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How the human brain processes information during different cognitive tasks is one of the greatest questions
in contemporary neuroscience. Understanding the statistical properties of brain signals during specific activities
is one promising way to address this question. Here we analyze freely available data from implanted electrocor-
ticography (ECoG) in five human subjects during two different cognitive tasks in the light of information theory
quantifiers ideas. We employ a symbolic information approach to determine the probability distribution function
associated with the time series from different cortical areas. Then we utilize these probabilities to calculate the
associated Shannon entropy and a statistical complexity measure based on the disequilibrium between the actual
time series and one with a uniform probability distribution function. We show that an Euclidian distance in the
complexity-entropy plane and an asymmetry index for complexity are useful for comparing the two conditions.
We show that our method can distinguish visual search epochs from blank screen intervals in different electrodes
and patients. By using a multiscale approach and embedding time delays to downsample the data, we find
important timescales in which the relevant information is being processed. We also determine cortical regions
and time intervals along the 2-s-long trials that present more pronounced differences between the two cognitive
tasks. Finally, we show that the method is useful to distinguish cognitive processes using brain activity on a
trial-by-trial basis.
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I. INTRODUCTION

Understanding the statistical properties of the human brain
activity during different cognitive processes is a great step
toward comprehending how the brain processes information.
Characterizing these properties in different cortical regions
and timescales can contribute to this issue. Electrophysiolog-
ical data from intracranial electrodes in the human brain are
promising to address these questions since it provides mil-
lisecond temporal resolution, clear signals from specific brain
areas, and a good signal-to-noise rate [1]. However, the overall
access to intracranial data is still rare and remains somewhat
exclusive to the experimentalists who have produced it.

Here, we analyze freely available data from implanted
electrocorticographic (ECoG) measurements of brain surface
potentials in five human subjects during visual cognitive
tasks [2]. It has been previously reported for this data that
a comparison of visual search trials with interspersed blank
screen intervals presents changes in the raw potential, in the
amplitude of rhythmic activity, and in the decoupled broad-
band spectral amplitude [2]. In the present work, we extend
this comparison between active visual search tasks and wait-
ing windows by using statistical tools that can discriminate
which brain areas are more engaged in one of the trial types
during specific time intervals.

*Contact author: fernanda@fis.ufal.br

To characterize different features of time series we em-
ploy two time causal quantifiers based on information theory:
Shannon entropy [see Eq. (1)] [3] and the correspond-
ing Martín-Platino-Rosso (MPR) statistical complexity [see
Eq. (3)], based on the disequilibrium between the actual time
series and one with a uniform probability distribution func-
tion [4–8]. Using the MPR definition of complexity, both
extremes of order and disorder present low complexity. For
example, a constant time series or a very noisy time series
would present low complexity. In the same fashion, a perfect
crystal or a random distribution of atoms are not complex
systems. We assign each time series under study a position in a
two-dimensional space spanned by the entropy and the statis-
tical complexity measure: the complexity-entropy plane C ×
H . These quantifiers are evaluated using the Bandt-Pompe
symbolization methodology [9], which includes naturally the
time causal ordering provided by the time-series data in
the corresponding associate probability distribution function
(PDF).

This approach was originally introduced to distinguish
chaotic from stochastic systems in time series analysis [6,7].
Recently, it has been successfully applied to study brain sig-
nals: to study dynamical changes in EEG data [10–12], to
estimate time differences during phase synchronization [13],
to show that complexity is maximized close to criticality
in cortical states [14,15], to distinguish cortical states using
EEG data [16,17], to characterize neurological diseases using
MEG [18], as well as to study neuronal activity [13,19,20].
Furthermore, it has been applied to monkey LFP to estimate
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response-related differences between go and no-go trials [21].
As far as we know it has not been applied to intracranial
human data before.

Here we show that our method can distinguish visual
search epochs from blank screen intervals in specific brain
regions, for different time intervals, and at relevant timescales.
The experimental data corresponding to ECoG, are presented
In Sec. II. The Bandt-Pompe symbolization method is ex-
plained in Sec. III. In Sec. IV we introduce the Information
Theory quantifiers employed in our analysis. In Sec. V, we
report our results for all 67 electrodes, focusing on the ones
with pronounced differences between trial types from differ-
ent patients. At the end of this section, we also show that the
method can distinguish two cognitive tasks on a trial-by-trial
basis. Finally, concluding remarks, perspectives, and a brief
discussion of the significance of our findings for neuroscience
are presented in Sec. VI.

II. EXPERIMENTAL DATA

We have analyzed freely available data from 67 implanted
electrocorticographic electrodes in five human subjects during
a visual cognitive paradigm [2]. The dataset can be down-
loaded from Ref. [22].

