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Entangled biphoton generation in the myelin sheath
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Consciousness within the brain hinges on the synchronized activities of millions of neurons, but the mecha-
nism responsible for orchestrating such synchronization remains elusive. In this study we employ cavity quantum
electrodynamics to explore entangled biphoton generation through cascade emission in the vibration spectrum
of C-H bonds within the lipid molecules’ tails. The results indicate that the cylindrical cavity formed by a myelin
sheath can facilitate spontaneous photon emission from the vibrational modes and generate a significant number
of entangled photon pairs. The abundance of C-H bond vibration units in neurons can therefore serve as a source
of quantum entanglement resources for the nervous system. These findings may offer insight into the brain’s
ability to leverage these resources for quantum information transfer, thereby elucidating a potential source for
the synchronized activity of neurons.

DOI: 10.1103/PhysRevE.110.024402

I. INTRODUCTION

Understanding the intricacies of the human brain and its
functions has perennially posed an intriguing and challenging
puzzle. The synchronization of neurons within the cerebral
cortex serves as the foundation for diverse neurobiological
processes [1], closely linked to anomalies in brain function
and brain diseases [2]. Notably, Parkinson’s disease man-
ifests a loss of neural activity synchronization in regions
with damaged neurons [3]. Despite these observations, the
mechanisms underpinning precise synchronization of neural
activity remain unknown [4], necessitating interdisciplinary
research, particularly in the realms of neuroscience and quan-
tum physics.

In recent decades, quantum computing, harnessing the
unique features of quantum entanglement, has witnessed
remarkable success [5]. Experiments validating nonlocal cor-
relations in quantum entanglement [6] have enabled quantum
computation to outpace classical counterparts in tasks such
as the Shor [7] and Grover [8] algorithms. Quantum comput-
ing’s applicability to neuroscience was initially proposed by
Hameroff and Penrose, who suggested a role for microtubules
in quantum computation within the brain [4], and further
explored, for example, by Fisher, who proposed nuclear spins
as mediators [9]. Despite experimental deviations from pre-
dictions of these models [10,11], the nonlocal correlations
inherent in quantum entanglement remain captivating.

Recent studies highlight the role of the photon as a
quantum object not only in plants and bacteria but also
in animal life activities [12]. Examples include midinfrared
(MIR) photons from ATP hydrolysis driving DNA replication
[13] and polaritons formed by visible light coherently and
resonantly coupled to the excitons of chlorophyll molecules in
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chloroplasts facilitating efficient energy transfer in photosyn-
thesis [14]. Ultraweak photon emission in living organisms,
traditionally considered as metabolic by-products, is now im-
plicated in neuronal function [15]. Moreover, MIR photons
at 53.7 THz modulate K+ ion channel activity, neuronal
signaling, and sensorimotor behavior [16]. Photons released
during tricarboxylic acid cycle in neurons resonantly couple
to C-H bond vibrons in lipid molecules, altering possibly
the dielectric constant of the membrane to enhance action
potential conduction [17]. These findings, though each may
require further scrutiny, offer an alternative perspective on the
significance of light in neural activity.

The myelin sheath, a lipid membrane encasing the outer
side of a neuron’s axon, provides energy to the axon, enhances
action potential conduction, and acts as an insulator in the
nervous system [18]. Abnormal myelin function or damage
to the myelin structure is strongly associated with neurode-
generative diseases such as multiple sclerosis and Alzheimer’s
disease [19]. The myelin sheath is generally regarded only as
an insulator. However, emerging evidence suggests myelin’s
plasticity, indicating its role beyond insulation and its poten-
tial to promote neural phase synchronization [20].

This study demonstrates that the vibrational spectrum of
C-H bonds in lipid molecule’s tails, within cylindrical cavities
formed by myelin sheath encasement, can generate quantum
entangled photon pairs through cascade radiation from the
second excited state to the ground state. In Sec. II we establish
the axon’s well-defined cylindrical structure under the myelin
sheath and discuss the quantization of the electromagnetic
field within the cylindrical cavity. We show that, within the in-
frared region and under the dipole approximation, two-photon
processes in the vibrational spectrum are predominantly gov-
erned by cascade radiation from dipole interactions in Sec. III.
Utilizing Schmidt analysis, we assess the degree of quantum
entanglement in biphoton systems and exemplify the potential
for generating quantum entanglement in neural systems using
real structural data of myelinated neurons from experiments
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FIG. 1. Cylindrical cavity formed by the myelin sheath. (a) Axons of the myelinated neuron have several segments of the myelin sheath
wrapped in lipid membranes of different oligodendrocytes. The gap between the two segments of the myelin sheath is called the node of
Ranvier and is usually 1–2 µm in length, whereas each segment of the myelin sheath is typically around 100 µm in length. The gap in the node
of Ranvier is negligible for the whole axon. (b) Entire myelin-coated axon considered as a cylinder of length L, with the radius of the bare
axon as a, the radius of the coated as b, and the central axis as the z axis. (c) Phospholipid molecules, as the major component of myelin, have
tails consisting of a large number of C-H bonds.

