∏

j=1

σ̄i+ j

⎞
⎠σl [σiP(σ̄ i ) − σ̄iP(σ )] +

N∑
i=1

i−1∑
l=1

Ji,i−l

⎛
⎝ l∏

j=1

σ̄i− j

⎞
⎠σl [σiP(σ̄ i ) − σ̄iP(σ )]

+ ε

N∑
i=1

[σ̄iσi+1P(σ̄ i ) − σiσ̄i−1P(σ̄ i−1)] + ε

N∑
i=1

[σ̄iσi+1P(σ̄ i ) − σiσ̄i+1P(σ̄ i+1)] + u
N∑

i=1

σi[P(σ̄ i ) − P(σ )]. (1)

Here we introduced a notation for the vector σ̄ i which has the
same elements as σ, but the value of σi at position i is replaced
by 1 − σi. Similarly, we define σ̄i = 1 − σi. In Eq. (1) the
first and second terms describe interactions with the right and
left nearest neighbor, respectively. The third and fourth terms
describe the random walk of enzymes along the substrate and
the final term describes enzyme unbinding events.

III. COHERENT-STATE PATH INTEGRAL FORMULATION
OF THE MASTER EQUATION

Having defined a general model for the kinetics of enzyme-
substrate binding in terms of Eq. (1), we now investigate the
nonstationary distribution P(σ, t ) in terms of its moments. To
this end, we employ a coherent-state path integral formulation
of the master equation, Eq. (1) [27]. Taking the semiclassical
limit we will compare the prediction for the first- and higher-
order moments to numerical simulations.

To define the path-integral representation we first introduce
a Fock space, in which we represent lattice configurations
in bra-ket notation. We define creation operators a†

i which
formally represent the binding of enzymes to site i. With
these, we can express a given state |σ 〉 = |σ1, . . . , σN 〉 as
the repeated application of creation operators on the empty
lattice, |0〉,

|σ 〉 = a†σ1
1 · · · a†σN

N |0〉 . (2)

We also define annihilation operators, ai, which represent the
unbinding of enzymes from a given site i. The annihilation
operators are conjugate to the creation operators, such that
both act on a given lattice configuration as follows:

a†
i |σ 〉 = |σi + 1〉 ,

ai|σ 〉 = σi|σi − 1〉 . (3)

With these definitions, the creation and annihilation operators
follow standard commutation rules,

[ai, a†
i ] = 1. (4)

We can now write the probability distribution in Fock space
formally as [35]

|P(t )〉 =
∑

σ

P(σ, t )a†σ1
1 ...a†σN

N |0〉 . (5)

Using this notation, we can formally rewrite the master equa-
tion in terms of the creation and annihilation operators,

∂t |P(t )〉 = −H |P(t )〉 , (6)

with a “Hamiltonian” H defined as

H =
N∑

i=1

N−i∑
l=1

Ji,i+l

l−1∏
j=1

[(1 − a†
i+ jai+ j )

· a†
i+l ai+l (a

†
i δ̂σi,0 − δ̂σi,0 )]

+
N−1∑
i=1

ε(1 − aia
†
i+1)δ̂σi,1δσi+1,0

+
N−1∑
i=1

ε(1 − aia
†
i−1)δ̂σi,1δσi−1,0

+
N∑

i=1

i−1∑
l=1

Ji,l

l∏
j=1

[(1 − a†
i− jai− j ) · a†

i−l ai−l ] . (7)

The operators, δ̂σi,k are equal to the identity if a site i is
occupied by k enzymes and 0 otherwise. These operators
enforce that only a single enzyme can be bound at a given site.
Although we will refer to H as a Hamiltonian, H does not
represent an energy as it is not necessarily Hermitian unless
detailed balance is fulfilled.