Ethics statement: All patients participated in a purely
voluntary manner, after providing informed written consent,
under experimental protocols approved by the Institutional
Review Board of the University of Washington (#12193).
All patient data was anonymized according to IRB protocol,
in accordance with HIPAA mandate. These data originally
appeared in the manuscript “Dynamic modulation of local
population activity by rhythm phase in human occipital cortex
during a visual search task” published in Frontiers in Human
Neuroscience in 2010 [2].

Subdural grids and strips composed of platinum electrodes
were strategically positioned over the frontal, parietal, tempo-
ral, and occipital cortex regions to facilitate prolonged clinical
observation and accurate localization of seizure foci. The elec-
trodes, featuring a 4 mm diameter and + 1 cm interelectrode
distance, were utilized for data collection. The potentials were
sampled at a rate of 1000 Hz (one point every 1 ms) in relation
to a scalp reference and ground. These signals underwent
an instrument-imposed band-pass filter, ranging from 0.15 to
200 Hz.

The experimental procedure involved two different visual
cognitive tasks in which subjects engaged with stimuli dis-
played on an LCD monitor positioned 1 m away. The active
search task comprised 120 trials, each consisting of 2000 ms
visual search stimuli (referred to hereafter as search trials)
interleaved with 2000 ms interstimulus intervals (ISIs), dur-
ing which the screen remained blank (a simple waiting task
referred to hereafter as blank trials). See Fig. 1(a) for an
example of the observed sequence of intercalated trial types
in the screen. Each visual search stimulus comprised three
elements: (1) a 5-row by 4-column array of colored boxes,
each measuring 1 cm by 1 cm, (2) a white star positioned at the
center of one of these boxes, and (3) a black arrow (measuring
2 cm by 1 cm) situated 1.5 cm to the right of the right-most
box in the middle row. The placement of the star and arrow
within the colored boxes was randomized, with the arrow

FIG. 1. Experimental paradigm. (a) Illustration of the screen dur-
ing the time course of the experiment: 2000 ms of waiting periods
observing a white screen (called blank) alternated with 2000 ms of
an active visual search task (called search). (b) Time series of the
recorded activity of an exemplar electrode (JT3) at an occipital area
during the two blank screens and the two search periods shown in
panel (a).

pointing in one of four cardinal directions: “right,” “left,”
“up,” or “down.” Participants were tasked with identifying the
color of the box adjacent to the star in the direction indicated
by the arrow. For instance, in Fig. 1(a), the two examples of
visual tasks should have been correctly answered as “black”
and “black.” They repeat the task for 120 trials (30 trials for
each direction) [2].

As a first step to our data analysis, for each electrode, we
have separately concatenated the time series of the 120 ISIs
(blank trials) and the 120 stimuli (search trials). In Fig. 1(b)
we show the electric activity of an exemplar electrode at the
occipital cortex for two trials of the blank screen (before
concatenation) alternated by two trials of visual search task
(one for an “up” arrow and other for a “right” arrow). There-
fore, for each channel and each trial type, we determine the
information theory indexes associated with its time series as
described below.

III. THE BANDT-POMPE SYMBOLIZATION METHOD

To calculate any information theory quantifier, one should
obtain a probability distribution function (PDF) from a time
series X (t ) = (x1, x2, x3, · · · , xM) representing the evolution
dynamics of the system under study, where x j is the studied
variable evaluated at time t j , the collection of t j are usu-
ally equally spaced, and M is the number of points of the
time series. There is no unique answer for the best pro-
cedure to associate a time series with a PDF, and in fact,
different proposals can be found. Here, we use a symbolic
representation of a time series introduced by Bandt and
Pompe (BP) [9] for evaluating the PDF. This symbolization
techinique consists of extracting the ordinal patterns of length
D, associated to each time t of our time series, generated
by s(t ) = (xt , xt+1, · · · , xt+D−1, xt+D). This corresponds to
indexing each t to the D-dimensional vector s(t ). The greater
the value of D, the more information is incorporated into the
vectors.

We should identify and count the number of occurrences of
all D! symbols π j of length D [with j = 1, 2, ..., D!, see the
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FIG. 2. Characterizing the symbolic representation of time se-
ries. (a) The six possible symbols associated with permutations π j

for ordinal patterns of length D = 3. (b) Example of a very simple
time series X (t ) = {5, 10, 7, 4, 6, 9, 3, 10, 7} and (c) its own nonnor-
malized probability density function (PDF). This figure is inspired by
a similar one reported in Lotfi et al. [14] using a different numerical
example.

six π j for D = 3 in Fig. 2(a)]. The specific jth ordinal pattern
associated to s(t ) is the permutation π j = (r0, r1, ..., rD−1) j of
(0, 1, ..., D − 1) which guarantees that xt+r0 � xt+r1 � · · · �
xt+r(D−2) � xt+r(D−1) . To get a unique result, we set ri < ri+1 if
xt+ri = xt+ri+1 . We follow the chronological index permutation
mapping for π j [22]. In other words, each permutation π j

is one of our possible symbols and we have D! different
symbols. Therefore, the pertinent symbolic data is created by
the following rules: (i) grouping the D consecutive values
of the time series points in the vector s(t ), (ii) indexing a
symbol π j to the vector s(t ) by reordering the embedded data
in ascending order using the permutation π j . Therefore, for
each xt [with t = 1, 2, . . . , M − (D − 1)], we can associate a
symbol π j .