in Sec. IV. Leveraging the nonlocal correlation properties
of quantum entanglement, one may speculate that quantum
entanglement will effectively synchronize neuronal activity
throughout the brain, shedding light on the synchronization
puzzle in consciousness.

II. CYLINDRICAL CAVITY FORMED
BY THE MYELIN SHEATH

As shown in Fig. 1(a), oligodendrocytes in the central
nervous system (CNS) form myelin sheaths by wrapping
lipid-rich membranes around axons, and because of their high
content of myelin, which is white in color, axons surrounded
by myelin sheaths in the CNS are called white matter [21].
More than half of the human brain is white matter, which
supports the rapid and simultaneous transmission of informa-
tion between numerous gray matter areas of the CNS [20].
The formation of microcavities is crucial in exciton-polaron-
mediated energy transfer in the recent progress of explaining
the mechanism of highly efficient energy transfer [14,22]. The
total reflection of light satisfying the evanescent wave condi-
tion on the inner wall of the cavity causes the confinement
of photons by the cavity. The myelin sheath, which generally
consists of 102 lipid bilayers [Fig. 1(c)] wrapped around the
axon, serves mainly as an insulator in neurons and can have
a better confinement effect on photons due to the formation
of polaritons in the myelin sheath [17]. For simplicity and
without loss of generality, it is reasonable to consider the outer
wall of the myelin sheath as a perfect conductor wall, consid-
ering only that electromagnetic fields do not leak outside the
myelin sheath. Concentrically wrapped around the periphery

of the axon, myelin together with the axon forms a cylinder-
like structure, and based on this fact, we consider myelinated
neuronal axons as cylinders [Fig. 1(b)]. The thickness of the
myelin sheath is generally in the range of 1–3 µm [23]. The
ratio of the length between two neighboring nodes of Ranvier
to the thickness of the myelin sheath is approximately 100,
and the width of the nodes of Ranvier is generally in the range
of 1–2 µm [24], so we can ignore the gaps caused by the nodes
of Ranvier and consider the multiple myelin sheaths merged
together as a whole. In this way, we view the myelin-coated
axonal portion of the entire myelinated neuron as a conductor-
walled cylinder, as shown in Fig. 1(b). The C-H bond dipole
in the lipid tail lies in between the inner and the outer radii a
and b, respectively.

The Hamiltonian of the quantized electromagnetic fields
and the electric field inside the cylindrical cavity can be writ-
ten as [25]

E(R, t ) =
∑
sσ

fsσ [asσ (t ) + a†
sσ (t )]usσ (R), (1)

HR =
∑
sσ

h̄ωsσ

(
a†

sσ asσ + 1

2

)
, (2)

respectively, where usσ and asσ are the vector mode func-
tion and annihilation operator, respectively, fω = √

h̄ωsσ /2ε0,
s = (m, μ, n) is the mode index, and σ = 0, 1 represents po-
larization. The vector mode functions usσ (σ = 0, 1) take the
form

us1 = ∇ × ∇ × ezψs1, (3)

us2 = iωs2∇ × ezψs2, (4)
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FIG. 2. Cascade emission from the vibrational spectrum. (a) Skeletal formula of a phospholipid molecule, with the red part representing
the carbon chain in the tail, consisting of several methylene groups and two methyl groups. (b) Shown on the left is a schematic diagram of
molecular energy levels, with electronic energy levels indicated in purple, rotational energy levels in black, and vibrational energy levels in
red. Shown on the right are vibrational energy levels which are generally represented by Morse oscillators. The lowest point of the potential
energy corresponds to the equilibrium bond length of the chemical bond re, and the depth of the potential energy characterizes the dissociation
energy De. (c) Cascade emission in the three-level system. A three-level system is represented returning to the ground state from the second
excited state by emitting photons with frequencies ωsσ and ωs′σ ′ . Here Γ21 and Γ10 are the transition rates (or the reciprocal of the lifetime)
between states.