With this, we can write the expectation value of any ob-
servable A(σ, t ) as

〈A(σ, t )〉 =
∑

σ

A(σ )P(σ, t ) . (8)

We can rewrite this equation as

〈A(σ, t )〉 = 〈0|
∏

i

σie
ai A(σ )|P(t )〉 , (9)

where we introduce a coherent state basis 〈0|ea, which has the
property to be the left eigenstate of the creation operator a†,

〈0|eaa† =
∞∑

n=1

〈0|
n!

ana† = 〈0|ea. (10)

Having defined all the rules of the operators
(cf. Appendix A) we now proceed to derive the path-integral
representation of the master equation. To this end, we define a
continuous field, φi(t ), giving the local density of bound sites
at position i. We then use the decomposition of 1,

1 =
∫

dφi dφ̂i e−φ̂iφi eφia
†
i |0〉〈0|eφ̂iai , (11)

to derive a path-integral representation of the master equa-
tion following standard steps [35,36]. This decomposition
introduces a second field, φ̂, which is called the response
field or conjugated field. In this path-integral representation
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the moments of the distribution P(φ, t ) can be expressed in
terms derivatives of the generating functional [37,38],

Z[h, φ, φ̂] =
∫

D[h, φ, φ̂]e−S[φ,φ̂]+∫
dt

∑
i [hiφi+ĥiφ̂i] , (12)

where we used the notation D[h, φ, φ̂] to denote the integrals
over all positions

∏
i dφidφ̂idhi. The argument in the expo-

nential is an action of the form,

S[φ̂, φ] = −
∑

i

φi(t f ) +
∫ t f

0
dt

∑
i

(φ̂i∂tφi + Hi[φ̂, φ]) ,

(13)
with Hamiltonian,

Hi = (1 − φ̂i )e
−φ̂iφi

N−i∑
l=1

l−1∏
j=1

Ji,i+l (l )φ̂i+lφi+l (1 − φi+ j ) + o.t. ,

(14)

where we summarized the hopping and left-nearest-neighbor
interactions by o.t.

In order to evaluate the path integral, we define how the δ̂

operators in H act on the coherent-state basis by following the
rules in Ref. [39],

〈φ|a†
i δ̂ni,mi |φi〉 = 1

mi!
φ̂i(φ̂iφi )

mi e−φiφ̂i ,

〈φ|aiδ̂ni,mi |φ〉 = 1

(mi − 1)!
φi(φ̂iφi )

m−1e−φiφ̂i

〈φ|δ̂ni,mi |φ〉 = 1

mi!
(φ̂iφi)

mi e−φiφ̂i . (15)

Many different approaches have been proposed to deal with
the particle exclusion enforced by the δ̂ operator. Examples
of this are fermionic field theories [40] or more recent ap-
proaches using negative rates [41]. Here we will use the
hard-bosonic path-integral approach [39]. The benefit of using
this formalism is that it gives a characteristic length scale,
which distinguishes different spatial regimes of the correlation
function and which will be important for its calculation.

A. Semiclassical limit of the field theory

In order to obtain the moments of P(σ, t ), we now derive
the semiclassical solution of the field theory. To this end, we
will evaluate the path integral in Eq. (12) for fields that make
the action S extremal. This limit will be shown to be valid if
the average enzyme occupancy is small.

Solutions to this model with local interactions are known
or can easily be obtained using the methods we describe below
[35,36]. Here we study interactions that are motivated by the
interplay between enzyme binding and geometric changes of
the substrate. For example, enzyme binding could compact the
substrate, such that sites far away on the lattice are in close
proximity in real space. Such interactions are therefore long-
ranged in nature and we consider a general class of nonlocal
interaction kernels of the form Ji,i+l = 1/lγ . We also made the
implicit assumption that the substrate reaches a steady state on
much faster time scales compared to the enzyme processes.
This is indeed the case in relevant biological contexts. For
example, on the length scale on which DNA loops are unim-
portant, the local equilibration of the chromatin occurs orders

of magnitude faster than the epigenetic modifications thereof
are established or removed during cell state transitions [42].

The exponent γ describes how rapidly the interaction
strength decays along the substrate. In the special case that
the substrate is a polymer in equilibrium, the exponent γ can
be related to the exponent ν describing the statistics of the
end-to-end distance. In three spatial dimensions, this relation
reads γ = (3 + g)ν, where g is an exponent describing the
two-point distribution function at close distances [43]. For
example, for compact polymers, the exponent describing the
distance between two internal points is ν = 1/2 [44], giving a
value of γ = 3/2. This forms a lower bound for the exponent
γ in a compact equilibrium polymer. A polymer in an ex-
tended form would yield a value of γ ≈ 5. Different values of
γ can be obtained for nonequilibrium substrates. For example,
for a compacted substrate that does not fluctuate and is space
filling the total binding rate of enzymes would scale as L2/3,
where L is the size of the substrate. As the total binding rate is
the integral over the interaction kernel the exponent γ in this
case would be γ = 1/3.