Afterward, it is possible to quantify the diversity of the or-
dering symbols (patterns) derived from a scalar time series by
counting how many times each one of the D! different permu-
tations π j have been found in the data-set. Then, to calculate
the PDF (for a specific D), we find P ≡ {p j ; j = 1, 2, ..., D!},
where pj is the probability to find the jth symbol π j in
our time series. This procedure is essential to a phase-space
reconstruction with embedding dimension (pattern length) D.
For practical purposes, BP suggested to use 3 � D � 7.

To have an example, choosing D = 3, all the six pos-
sible symbols associated with the permutations π j are
presented in Fig. 2(a). Considering the time series X (t ) =
{5, 10, 7, 4, 6, 9, 3, 10, 7} as an example [see Fig. 2(b)], the

first vector is s(t = 1) = (5, 10, 7), corresponding to the
permutation π2 = (0, 2, 1); the second vector is s(t = 2) =
(10, 7, 4), corresponding to to the permutation π6 = (2, 1, 0).
Similarly, one can find the other five vectors s(t ) and its re-
spective π j . The correspondent nonnormalized PDF is shown
in Fig. 2(c).

We can also repeat the analysis including a time embedding
(also called a time delay) τ to evaluate the PDF in different
timescales. To do that, we skip every τ − 1 points of our time
series X (t ) to find and count the symbols. In the previous
example we use τ = 1 and consider every point in X (t ). For
τ = 2 we would skip every other point in such a way that
the first vector is s(t = 1) = (5, 7, 6), corresponding to the
permutation π2 = (0, 2, 1); the second vector is s(t = 2) =
(10, 4, 9), corresponding to the permutation π5 = (2, 0, 1);
the third vector is s(t = 3) = (7, 6, 3), corresponding to the
permutation π6 = (2, 1, 0). Therefore, to each time series
X (t ) we can associate many PDFs, each one for a different
value of the time delay τ . Unless otherwise stated here we
evaluate the PDF for 1 � τ � 50. Since the sampling rate of
our data is 1000 Hz, τ can be represented in milliseconds.

It is noteworthy that the symbol sequences emerge from
the time series without the need for model-based assumptions.
Although this approach may result in some loss of fine-
grained details pertaining to the original series’ amplitude,
it effectively captures the temporal structure of the time se-
ries, providing insights into the system’s temporal correlation
[31,32]. It is important to emphasize that the BP methodology
only requires a weak stationarity assumption: for k � D, the
probability for xt � xt + k should not depend on t .

IV. INFORMATION THEORY QUANTIFIERS:
PERMUTATION ENTROPY AND STATISTICAL

COMPLEXITY

After associate a probability distribution function (PDF) to
the time series, we can evaluate the corresponding Informa-
tion Theory quantifiers. The first Information Theory index
that we introduce is the Shannon’s logarithmic information
measure [23], defined by

S[P] = −
N∑

j=1

p j ln(p j ). (1)

This functional is equal to zero when we are able to correctly
predict the outcome every time. For example, for linearly
increasing time series all probabilities are zero but one which
is equal to 1. The corresponding PDF will be P0 = {pk =
1 and p j = 0,∀ j �= k, j = 1, . . . , N − 1}, then S[P0] = 0. By
contrast, the entropy is maximized for the uniform dis-
tribution Pe = {p j = 1/N,∀ j = 1, 2, . . . , N}, being Smax =
S[Pe] = ln(N ). We define the normalized Shannon entropy by

H[P] = S[P]

Smax
= S[P]

ln(N )
, (2)

and 0 � H[P] � 1, which give a measure of the information
content of the corresponding PDF (P).