where ψs1 and ψs2 have the form

ψs1 = cs1Jm

(
χs1R

b

)
eimϕ cos

(nπz

L

)
, (5)

ψs2 = cs2Jm

(
χs2R

b

)
eimϕ sin

(nπz

L

)
. (6)

Here χs1 ≡ χmμ1 is the μth zero point of the first kind
of Bessel function Jm, χs2 ≡ χmμ2 is the μth zero of J ′

m
(the derivative of Jm), csσ is a normalization constant, cs1 =√

2c2b2/V αs1χ
2
s1ω

2
s1, cs2 =

√
2b2/V αs2χ

2
s2ω

2
s2, αs1 ≡ αmμ1 =

J2
m+1(χmμ1), αs2 ≡ αmμ2 = J2

m(χmμ2) − J2
m+1(χmμ2), and L is

the length of the cylindrical cavity. The eigenmodes of the
cavity are determined by

ωsσ = c

√(χsσ

b

)2
+

(nπ

L

)2
. (7)

III. RADIATIVE CASCADE WITHIN A THREE-LEVEL
MORSE OSCILLATOR

In this section we first introduce the Morse oscillator,
which is extensively used for depicting the vibration of chemi-
cal bonds. Then we discuss two-photon processes via radiative
cascade by dipole interaction. To obtain the actual wave func-
tion of the biphoton, we use the real-size data of myelinated
neurons from experiments.

A. Chemical bonds described by Morse oscillators

In contrast to the rotation of a chemical bond and its
electronic energy levels [Fig. 2(b)], the transitions in the vi-
brational energy spectrum are typically on the order of 0.1 eV,
placing them in the midinfrared band. This band lies in the
range that has a significant influence on neural activity. The
vibrations of chemical bonds are generally anharmonic oscil-
lators and the energy levels are not equally spaced. In order to
describe anharmonic vibrations, we adopt Morse oscillators
[26] to describe actual chemical bond vibrations as shown in
Fig. 2(b). The advantage of using a Morse oscillator is that its
determinant Schrödinger equation has an analytical solution,
which makes it very convenient for us to calculate the dipole
moment of the chemical bond. The potential function of the
Morse oscillator can be written as [27]

V (r) = De
(
e−2w(r−re ) − 2e−w(r−re )), (8)

where re is the bond length at equilibrium and De and w repre-
sent the depth and the width of the potential well, respectively.
Its stationary Schrödinger equation HP|Ψν〉 = Eν |Ψν〉 has an
analytical solution, which is

|Ψν〉 = Nνzλ−ν−1/2e−(1/2)zL(2λ−2ν−1)
ν (z), (9)

E ′
ν = −

(
λ − ν − 1

2

)2

,

ν = 0, 1, . . . , [N] =
[
λ − 1

2

]
, (10)
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with variable substitutions z = 2λe−w(r−re ) and E ′
ν =

(2m/w2h̄2)Eν . In the above, L(2λ−2ν−1)
ν (z) is a generalized

Laguerre polynomial, [λ − 1
2 ] represents the largest integer

not exceeding [λ − 1
2 ], and the normalization constant

Nν = √
n!(2λ − 2ν − 1)/�(2λ − ν), with �(x) the Gamma

function. The matrix elements of positional operators also
have the analytical form [28]

〈Ψν |r|Ψν ′ 〉 = 2(−1)ν
′−ν+1

(ν ′ − ν)(2N − ν − ν ′)

×
√

(N − ν)(N − ν ′)�(2N − ν ′ + 1)ν ′!
�(2N − ν + 1)ν!

.

(11)

B. Biphoton wave function via cascade radiation

The Hamiltonian of the interaction of matter with an elec-
tromagnetic field is usually written as [29]

HI = − e

m
p · A + e2

2m
A2 + h̄gss · B, (12)

where p and A are the momentum of the matter and vector
potential of the electromagnetic field, respectively, and gs is
the gyromagnetic ratio of the particle. The last two terms
describe two-photon processes under strong electromagnetic
fields and strong interactions [29], respectively, which should
be ignored considering that strong-field environments do not
usually exist in neurons. Under the long-wave approximation
(or dipole approximation), the first term can be written as
−D · E, where D and E are the dipole moment of the particle
and the electric field, respectively. The process of emitting two
photons by jumping from the first excited state to the ground
state under dipole interaction is forbidden, so we consider the
process of emitting two photons from the second excited state
to the ground state by cascade radiation [30], as shown in
Fig. 2(c).