In the first step, we rewrite the Hamiltonian, Eq. (14), in
continuous space with coordinate s. On introducing a spatial
discretization

∑
i 	s → ∫

ds, where 	s is the lattice spacing
and s a continuous coordinate, the Hamiltonian in the action,
Eq. (14) becomes

H[φ̂, φ] = J (1 − φ̂(s))e−φφ̂

·
[ ∫ N−s

0
dy

φ̂(s + y)φ(s + y)

yγ
e− ∫ y

z=0 dzφ̂(s+z)φ(s+z)

+
∫ s

0
dy

φ̂(s − y)φ(s − y)

yγ
e− ∫ y

z=0 dzφ̂(s−z)φ(s−z)

]
.

(16)

Here we choose the binding rates Ji j to be equal throughout
the lattice, i.e., we do not consider disorder. As the integrals in
Eq. (16), diverge for γ � 1, we henceforth require that γ < 1.

Expanding Eq. (16) to first order in the exponentials, to the
second order in the terms φ̂(s ± y)φ(s ± y)/yγ and extending
the upper limit of integration to infinity the terms containing
the integrals simplify to[

2(φ̂φ)γ + (φφ̂)γ−3(2 − 3γ + γ 2)
∂2(φφ̂)

∂s2

]
. (17)

We now perform a semiclassical approximation of the gen-
erating functional by employing a saddle-point bifurcation
of the path integral. To this end, we minimize the action,
δS/δ ˆφ(s)|φ̂(s)=1 = 0, while setting φ̂(s) = 1 to ensure prob-
ability conservation (cf. Ref. [36]). With this, we obtain a
partial differential equation describing the time evolution of
the enzyme-binding profile along the substrate, φ(s), which
for small values of φ(s) is

∂φ0(s)

∂ t̃
= e−φ0(s)

{
φ0(s)γ + [μφ0(s)γ−3 + ε]∂2

s φ0(s)
}
. (18)

Here we rescaled time according to t̃ = t2J
(1 − γ ) and de-
fined μ = (2 − 3γ + γ 2)/2 > 0, and indicated the mean-field
approximation as φ0. We reuse the symbol ε for the diffusion
constant. The factor e−φ0(s) is a direct consequence of the
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FIG. 2. Time evolution of the average enzyme occupancy ob-
tained from stochastic simulations of the master equation (1) for
γ = 1/3 and 107 lattice sites (solid line). The simulation was initial-
ized with For early times, the theory predicts an increase following a
power law with an exponent of 3/2 which is indicated by the dashed
line.

site restriction, which intuitively has the role of preventing
unbounded growth.

In the hard-boson path-integral representation, Eq. (16),
the term exp[− ∫ y

z=0 dzφ̂(s + z)φ(s + z)] in the Hamiltonian is
approximated by an exponential of the space-averaged fields,
exp[−y〈φ̂(s)φ(s)〉] if the fields are slowly varying. This de-
fines an effective exponential cutoff of the interactions at a
characteristic length 1/yγ . Because contributions from sites
separated by a long distance are effectively suppressed, this
justifies the expansion of the limit in Eq. (16) to ∞.

The first spatially homogeneous moment, φ0(t ), i.e., the
average number of bound enzymes, 〈σ 〉, is the solution of
Eq. (18) when neglecting diffusion. We consider initial con-
ditions that correspond to an almost empty substrate. Such
initial conditions are relevant in the context of cell-state tran-
sitions. Examples include the de novo methylation of the DNA
during early embryonic development or its erasure in erythro-
poiesis. With these initial conditions, the term e−φφγ on the
right-hand side of Eq. (18) is to first order well approximated
by φγ . Therefore, at short times, the first moment follows a
power law,

〈σ 〉 ∼ t
1

1−γ . (19)

This is the first result of this manuscript. In Fig. 2 we com-
pare the analytical solution to stochastic simulations using
Gillespie’s algorithm [45]. See Appendix B for details of the
numerical implementation.

At large times, site exclusion becomes dominant and the
solution approaches a steady-state solution, φ∗, logarithmi-
cally. The steady-state concentration of bound enzymes is
determined by a balance between binding and unbinding
events and it is given by

φ∗ = (1 − γ )W

(
ū

1
γ−1

1 − γ

)
, (20)

where W is the Lambert W function and ū = u/[2J
(1 − γ )]
is the relative strength of unbinding and interactions. There-
fore, if the coupling, J , is much larger than u, then the
steady-state concentration of bound enzymes decreases with
ū−1/(1−γ ). In the limit that interactions are much weaker com-
pared to degradation the steady-state concentration increases
logarithmically, φ∗ ∼ ln[ū−1/(1−γ )].