The second information theory-based quantifier that we
introduced is the statistical complexity, defined by functional
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FIG. 3. Information theory quantifiers to characterize different
cognitive tasks: waiting window during a blank screen trial (black)
and visual search task (red). (a) Entropy H and (b) statistical com-
plexity C as a function of the embedding time delay τ . (c) Euclidean
distance dblank,search in the C × H plane between the two tasks [see
Eq. (6)]. (d) Complexity-entropy plane highlighting τ = 6 ms which
maximizes the distance for this exemplar electrode. For a given value
of normalized entropy H and a specific length of the ordinal pattern
D, the complexity C can vary between a well-defined minimum
and maximum [25], which are represented by the solid lines here.
The indexes were calculated using the time series which is partially
shown in Fig. 1(b).

product form [4,6]

C[P, Pe] = H[P] · QJ [P, Pe]. (3)

Where, H[P] is the normalized Shannon entropy [see Eq. (2)]
and QJ [P, Pe] represent the disequilibrium, which is defined in
terms of the Jensen–Shannon divergence [24] as

QJ [P, Pe] = Q0J[P, Pe], (4)

where

J[P, Pe] = S

[
(P + Pe)

2

]
− S[P]

2
− S[Pe]

2
, (5)

and Q0 is a normalization constant (0 � QJ � 1), equal to
the inverse of the maximum possible value of J[P, Pe], that is
Q0 = 1/J[P0, Pe]. In this way, also the statistical complexity
is a normalized quantity, 0 � C[P, Pe] � 1. It is interesting to
note that the statistical complexity give additional information
in relation to the entropy, due to its dependence on two PDFs.
Moreover, it can be shown that for a given value of the nor-
malized entropy H , the corresponding complexity varies in
a range of values given by Cmin and Cmax, and these values
depend only on the dimension of the PDF considered and
the functional form chosen for the entropy [25]. We represent
these boundaries as solid lines when we show the complexity-
entropy plane [see, for example, Fig. 3(d)].

Therefore, we can define a distance between entropy and
complexity for two conditions i and j as the simple Euclidean
distance:

di, j =
√

(Hi − Hj )2 + (Ci − Cj )2. (6)

We can also calculate a normalized asymmetry index for
complexity as [21]

A(Csearch,Cblank ) = Csearch − Cblank

Csearch + Cblank
. (7)

Both dblank,search and A(Csearch,Cblank ) are independently
calculated for each τ .

Applying this methodology to the electrical activity from
each channel, we calculate entropy Hi, and complexity Ci

for each trial type (i = blank, task) as a function of the time
embedding τ using time series with 240 000 time points (120
trials × 2000 ms). Then we apply a sliding window in each
2000 ms trial, dividing it into smaller windows of 100 ms
and 200 ms (starting every 10 ms) and concatenating the
correspondent ith window of each trial of the same type. For
this analysis, our smallest time series has 3000 time points (30
trials × 100 ms). Results are consistent and qualitatively sim-
ilar when comparing 100 ms and 200 ms windows. Therefore,
we show the results for 200 ms windows. In figures related to
the sliding window, we associate each window with the time
of the beginning of the window. This means, for example, that
the entropy at t = 500 ms is in fact the entropy calculated
during the interval from 500 to 700 ms.

Finally, we analyze the data on a trial-by-trial basis. Using
the 2000 points to obtain 120 values of Hblank, Cblank, Hsearch,
and Csearch (one for each trial of the specific type). We have
also applied the sliding window to each trial and calculated H
and C using only 200 points for each 200 ms long window.
Results are qualitative similar among different values of the
length of the ordinal pattern D which determines the number
of possible symbols D!. Unless otherwise stated, we show the
results for D = 6.

V. RESULTS

A. Applying information theory quantifiers to characterize and
distinguish trial types

We employ information theory quantifiers H and C to study
brain signals and characterize cortical information processes
during an experimental paradigm related to two visual cog-
nitive tasks. We show that our method is able to distinguish
the two conditions: visual search epochs related to an active
task, from blank screen intervals related to waiting periods.
We show that some cortical regions and specific timescales
exhibit more pronounced differences between the two trial
types: blank and search. We have separately analyzed the time
series of all blank trials, as well as of all search trials for the
67 electrodes of five patients.

An illustrative example of the time series with the electrical
activity of a few trials for an exemplar electrode (called JT3)
is shown in Fig. 1(b). First, we calculate entropy Hblank and
complexity Cblank as a function of the embedding time τ for all
the 120 blank trials concatenated along the total 2-s duration
of each trial [see black curves in Figs. 3(a) and 3(b) and
Sec. II for more details]. Then we calculate entropy Hsearch

and complexity Csearch in a similar way for all the 120 search
trials concatenated [see red curves in Figs. 3(a) and 3(b)].

Regarding the effect of using the embedding time τ to
explore multiple timescales from 1 ms up to 50 ms, the fol-
lowing results should be emphasized. (i) The indexes Hblank,
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FIG. 4. Identifying which channels and timescales can better
distinguish the two cognitive tasks: blank screen and visual search
task. Heatmap representing the distance dblank,search in the complexity-
entropy plane between two trial types, for all 67 electrodes on the y
axis and time delays τ up to 30 ms in the x axis.