As the vibrational displacement of the chemical bond is
usually on the order of 10−1 Å, the order of magnitude of
the coupling constants gω and gω′ below is about 107 Hz.
This is much smaller than approximately 1014 Hz from the
vibrational levels themselves. Therefore, a weak-coupling
condition is generally satisfied and we can consider the so-
called rotating-wave approximation (RWA) under which the
quickly oscillating terms in the Dirac interacting picture are
dropped, keeping in mind though there could be problems
with the RWA as the coupling gets strong [31]. The approx-
imation can serve as a starting point in the current context
for the cascade emissions of interest arise mainly from slow
oscillating processes that conserve the total energy.

With the RWA, the interacting Hamiltonian in the Dirac
picture can be written as [30]

HI (t ) = h̄
∑
sσ

(
g∗

ωσ
(1)
+ asσ ei(ω21−ωsσ )t + H.c.

)
+ h̄

∑
s′σ ′

(
g∗

ω′σ
(2)
+ as′σ ′ei(ω10−ωsσ )t + H.c.

)
, (13)

where σ
(1)
+ = |Ψ2〉〈Ψ1|, σ

(2)
+ = |Ψ1〉〈Ψ0|, and gω and gω′ are

the state |Ψ2〉 to state |Ψ1〉 and state |Ψ1〉 to state |Ψ0〉 transition
coupling constants, which take the form

gω = fω〈Ψ1|D|Ψ2〉 · usσ

h̄
, (14)

gω′ = fω′ 〈Ψ0|D|Ψ1〉 · us′σ ′

h̄
. (15)

Similarly to the Jaynes-Cummings model [32], we let the
total number of excitations between the atom and the cavity
mode be conserved and let the vibrational energy levels and
the state vectors of the photons be of the form

|�(t )〉 = c0(t )|Ψ2, 0〉 + c1(t )
∑
sσ

|Ψ1, ωsσ 〉

+ c2(t )
∑
s′σ ′

|Ψ0, ωsσ , ωs′σ ′ 〉. (16)

Substituting Eq. (16) into the time-dependent Schrödinger
equation, we have three equations of motion for the proba-
bility amplitudes

ċ0 = −i
∑
sσ

g∗
ωc1ei(ω21−ωsσ )t , (17)

ċ1 = −igωc0ei(ω21−ωsσ )t − i
∑
s′σ ′

g∗
ω′c2ei(ω10−ωs′σ ′ )t , (18)

ċ2 = −igω′c1ei(ω10−ωs′σ ′ )t . (19)

We begin by looking at Eqs. (17) and (18), and in order to
simplify the system of equations, we first integrate Eq. (19)
and substitute into Eq. (18) without considering c0 to get

ċ1 = −
∑
s′σ ′

|gω′ |2
∫ t

0
dt ′ei(ω10−ωs′σ ′ )(t−t ′ )c1(t ′). (20)

This is still an exact equation. Next we make some approxi-
mations. The dipole moment of the C-H bond in the tail of the
lipid molecule is overwhelmingly perpendicular to the radial
direction, and for the sake of computational convenience, we
assume that the dipole moment is only in the z direction. It
is obvious that us2 has no z component from Eq. (4), and
we only need to find the z component of us1. By expanding
Eq. (3) we get us1 = ∇(∇ · ezψs1) − ∇2ezψs1 = k2

s1ezψs1 +
∇(∂zψs1). Then we have

us1,z = ez

√
2c2χ2

s1

V b2αs1ω
2
s1

Jm

(
χs1R

b

)
cos

(nπz

L

)
eimϕ. (21)

Now we have the explicit form of the coupling constant

gω′ = d01

√
c2χ2

s′1

h̄ε0V b2αs1ωs′1
Jm′

(
χs′1R

b

)
cos

(
n′πz

L

)
eimϕ,

(22)

where d01 is the matrix element of the dipole moment D,
which is 〈Ψ0|D|Ψ1〉.