Taken together, starting from an almost empty substrate,
the average number of occupied binding sites increases
following a power law up to a point where higher-order
interactions due to site exclusion become dominant. As an
example, for enzymes binding to a fully compacted, space-
filling polymer, γ takes a value of 1/3 such that the number
of bound sites increases with an exponent of 3/2.

As a remark, at the level of a mean-field description, we can
map the enzyme-substrate model to a Smoluchowski equa-
tion [46] describing the size of domains where all sites are
bound. In this view, a binding event between two already oc-
cupied sites is equivalent to a fragmentation event splitting the
domain into two smaller intervals. Restricting our attention to
the first moment, we can rewrite our model in the mean-field
limit as a fragmentation equation,

∂c(x)

∂t
=

∫ ∞

0
dy J (x, y − x)c(y) − c(x)

∫ x

0
dy J (y, x − y) ,

(21)

where c(x, t ) is the number of domains of size x at time t
and we omitted the time-dependency for a shorter notation.
For the chosen kernel, J (x, y) = 1/xγ + 1/yγ , and after defin-
ing the moments as Mα = ∫

dx c(x)xα , we obtain Mα+γ+1 ∼
t−(α+γ )/(γ+1). The average occupancy, which is the zeroth
moment, scales as 〈σ 〉 ∼ t1/(γ−1). This equation gives the
same time evolution of the number of enzymes bound to the
substrate as the path-integral methods.

B. Correlation functions

To compute correlation functions and scaling exponents we
need to take the derivative of the generating function (12).
However, such an approach is not feasible for three reasons.

The first reason is that we would need to expand the action
and this attempt fails due to the presence of a mass term in the
field theory. Therefore, the field theory is not scale-invariant.
In order to overcome this problem, we could try to do a change
of variables in the action Eq. (16), and make a Hopf-Cole
transformation around a dynamical mean field solution, such
that in that reference frame the theory is massless. Even
though the theory will be renormalizable, the exponent we
get from such a calculation does not agree with the result
of numerical simulations. The second reason why such an
approach fails is that we would need to consider perturbations
of any order in the field theory and a one-loop calculation
would not be sufficient [47]. The third and main reason for the
failure of this approach is that, after expanding around a base
state, integrals of the form in Eq. (16) cannot be approximated
without losing the length scale, 1/〈φ〉, associated with the
effective cutoff of the interactions.

The key insight to calculate the correlation function is that
Eq. (16) gives rise to two spatial regimes: At short distances,
interactions are long-ranged following a power law decay with
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exponent 1/γ while for distances much larger than 1/〈φ〉
interactions are effectively screened. In the following, we
will therefore derive the correlation function separately for
these two regimes using renormalization group methods and
perturbation theory. We will then confirm these results with
numerical simulations.

1. Short-distance regime

To describe the short-distance behavior of correlation func-
tions, we start from the action, Eq. (16), and, after taking the
semiclassical approximation, we expand it to first order in the
fields and their derivatives,

∂tφ(s, t ) =
∫ s

0
dy φ(y)|s − y|−γ e− ∫ s−y

z=0 dz φ(z)

+
∫ s

0
dy ∂yφ(y)|s − y|1−γ e− ∫ s−y

z=0 dz φ(z) , (22)

where s is again a continuous coordinate giving the position
on the substrate. Here, for notation clarity, we omitted the
noise terms, hopping terms, and integrals of the same form
describing interactions with the right nearest bound site but
we will consider them at the end of the derivation.

The interaction kernel Eq. (16) has the form |s − y|−γ

e− ∫ s−y
z=0 dz φ(z), with γ < 1. By considering a perturbation h(s, t )

around the mean-field solution, φ0(t ), i.e., φ(s, t ) = φ0(t ) +
h(s, t ), Eq. (22) can be expressed to first order as

∂tφ0 + ∂t h = e−φ0

∫ s

0
dy φ0|s − y|−γ

[
1 −

∫ s−y

0
dz h(z)

]

+ e−φ0

∫ s

0
dy h(y)|s − y|−γ

[
1 −

∫ s−y

0
dz h(z)

]

+ h.o.t . (23)

The first two terms of the integral on the right-hand side cancel
with the first one on the left-hand side, which follows from the
dynamical mean field solution, Eq. (18). Making a change of
variables, w = z + y, we then obtain

∂t h = e−φ0

∫ s

0
dy h(y)|s − y|−γ

− e−φ0

∫ s

0
dy

∫ s

y
dw h(y)|s − y|−γ h(w − y) + ξ (s, t ) .