Cblank, Hsearch, and Csearch present nontrivial dependence with
the embedding time τ , which means that the indexes are
different for different timescales and cognitive tasks. (ii) Some
timescales seem to work better for distinguishing search trials
from blank trials. Especially for 3 ms < τ < 12 ms there is
a clear separation of the indexes regarding the trial type. (iii)
Larger values of τ (τ > 30 ms) present larger H and smaller
C, for both blank and search trial types, which characterizes
noisier time series. In this context, we hypothesize that the
indexes H and C are related to the specific cognitive process
occurring during the visual search task and the blank screen.
Consequently, since H and C change with τ , we suggest that
the information processes related to the specific cognitive
tasks are different for different timescales. Since the cogni-
tive processes occurring during each task are different, we
also suggest that the differences between the indexes of the
two conditions should be larger in timescales related to the
information process underlying each cognitive process.

Therefore, for each τ we calculate the Euclidean distance
dblank,search in the complexity-entropy plane between the two
trial types [see Fig. 3(c) and Eq. (6)]. For the exemplar elec-
trode JT3, the distance is maximized around τ = 6 ms. We
can use the 2D multiscale complexity-entropy plane (C × H)
as an extra way to visualize our results [see Fig. 3(d)]. In this
plane, we can better characterize each cognitive task as well
as visualize how the separation between different time series
changes as τ is varied. For instance, in Fig. 3(d), the high-
lighted dots depict the positions in the C × H plane for blank
and search for a fixed τ = 6 ms, and the distance between
them can be readily visualized. As we increase τ , the points
in the C × H plane move along the grey and red lines, where
both move in the direction of the lower right corner related to
noisier series.

To identify at a glance both the electrode channels and
timescales where we can better distinguish the different trial
types, in Fig. 4 we plot the heatmap of the distance dblank,search

for all analyzed electrodes and values of τ . The vertical axis
indicates the embedding time τ and the horizontal axis shows

the 67 channels from five patients in the following order: 8
electrodes from subject JM, 7 from JT, 8 from RN, 20 from
RR, and 24 from WC. The electrode 11 is the exemplar JT3
electrode shown in Figs. 1 and 3. The color code displayed
in the figure shows the magnitude of the distance dblank,search

between trials.
As a matter of fact, in Fig. 4 we notice that red spots on

the map indicate where dblank,search is larger. This means that,
considering the entire 2-s time series of activity at once in
our analysis, only some good channels can clearly separate
the two trial types. Moreover, the timescale around τ = 6 ms
is a useful one to distinguish the activity type in several of
these good electrodes, not only in the exemplar one. These
pronounced differences between the two conditions for many
electrodes from different patients at 5 � τ � 8 ms suggests
that relevant information processes are happening at this
timescale.

In addition, some channels from the same subject that
are spatially located close to each other present considerable
smoothness in the heatmap patterns, which reveals robustness
in our results. For example, many occipital channels from JM
and JT present large values of dblank,search. All patients present
some channels that are better in distinguishing between the
two conditions than others, which indicates that not all sites
are engaged in the tasks.

Therefore, our results suggest that regions presenting larger
distances between trial types are more involved in one of the
two conditions. On the one hand, sites related to the visual
search task, for example, could be involved in the recognition
of the arrows, the star, or the colors. On the other hand,
regions related to expectation, and preparation would be more
engaged in the waiting periods. Moreover, the timescales that
maximize the distance would be related to specific informa-
tion processes occurring in these regions.

B. Analyzing different time intervals along
the 2-s-long trial duration

One could argue that even though the external visual stim-
uli remain fixed throughout the entire trial, using the 2-s
window is too long considering cognitive processes. If this
is the case, then we are probably mixing different processes
in Figs. 3 and 4. In particular, along the search trials, many
different internal processes happen in sequence: recognize
the arrow direction, search for the star, and then identify the
color of the correct box. Therefore, in the following steps, we
separate the 2-s time interval of each trial in intervals of 200
ms using a sliding window of 10 ms. Then for each interval,
we repeat the analysis by calculating entropy and complexity
for both conditions (blank and search) as a function of time.
Afterward, we calculate the distance dblank,search and asymme-
try index of the complexity A(Csearch,Cblank ) between the two
trial types [see Eqs. (6) and (7)].

In fact, we verify for many electrodes that there are spe-
cific time intervals in which the distance between the two
conditions increases. In Fig. 5 we show the heatmap of the
distance dblank,search for τ in the y axis and the time course
along the 2-s duration of the trial in the x axis for eight illustra-
tive channels. We show the exemplar electrode JT3 and its two
closest neighbors (JT2 and JT4), as well as the worst electrode
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FIG. 5. Differences between the two cognitive tasks along different time windows of the 2-s-long trial and multiple timescales. Heatmap
representing the distance dblank,search in the C × H plane between blank and search trials for eight illustrative channels from different patients.
On the vertical axis, we show the time embedding τ and on the horizontal axis, we show the time course of the 2-s-long trials.