In general, the length of the myelin sheath is much larger
than the radius of the axon, at which point the energy level
gap of the cavity mode is very small, and we can convert the
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summation into integral in Eq. (20), i.e.,

lim
L→∞

1

L

∑
n′

= 1

cπ

∫ ∞

cχs′1/b

dωs′1ωs′1√
ω2

s′1 − c2χ2
s′1/b2

. (23)

Now Eq. (20) becomes

ċ1 = −
∑
m′μ′

d2
01cχ2

s′1

h̄ε0πb4αs1
J2

m′

(
χs′1R

b

)
cos2

(
n′πz

L

) ∫ ∞

cχs′1/b

× dωs′1

∫ t

0
dt ′ ei(ω10−ωs′1 )(t−t ′ )√

ω2
s′1 − c2χ2

s′1/b2
c1(t ′). (24)

In the emission spectrum, the frequency of light associated
with the emitted radiation is going to be centered about the
eigenfrequency of vibration ω10. The quantity ωs′1 varies little
around ωs′1 = ω10, for which the time integral in Eq. (24) is
not negligible. We can then replace ωs′1 by ω10 and the lower
limit in the ωs′1 integration by −∞. Then we have∫ ∞

−∞
dωs′1ei(ω10−ωs′1 )(t−t ′ ) = 2πδ(t − t ′). (25)

Since the term
√

ω2
s′1 − c2χ2

s′1/b2 in the denominator has no
physical meaning at less than 0, a step function will be added
to Eq. (24). Then Eq. (24) becomes

ċ1 = 3Γ
(0)

10

ξ 3
10

∑
m′μ′

χ2
s′1

αs′1

√
ξ 2

10 − χ2
s′1

J2
m′ (χs′1R/b)

× cos2
(√

ξ 2
10 − χ2

s′1z/L
)
θ (ξ10 − χs′1)c1(t ), (26)

where ξ10 = ω10a/c, θ (x) = 1 (x > 0), 0 (x < 0), and

Γ
(0)

10 = e2|〈Ψ0|D|Ψ1〉|2ω3
10

3π h̄ε0c3
(27)

is the transition rate in free space. By using Eqs. (4)–(12) in
[30], we have

ċ1 = −Γ10

2
c1, (28)

where Γ10 is the transition rate between |Ψ1〉 and |Ψ0〉 in the
cavity. In this way the physical meaning of Eq. (26) is clear:
At ξ10 < χ011, a transition between |Ψ1〉 and |Ψ0〉 is forbidden.
Using an approach similar to the Weisskopf-Wigner approx-
imation mentioned in [30], we can transform the summation
on the right-hand sides of Eqs. (17) and (18) to be expressed
in terms of transition rates and get

ċ0 = −Γ21

2
c0, (29)

ċ1 = −igωc0ei(ω21−ωsσ )t − Γ10

2
c2, (30)

ċ2 = gω′c2ei(ω10−ωs′σ ′ )t , (31)

where Γ21 and Γ10 are

Γ21 = 6Γ
(0)

21

ξ 3
21

∑
mμ

χ2
s1

αs1

√
ξ 2

21 − χ2
s1

J2
m(χs1R/b)

× cos2
(√

ξ 2
21 − χ2

s1z/L
)
θ (ξ21 − χs1), (32)

Γ10 = 6Γ
(0)

10

ξ 3
10

∑
mμ

χ2
s1

αs1

√
ξ 2

10 − χ2
s1

J2
m(χs1R/b)

× cos2 (√
ξ 2

10 − χ2
s1z/L

)
θ (ξ10 − χs1). (33)

We are only interested in the system of t � Γ −1
21 , Γ −1

10 , in
this case c0(∞) and c1(∞) both tend to 0, and c2(∞) is

c2(∞) = gωgω′[
i(ωs′σ ′ + ωsσ − ω20) − Γ21

2

][
i(ωs′σ ′ − ω10) − Γ10

2

] .