(24)

The second term on the right-hand side of Eq. (24) is the con-
volution of a fractional integral of a function and the function
itself.

The noise term, ξ (s, t ), is Gaussian white noise. Its cor-
relations can be derived from the field theory, Eq. (16), by
identifying terms that are proportional to φ̂2. In the expan-
sion of the action, these terms comprise both nonconservative
noise, which means that they are proportional to φ̂2, and
conservative noise, which means that they are proportional
to φ̂2∂2

s φ. The perturbation h(s, t ) thus has both conserva-
tive and nonconservative components, such that we make the

following ansatz for the noise correlations:

〈ξ (s, t )ξ (s′, t ′)〉 = δ(t − t ′)(2
NC − 2
C∂2
s )δ(s − s′). (25)


C and 
NC are the noise strengths for conservative and non-
conservative noise, respectively, which are functions of J only.
We omit their dependency on the model parameters as this
dependence does not influence the exponents of correlation
functions.

Taken together, as the fractional integral scales in Fourier
space as qγ−1, a spatio-temporal perturbation in Fourier space
follows a nonlinear Langevin equation of the form

∂t h(q, t ) = (e−φ0(t )qγ−1 − q2)h(q, t )

− qγ−1e−φ0(t )h(q, t )2 + ξ (q, t ) . (26)

From the dynamical mean-field solution of the first moment,
Eq. (18), we obtain, up to a prefactor, that e−φ0 = e[−t1/(1−γ )]. In
the frequency domain, we hence obtain at small times, t → 0
or ω → ∞, that

G−1
0 h(q, ω) = −qγ−1h(q, ω)2 + ξ (q, ω) , (27)

where we have defined the inverse bare propagator as G−1
0 =

iω + q2 − qγ−1. From the above equation, the bare correla-
tions of h are then

C0 = (2
NC + 2
Cq2)|G0|2 . (28)

Equation (27) is of second order and so admits an exact
solution from which we calculate the two-point correlation
function, 〈h(q, ω)h(q′, ω′)〉, where the average 〈. . .〉 is per-
formed over the noise.

In the short-distance regime, q → ∞, we keep only
leading-order terms in q. The leading order is given by the
conservative noise, which scales as q2 while nonconservative
noise, which scales as q0, becomes negligible. Performing the
inverse Fourier transform we find that correlation functions
asymptotically approach a power law,

〈h(s, t )h(s′, t )〉 = cos(πγ )(|s − s′|2
C + 
NCγ (1 + γ ))


(γ )|s − s′|2+γ
.

(29)

We therefore obtain for the scaling of the correlation function
that

〈h(s, t )h(s′, t )〉 ∼ |s − s′|−γ . (30)

This result is intuitive as the spatial correlations are pro-
portional to the exponent of the scale-free kernel J . This
derivation is valid for low values of the average occupancy φ0.
We expect that for larger values of φ0 higher-order corrections
become relevant.

2. Long-distance regime

From the bare propagator and correlator in Eq. (28) we
notice that, at large distances, second-order spatial deriva-
tives dominate correlations, and due to nonconservative noise
we expect correlation functions to be described by different
exponents compared to the short-distance regime, where con-
servative noise was the leading contribution in the scaling,
Eq. (29). The mean-field exponents can be estimated by di-
mensional analysis [36], where we compute the scaling of the
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parameters in the action to make it dimensionless. Following
these arguments, we find from Eq. (16) that the correlation
function decays following a power law with exponent 2χ .
According to this analysis, the value of the critical exponent χ

in the long-distance regime should be χ = (−1 − d + γ )/3,
where d is the spatial dimension of the substrate. This fol-
lows from considering higher-order nonlinearities and it is the
correct exponent for the long tail of the correlation function.
In the following, we will rigorously derive the results of
this scaling argument using dynamical renormalization group
methods.