FIG. 6. Characterizing complexity and entropy for both conditions: blank screen (black circles) and visual search task (red circles) at the
C × H plane in two different moments of the trials: 0 to 200 ms and 500 to 700 ms. (a–h) The complexity-entropy plane for the eight illustrative
channels shown in Fig. 5. Solid lines represent the maximum and minimum values of complexity for a given entropy.
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FIG. 7. Characterizing different types of channel activity for τ =
6 ms. (a) Localization of all 67 channels from five subjects (separated
by the collors) in a standard brain map. Larger dots indicate similar
behavior as channel JT3. (b) Complexity Csearch and Cblank and (c) dis-
tance dblank,search for all channels from patient JT. (d–h) Assimetry of
complexity A(Csearch,Cblank ) for all sites of each patient. The channels
can be separated into three groups: positive values of asymmetry,
negative values, or close to zero values during the most part of the
trial. One illustrative electrodes for each patient is highlighted.

of this patient for distinguishing the two conditions (JT7). We
also show two illustrative electrodes from patients JM and WC
with similar behavior of JT3: JM7, JM8, WC12, and WC13.
We can see that the distance between the two conditions along

the time also depends on the embedding time τ . For example,
many channels present a peak in the distance between 500 and
1000 ms after the beginning of the trial and for 3 < τ < 12.
The important timescales to differentiate the two conditions
remain the same when we compare the results for the entire
trial (Fig. 4) and when we divide it into smaller windows
(Fig. 5). Moreover, sites that exhibit large distances only in
one part of the trial have shown small values of distance in
the first analysis considering the whole 2 s. This could be
related to sites that are more engaged only in a very specific
moment of one of the tasks, for example, the recognition of the
arrow.

However, due to the design of the experiment, it is not
possible to ensure that the same cognitive process happens at
the same time window in every trial. Therefore, we suggest
that a sequential visual search task in which the arrow appears
first on the screen and then the colored boxes appear would
be useful to differentiate more subtle cognitive processes such
as recognizing the arrow direction, or the color of the correct
box.

It is worth mentioning that the WC patient also presents an-
other timescale for 15 < τ < 30 which exhibits pronounced
differences between the two conditions at the beginning of
the trial [see Fig. 5(h)]. This also happens for other electrodes
and it is worth more investigation since it suggests that differ-
ent cognitive processes are happening in different timescales.
However, hereafter we focus our analysis on τ = 6 ms, since
the results are more pronounced and robust at this timescale
for the available electrodes.

After identifying τ and time windows that are better
to distinguish the two conditions, we show in Fig. 6 the
complexity-entropy plane for the same eight illustrative chan-
nels of Fig. 5. We can visualize H and C for both conditions,
τ = 6, and two different time intervals: 0 to 200 ms and 500
to 700 ms.

We verify that the analysis in small time intervals is useful
not only to distinguish the two tasks but also to reveal specific
characteristics of cortical activity in each condition separately.
Naively one could initially expect that the channel activity and
its indexes should not change over time for the blank trials.
First, because the external visual stimuli remain the same, and
second, because the patient is just waiting. However, the levels
of attention, expectation, and preparation could consistently
change from the beginning to the end of the trial, which could
influence the value of entropy and complexity.

In fact, many channels present differences in the indexes
along the time intervals of the blank screen presentation
around a specific timescale τ = 6 ms. As an example, one can
compare the vertical position of the black dots for the interval
0 to 200 ms and 500 to 700 ms in Fig. 6(b) for the exemplar
site JT3. The figure shows that Cblank is close to 0.2 in the
first analyzed interval from 0 to 200 ms and close to 0.4 in
the second interval from 500 to 700 ms. This means that the
complexity not only changes but increases during the waiting
window.

We also show that at some sites, there is an inversion of the
position of the blank and search dots in the C × H plane when
comparing the two time intervals (see Fig. 6). At the beginning
of the trial, the position of the blank trials in the C × H
plane is closer to noisy time series. In contrast, in the second
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FIG. 8. Distinguishing two cognitive tasks on a trial-by-trial basis (for the same eight illustrative channels as in Fig. 5). Each black (red)
dot represents entropy for the blank condition Hblank (for the search condition Hsearch) and complexity Cblank (Csearch) calculated using the 2000
points of only one trial, and τ = 6 ms. The brown (orange) circles and error bars are respectively the average and standard deviation in all 120
blank (search) trials. The exemplar electrode JT3 at the occipital area can remarkably distinguish the two conditions for all trials. Solid lines
represent the maximum and minimum values of complexity for a given entropy and D = 6.

interval, the search condition is closer to the lower right corner
indicating more similarity with random data. To illustrate
this inversion, compare the position of black and red dots in
the interval 0 to 200 ms and 500 to 700 ms in Fig. 6(b).