(34)

And by substituting Eq. (34) into Eq. (16), we obtain the
biphoton state

|�〉 =
∑

sσ,s′σ ′

−gωgω′ |ωsσ , ωs′σ ′ 〉[
(ωs′σ ′ + ωsσ − ω20) + iΓ21

2

][
(ωs′σ ′ − ω10) + iΓ10

2

] . (35)

In order to obtain the specific biphoton wave function, we
need to first obtain the transition rates between the second
excited state and the first excited state and between the first
excited state and the ground state. Then we use data from
[33]. Subsequently, by using the relationship between N and
the energy levels

ω10 = E1 − E0

h̄
= w2h̄

2m
(2N + 3) = 0.33 eV,

ω20 = E2 − E0

h̄
= w2h̄

m
(2N + 2) = 0.64 eV,

ω21 = E2 − E1

h̄
= w2h̄

2m
(2N + 1) = 0.31 eV, (36)

we can find N = 19.6, which in turn allows us to find the
coordinate operator matrix elements by using Eq. (11). Then
the dipole moments are d10 = 0.16 e Å and d21 = 0.23 e Å.

Experimental results show that the radius of axons in
the brain or CNS is generally 2–6 µm and the thickness
of myelin sheaths is generally 1–3 µm [23,24]. Then we
let the radius of exposed axons (inner radius of myelinated
neurons) be 2 µm and the thickness ranges from 0 to 3 µm.
Taking that the C-H bonds are widely distributed in be-
tween the inner and outer radii of the cylinder, we calculate
the average of the Bessel functions and cos functions in
Eqs. (33) and (32),

∫ b
a J2

m(χs1R/b)dR and
∫ L

0 cos2( nπz
L )dz,

respectively.
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FIG. 3. Transition rates Γ21 and Γ10. The sharp peaks correspond
to having ξ10 or ξ21 equal to χmμ.

Then we can observe the variation of the transition rates
with myelin thickness as shown in Fig. 3. Each peak in the
figure corresponds to a zero point of the Bessel function χmμ.
When the cavity radius is less than 2.45 µm, Γ21 and Γ10 are
quite small, which is due to the fact that the dipoles are all
clustered at the axon boundaries R/b ≈ 1 and so the coupling
constant tends to 0. The coupling between the electromagnetic
field and the vibrational modes is then negligible, and the
vibrational modes change without any relationship between
the excitation or nonexcitation of the electromagnetic field.

The biphoton wave function can be calculated using the
transition rates and the coupling constants. Considering that
the linewidth is much smaller than the vibrational frequency,
the allowed modes are almost all at resonance. So, for
practical calculations, we will disregard frequencies greater

than 0.39 eV and less than 0.26 eV. From the coefficient plots
(Fig. 4) of the normalized biphoton wave functions it can be
seen that the allowed modes are all very close to resonance or
at resonance, and only a few modes are significantly allowed.

IV. EVALUATING ENTANGLEMENT THROUGH
SCHMIDT DECOMPOSITION

In the preceding section we obtained the wave function
of the biphoton system. We now evaluate the entanglement
degree of this system. In quantum mechanics, the pure state of
a bipartite system is described by a wave function |�(x1, x2)〉,
where x1 and x2 represent any degrees of freedom of the two
particles: coordinates, momentum, polarization, frequency,
etc. [34]. In the discrete case, the wave function can be written
as Eq. (35). According to Schmidt analysis [35], it can always
be expanded with two adjoint bases

|�〉 =
∑

n

√
λn|k1〉n|k2〉n, (37)

where |k1〉n and |k2〉n are two adjoint Schmidt modes. The rep-
resentation of Eq. (37) is known as Schmidt decomposition.
The expansion parameters

√
λn in Eq. (37) are real and pos-

itive and they obey the normalization condition
∑

n λn = 1.
This decomposition is closely related to the singular value
decomposition (SVD) [36]. We can consider the coefficients
in Eq. (35) as a matrix C, and then this matrix can always do
SVD to obtain two unitary matrices U and � and a diagonal
matrix �. The relation between them is

C = U��. (38)

FIG. 4. Squares of amplitudes which are given by the coefficients in biphoton wave functions for different sizes of the cavity. The x and
y axes are in units of eV. The higher peaks in each case always map to the modes that are close to ω10 and ω21. The values of von Neumann
entropy are (a) 0.000, (b) 0.336, (c) 0.041, and (d) 0.194.
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The squares of the diagonal elements of matrix � then cor-
respond to the expansion parameters λn. The distinguishing
feature of the Schmidt decomposition is that when a particle
is measured to be in one of the Schmidt modes |k1〉n, the other
particle must be in the adjoint mode |k2〉n rather than the other
mode, and the probability of finding such a pair of particles
is given by λn. When two particles are independent of each
other, they are not in entanglement. At this point, their wave
functions can simply be written as

|�〉 = |k1〉n|k2〉n. (39)