We begin with Eq. (22). After linearization it becomes

∂t h(s) = ∂2
s h(s) +

∫ s

0
dy h(y)|s − y|−γ

−
∫ s

0
dy h(y)|s − y|1−γ

[
h(s) − (s − y)

1

2
∂sh(s)

]

+ ξ (s, t ) , (31)

where we used that
∫ b

a ds f (s) ≈ (b − a)( f (a) + f (b))/2. Be-
fore proceeding with a renormalization procedure, we note
that the nonlinearities of order h2 in Eq. (31) can be relevant
in this regime.

Because we approximated to linear order when obtain-
ing Eq. (31) we must keep all the other quadratic terms in
the field theory, Eq. (16). There is only one quadratic term
which is,

(φ̂ − 1)φφ̂

∫ s

0
dy

φ̂(s − y)φ(s − y)

yγ
e− ∫ y

0 dzφ̂(s−z)φ(s−z). (32)

However, after functional minimization of the action it cancels
out with the term involving interactions with the right nearest
neighbor. This is not surprising, because the model does not
allow for field theories involving terms that break the space-
reversal symmetry s → −s. Taken together, by repeating the
same calculations as before and including the additional term
in Eq. (32) we obtain

∂t h(s) = ∂2
s h(s) +

∫ s

0
dy h(y)|s − y|−γ (33)

+ 1

2

∫ s

0
dy h(y)|s − y|2−γ ∂sh(s) + ξ (s, t ) . (34)

Considering both right and left nearest-neighbor interactions,
the advective terms cancel out, again by the necessity to obey
left-right symmetry. We then include the next highest-order
term,

∂t h(s) = ∂2
s h(s) +

∫ x

0
dy h(y)|s − y|−γ

+ 1

2
∂2

s h(s)
∫ s

0
dy h(y)|s − y|2−γ + ξ (s) . (35)

The following results apply to multidimensional systems.
We therefore now generalize to any spatial dimension d by
writing spatial coordinates in vector form, s. In Fourier space,

Propagator G0

Correlator C0

Vertex W0

(a) (b)

(c) (d)

k

k -k

k

q
k-q

FIG. 3. (a) Overview of diagrammatical elements and diagrams
contributing to the renormalization of the (b) propagator, (c) corre-
lator, and (d) vertex functions. Every intersection corresponds to an
integration over the wave vectors.

Eq. (35) can then be written in compact form,

G0(q)−1h(q, ω) = −μ

∫
k

W (q, k)h(q, ω)h(k − q, ω)

+ ξ (q, ω) , (36)

where h(q, t ) is the Fourier transform of h(s, t ) and μ =
(2 − 3γ + γ 2)/2,

h(q, ω) =
∫

ds
∫

dt h(s, t )eiqseiωt . (37)

We also defined the free propagator,

G−1
0 = iω + Dq2 + J|q|−γ , (38)

in which we reintroduced the dimensional parameters from
the adimensional Eq. (36) in order to study their flow under
renormalization. Finally, we defined the vertex, which ac-
counts for the nonlinear terms, as

W (q, k) = 1

2

[
q(k − q)

|k − q|3−γ
+ (k − q)q

|q|3−γ

]
. (39)

In the hydrodynamic limit, |k| → 0 and |q| → 0, the vertex
scales linearly with |k| and |q|, which implies nonrenormal-
ization of the vertex function.

The rescaling step of the renormalization group procedure
then gives a rescaling of the form

∂lε = [z − 2 + AD]ε,

∂lμ = [z + χ − 2 + (3 − γ )]μ,

∂l
C = [z − 2χ − d − 2 + A
C ]
C,

∂l
NC = [z − 2χ − d + A
NC ]
NC. (40)

A
NC and A
C depend on all of the parameters and need to be
evaluated perturbatively by calculating the diagrams in Fig. 3.

Following standard calculations for the integrals repre-
sented by the diagrams in Fig. 3 [28], we recover the
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renormalization-group flow for the parameters,

∂l ln(ε) = z − 2 − Kdμ
2

dε3
[(d − 2)
NC + (d − 3)
C],

∂l ln(μ) = z + χ − 2 + (3 − γ ),

∂l ln(
C ) = z − 2χ − d − 2

− Kdν
2(1 + d )(
NC + 
C )2

2dσ 3
0 
C

,

∂l ln(
NC) = z − 2χ − d , (41)

where Kd = Sd/(2π )d and Sd is the surface area of a d-
dimensional sphere.