The inversion of the position of both conditions in the
C × H plane, as well as the increase of Cblank along the trial
are not trivial results at all, especially because they do not
happen for every value of τ and neither for every channel. To
better identify these changes along the trial, besides complex-
ity and distance, we also calculate the asymmetry index for
the complexity A(Csearch,Cblank ) for all sites. A positive value
of this index indicates Csearch > Cblank, whereas a negative
value occurs for Cblank > Csearch. Therefore, the inversion of
the position in the C × H plane is characterized by a change
in the sign of the asymmetry index.

In Fig. 7(a) we illustrate the position of all 67 channels in
a standard brain map. The colors represent electrodes from
different patients. Larger circles indicate sites that present the
inversion in the C × H plane along the trial for τ = 6 ms. It is
worth mentioning that many sites at occipital regions, which
are related to visual processes, present similar characteristics.
For example, the electrode positions of JM and JT are in
equivalent occipital regions but in different hemispheres.

Therefore, in Fig. 7(b) we show the complexity as a func-
tion of the time course of the 2-s trial duration for both
conditions, τ = 6 ms, and all electrodes from patient JT. For
the exemplar site JT3 (highlighted with thicker lines), Cblank

is smaller at the beginning of the trial and increases during
the first hundreds of milliseconds of the trial. Then it remains
reasonably stable in high values close to 0.4. The complexity
Csearch presents an opposite behavior. It exhibits large values
at the beginning of the trial and decreases along the first hun-
dred milliseconds. The inversion occurs when Csearch = Cblank

which happens between the 200 ms time window starting at
80 ms and the next one starting at 90 ms.

In Fig. 7(c) we show the distance dblank,search along the
2-s trial duration. We can observe that for JT3 and other
electrodes, the distance decreases, and goes to zero when
the indexes from both conditions change position in the C ×
H plane. Then, the distance increases again and eventually
reaches larger values than the ones at the beginning of the
trial.

To distinguish the two situations of large distance but in-
verted position at the plane, we plot the asymmetry index
for the complexity A(Csearch,Cblank ) in Fig. 7(d). We show
that the asymmetry index for JT3 starts positive and goes to
negative values. Regarding the sign of the asymmetry index
along all the time windows, the channels can be categorized
into three groups: positive values, negative values, or close to
zero values in the majority part of the trial. In Figs. 7(d)–7(h)
we show all sites of each patient highlighting an illustrative
one. We point out that only one patient (RR) does not present
any electrode with consistent negative asymmetry. Moreover,
patient WC is the only one with channels clearly representing
the three conditions for the asymmetry index.

In this scenario, we hypothesize that each one of the three
behaviors of channels regarding the asymmetry index present
different functional roles related to the tasks. It is worth not-
ing that, by definition, sites with A(Csearch,Cblank ) ≈ 0 also
present small values of dblank,search. Therefore, we propose
that these channels are not involved in the tasks, at least at
this timescale. Moreover, channels with A(Csearch,Cblank ) < 0
would be processing information more related to expectation
and preparation. However, regions with A(Csearch,Cblank ) > 0
would be more engaged in the search task, for example, in
recognizing the arrow, the star, or the colors.
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C. Distinguishing cortical states on a trial-by-trial basis

In this section, we show that our method can also be ap-
plied to shorter time series, for example, on a trial-by-trial
basis. For such a task, we calculate entropy and complexity
for each trial independently. First, we use the whole trial,
analyzing the 2000 points of each 2-s-long trial. In Fig. 8
we show the complexity-entropy plane for τ = 6 ms and the
eight illustrative electrodes shown in Figs. 5 and 6. Each black
dot represents one single blank trial, whereas each red dot
represents one search trial. Therefore, we show 120 black dots
and 120 red dots in each plot. The larger circles and error bars
indicate the average values of H and C of the 120 dots and
their standard deviations for each condition: blank or search
trial.

In particular, for the exemplar electrode JT3, the two condi-
tions (blank or search trials) are remarkably well separated in
the complexity-entropy plane for all trials [see Fig. 8(b)]. This
means that, for this site, we would correctly guess the trial
type in every attempt, by evaluating H and C. Other electrodes
also present good separation among trial types on average (see
some examples in Fig. 8 for JT2, JT4, JM7, and JM8). This
means that we could guess the trial type with a high success
rate.

As expected, the separation between the two conditions
(blank or search tasks) does not happen for all electrodes.
For example, for the JT7 channel (which has the smallest
distances in Fig. 5), the two conditions are totally mixed on
a trial-by-trial basis. The black and red dots representing each
trial from each type, as well as the averages and standard
deviations for each condition, are clearly overlapping at the
C × H plane [see Fig. 8(d)].

We point out that we have checked the robustness of
the results for different lengths of the ordinal patterns (D =
6, 5, 4, 3) to make sure that fluctuations in the probability dis-
tribution function for different numbers of possible symbols
are not compromising the results. Since it is still possible to
verify a clear separation between trial types for smaller values
of D, we can also apply the method for smaller time intervals.

Considering small time windows of 200 ms of each trial
independently, we can see the evolution of the separation
between the two conditions along the 2-s-long interval on a
trial-by-trial basis. In Fig. 9 we show the C × H plane for four
electrodes: JT3, JT7, JM7, and WC13 (that are also shown
in Figs. 5, 6, and 8) for τ = 6 ms and D = 4. We show all
120 blank (search) trials in black (red) for two different time
windows: the beginning of the trial from 0 to 200 ms in the
first column; as well as for an advanced time window along
the trial from 500 to 700 ms in the second column.

In Fig. 9(a) we show that for the exemplar channel JT3, it
is still possible to distinguish the trial type on average using
intervals smaller than a second-to-second basis. Interestingly,
we can show the inversion of the position of the indexes for
blank and search in the C × H plane comparing the two time
windows (0 to 200 ms and 500 to 700 ms). However, even
for the best performance electrode and the best performance
interval, we could not find a complete separation for all trials
of each type.

FIG. 9. Distinguishing two cognitive tasks on a trial-by-trial ba-
sis in small time windows of only 200 ms, τ = 6 ms, and four
illustrative electrodes. Each black (red) dot represents entropy Hblank

(Hsearch) and complexity Cblank (Csearch) calculated using the time
interval from 0 to 200 ms in the first column and time interval from
500 to 700 ms in the second column. The brown (orange) circles
and error bars are respectively the average and standard deviation in
all 120 blank (search) trials. Solid lines represent the maximum and
minimum values of complexity for a given entropy and D = 4.

VI. CONCLUSION

To summarize, we have shown that information theory
quantifiers (such as Shannon entropy, MPR-statistical com-
plexity, and multiscale complexity-entropy plane [6,25]) are
a useful tool to characterize the information process in hu-
man intracranial signals [1]. Using ECoG data from an
open database [2], we show that we are able to distinguish
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waiting periods of the blank screen from the visual search
task and infer relevant timescales for these processes. We
also determine cortical regions that present more pronounced
differences between the two cognitive tasks. Furthermore, we
characterize trial-type-specific processes along different time
intervals during the tasks. Finally, we show that for exemplar
electrodes this can be done on a trial-by-trial basis.

Our results open new venues in the investigation of
response-specific and stimulus-specific brain activity. The uti-
lized method is potentially useful to quantify other features of
the visual task such as identifying the direction of the arrow or
correlating the indexes with behavioral aspects such as correct
response rate. Differently from other classifiers, for example,
those which employ machine learning techniques, our method
can also give us intuition about the physical significance of the
signals since we can compare them to ordered and disordered
states.

We hypothesize that differences in the indexes along the
time course indicate that the statistical properties of the signals
are not only related to the external visual stimulus but also to
the cognitive process involved in the tasks. In principle, one
could consider that since the external visual stimuli during
the two tasks are different, the electrical activity of the visual
cortical regions during each type of trial would present differ-
ences in the statistical properties. However, if the differences
were related only to the external stimuli, then the indexes
would not change along the time course of the trials. Here
we have shown that both the entropy and the complexity
change during the 2000 ms of the trial for specific electrodes
and timescales. Therefore, our results indicate that the differ-
ences between the statistical properties of brain signals during
the two tasks are also associated with the differences in the
cognitive processes underlying the waiting period (related to

the levels of attention, expectation, and preparation), and the
active visual search (related to recognizing the arrow direc-
tion, searching for the star, and then identifying the color of
the correct box).

We suggest that a sequential visual search task in which the
arrow appears first and then the colored boxes appear would
be useful to differentiate more subtle cognitive processes such
as recognizing the arrow, searching for the star, and then
identifying the color of the correct box. For instance, our
method could be applied to understand math tasks in which
the numbers appear sequentially on the screen as reported in
Refs. [26,27]. This method can be also potentially useful to
differentiate other features such as the direction of the arrow
or for different tasks to distinguish numbers from letters or
other symbols.

Finally, we believe that our current analysis may also be
applied to other cognitive tasks using noninvasive data such
as EEG [28] and MEG [29,30]. It is also possible to em-
ploy the complexity-entropy plane to characterize differences
among groups with neurodisorders [18] and control in other
to use it for helping in diagnostic or to characterize levels of
anesthesia. We expect that, since even more data is becoming
publicly available, it will be easier to address more sophis-
ticated neurocognitive questions in the light of information
theory methods.
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