The Galilean invariance of Eq. (36) leads to the nonrenor-
malization of the nonconserved noise and the couplings μ.
This is similar to the renormalization of the KPZ-equation. As
a result, we get the exact exponent identities χ = (−1 − d +
γ )/3 and z = (−2 + d + 2γ )/3. The dynamical exponent z
governs the scaling of the average width, w(t, L), of the field
h(s, t ), w(t, L) ∼ L2χ f (t/Lz ), where L is the system size.
In d = 1, two-point spatial correlations functions then decay
with an exponent 2(γ − 2)/3 in the long-distance regime.

Taken together, we find that the correlation function along
one-dimensional substrates decays in two algebraic regimes
[Fig. 4(a)],

〈h(s)h(s′)〉 =
{

|s − s′|−γ , for |s − s| � 1/〈σ 〉 ,

|s − s′|− 2
3 (2−γ ), for |s − s| � 1/〈σ 〉 .

(42)

The crossover between these regimes stems from an effective
exponential cutoff of the long-range interactions. The posi-
tion of the crossover scales with the only length scale in the
system, the typical distance between neighboring occupied
sites, 1/〈σ 〉, and, intuitively, separates a regime dominated by
long-range interactions and a regime characterized by passive,
conservative fluctuations.

Figure 4(b) shows the connected-correlation function, ob-
tained from numerical simulation of Eq. (1) for the special
case that γ = 1/3. To separately emphasize the short-distance
and the long-distance regime we computed correlations at two
levels of the average substrate occupancy. While we cannot
confidently estimate the numerical exponent from the short-
distance regime, the simulation data confirm the existence of
a crossover and the exponent of −10/9 in the long-distance
regime.

IV. DISCUSSION

In summary, we studied a stochastic enzyme-substrate
model where binding events are correlated via long-range
interactions. Such interactions mimic the effect of confor-
mational changes in the substrate, where positions far apart
along the substrate might be close in physical space. We
employed a coherent-state path-integral representation of
the master equation and renormalization-group theory to cal-
culate the exponents describing the time evolution of the
average occupancy and the correlation function.

We here studied the case, where long-range interactions
are restricted to a finite distance. This is motivated both

FIG. 4. (a) The two-point correlation function decays in two
spatial regimes with exponents given by Eq. (42). The position
of the crossover between both regimes increases with the typical
length scale associated with the enzyme density, which scales as
1/〈σ 〉. (b) Numerical simulation of the spatial correlation functions
〈σiσ j〉 − 〈σi〉〈σ j〉 for γ = 1/3 from stochastic simulations using
Gillespie’s algorithm with 107 lattice sites. We calculated the cor-
relation function in two stages of the simulation: for an average
occupancy probability of 0.006 (gray, emphasizing the short-distance
regime) and an average occupancy of 0.108 (black, emphasizing the
long-distance regime). The vertical lines indicate the corresponding
crossover positions. Dashed lines indicate the predicted exponents
in both regimes. We binned the data logarithmically and error bars
indicate mean ± standard error. Note that the exponents for the fields
h(s), φ(s), and the lattice variable σ are identical.

from physical and biological arguments. An alternative model,
where interactions are entirely unrestricted in range, is math-
ematically less challenging than the model analyzed here. In
models with unrestricted long-range interactions, the theory
is ill defined in the thermodynamic limit for exponents γ < 1
because the binding rate does not converge. For γ < 3/2
mean-field theory is correct and for unrestricted long-range
interactions, we expect the first moment to increase expo-
nentially and the correlation function to decay with a power
law in a single spatial regime. For γ > 3 a model with local
interactions aptly describes the dynamics [48].

Novel technologies in super-resolution microscopy can
quantify the location of individual enzymes bound to
membranes or the DNA [14]. Such technologies allow for
the quantification of spatial correlation functions of bound
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enzymes. Our work allows associating the spatio-temporal
statistics of bound enzymes to the enzyme-substrate kinetics
and spatial conformation of the substrate. Measuring the mo-
ments along the substrate in an experiment would therefore
allow drawing conclusions about the underlying biochemical
processes.
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APPENDIX A: PATH INTEGRAL FORMULATION
OF THE MASTER EQUATION

To construct the field theory we first note that we can
formally write a solution of the master equation as

|P(t )〉 = e−Ht |P(0)〉 , (A1)

where |P(0)〉 is the initial state (i.e., the probability dis-
tribution of enzyme binding profiles at time t = 0). The
exponential factor can be rewritten as

e−Ht = (1 − 	tH )
t

	t = (1 − 	tH ) · (1 − 	tH ) · · · · .

(A2)

By inserting the identity in the coherent state basis between
every factor on the right-hand side of Eq. (A1), we find that
the solution for any time t1 can be written as

|P(t1)〉 =
∫ ∏

σidφi(t1 + 	t )dφ̂i(t1 + 	t )dφ(t1)dφ̂i(t1)

· e−φ̂i (t1 )φ(t1 ) · e−φ̂i (t1+	t )φ(t1+	t )i · eφi (t1+	t )a†

· |0〉〈0|eφ̂i (t1+	t )a(1 − 	tH )eφi (t1 )a† |0〉〈0|eφ̂i (t1 )a .

(A3)

In this equation, we have to evaluate quantities in the co-
herent state basis between the bra and the ket,

〈0|eφ̂i (t1+	t )a(1 − 	tH )eφi (t1 )a† |0〉
= eφ̂i (t1+	t )eφi (t1 ) − 	t〈0|eφ̂i (t1+	t )a(H )eφi (t1 )a† |0〉
≈ eφ̂i (t1+	t )eφi (t1 )e−	tH (φ̂i (t1 ),φi (t1 )) , (A4)

where H (φ̂i, φi ) is obtained by replacing all ai with φi and
a†

i with φ̂i, using the previously introduced decomposition
and by taking into account the rules for exclusion processes,
Eq. (15). Repeating this procedure t/	t times for each factor
(1 − 	tH ) we end up with an integral, over a product of three
terms P2, P3, P4. The integral is∫ ∏

σidφ̂i(t )dφi(t ) . . . dφ̂i(	t )dφi(	t )dφ̂i(0)dφi(0) ,

(A5)

which can be rewritten compactly as a functional integral∫
D[φ]D[φ̂]. P2 is composed of a product of terms that can

be rewritten utilizing Riemann integration,

P2 =
t∏

t1=	t

eφ̂(t1+	t )φ(t1 )−φ̂(t1 )φ(t1 ) ≈ e− ∫
dt∂t φ̂φ. (A6)

Finally, there are further t/	t terms coming from the Hamil-
tonian evaluated at each time step,

P3 =
t∏

t1=	t

e−	tH (φ̂(t1 ),φ(t1 )) ≈ e− ∫
dtH (φ̂(t ),φ(t )) . (A7)

The final factor, P4, represents initial conditions and we refer
to Ref. [35] for a discussion of this term. With this, any
observable can then be expressed as a path integral of the form

A(σ) =
∫

D[φ]D[φ̂]A(φ, φ̂ = 1)e−S[φ̂,φ] , (A8)

with

S[φ̂, φ] = −
∑

i

φi(t f ) +
∫ t f

0
dt

∑
i

(φ̂i(t )∂tφi(t ) + Hi[φ̂, φ]),

(A9)

where we have performed a partial integration in time and

Hi[φ̂, φ] = (1 − φ̂i )e
−φ̂iφi

(
N−i∑
l=1

l−1∏
j=1

Ji,i+l (l )φ̂i+lφi+l

× (1 − φi+ j ) + o.t.

)
. (A10)

Defining the generating functional of correlations,
Z[h, φ, φ̂], as

Z[h, φ, φ̂] =
∫

D[h, φ, φ̂]e−S[φ,φ̂]+∫∫
dsdt[hφ+ĥφ̂] , (A11)

expectation values of products of observables, such as correla-
tion functions, can then be expressed as functional derivatives
with respect to the auxiliary external field,

〈φ(s, t )φ(y, t ′)〉 = δ2

δh(s, t )δh(y, t )
Z[h, φ, φ̂]|h=0 . (A12)

APPENDIX B: STOCHASTIC SIMULATIONS

To test the validity of our analytical results we perform
extensive stochastic simulations by integration of the master
equation Eq. (1) using Gillespie’s algorithm [45] with 107

lattice sites, a random initial distribution of enzymes with
an occupancy fraction equal to 10−4, and interaction strength
J = 1. Unbinding and hopping rates are set to zero as they do
not affect the critical dynamics and would lead to significantly
slower simulations. This is because the number of lattice sites
needs to be large enough to measure the exponents of the
spatial correlations.
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