We get only one pair of Schmidt modes corresponding to
the Schmidt decomposition of Eq. (37). When two particles
are entangled, the Schmidt decomposition has more than
one term. We can use the expansion parameters in Eq. (37)
to define the von Neumann entropy to evaluate the mag-
nitude of entanglement, and the von Neumann entropy is
defined as [35]

S = −
∑

n

λn log2(λn). (40)

When the Schmidt number has only one term, the entropy is
0, indicating that the system is not entangled. As defined, the
maximum value of entropy is related to the number of states of
the particle, and the maximum value of von Neumann entropy
is log2 n when the particle has n states. For normalization
purposes, the entropy involved in what follows is calculated in
such a way that the base of the logarithmic function is taken to
be the number of states n of the corresponding wave function.

The axon is usually wrapped by the myelin sheath sepa-
rated by several nodes of Ranvier, each of which is usually
10–100 µm [18,23]. In the actual calculations, we neglect
the total length of nodes of Ranvier to be in the range of
200–500 µm, which affects the denseness of electromagnetic
modes in the microcavity. When the thickness of the myelin
sheath is less than 0.45 µm, the transition rates Γ21 and Γ10

are extremely small due to the very small coupling constant.
We consider that no biphoton state will be generated when the
thickness of the myelin sheath is in the range of 0–0.45 µm
in the calculation. Electromagnetic modes at (2, 2, 0) have
energies exceeding the eigenfrequency of vibration ω10, so
modes exceeding χ221 are not considered here, and the results
obtained are shown in Fig. 5(a).

Owing to the discrete energy levels within the myelin
cavity, instances where electromagnetic modes reside on both
sides of the vibrational frequencies ω10 and ω21, and are in
proximity, lead to significant entanglement. This arises from
photons being indistinguishable particles, implying that mea-
suring the frequency of one photon imparts partial information
about the other. Conversely, when a discrete electromagnetic
mode precisely corresponds to ω10 and ω21, it dominates,
resulting in minimal entropy. The molecular coupling constant
in Eq. (22) is about an order of magnitude of 107, and the
transition rate (natural linewidth) is about an order of mag-
nitude of 104, which is small and negligible compared to the
frequencies of the photon and vibrational energy levels in the
denominator, which are about 1014. The discrete energy levels
are solely determined by myelin geometry, making the cre-
ation and availability of entanglement entirely contingent on
myelin size. In contrast to cascade radiation of the vibrational

FIG. 5. von Neumann entropy at different sizes of the cavity.
(a) Colors from white to dark blue represent entropy values from
0 to 0.65. Myelin thicknesses range from 0.45 to 3 µm and lengths
range from 200 to 500 µm. (b) The relationship between myelin
thickness and the degree of entanglement can be better seen by
erasing the points in (a) with entropy values below 0.5. Entanglement
is substantial at thicknesses between 0.8 and 1.1 µm and it decays
rapidly as the thickness becomes smaller.

spectrum in free space, characterized by extremely narrow
linewidths and continuous electromagnetic modes, photon
cascade radiation within the myelin sheath has only one mode:
photons corresponding to frequencies ω10 and ω21.

V. CONCLUSION

To summarize, the results of the cascade photon emission
process by cavity quantum electrohydrodynamics and quan-
tum optics indicate that biphotons in quantum entanglement
can be released through cascade radiation on the vibrational
spectrum of C-H bonds in the tails of lipid molecules inside
cylindrical cavities encased by neural myelin. The presence
of discrete electromagnetic modes due to the cavity struc-
ture formed by the myelin sheath, distinguished from the
free-space continuous electromagnetic modes, results in the
frequent production of highly entangled photon pairs permit-
ted within the myelin cavity. Notably, due to the presence
of microcavities, the coupling can be significantly enhanced
compared to that in free space, indicating a higher probability
of emitting photons. It should be noted that our model is
very crude. The actual electromagnetic field should take into
account the coupling of photons to the vibron ensembles, i.e.,
polaritons, which should be considered in future studies.
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As shown in Fig. 5(b), the degree of entanglement is
relatively high when the thickness of the myelin sheath is
within 0.8–1.1 µm. Taking the radius of the axon as 2 µm,
this corresponds to a ratio of the inner radius to the outer
radius of 0.65–0.72, close to the literature value of 0.6–0.8
[24,37]. The entanglement decreases rapidly as the myelin
thickness decreases beyond this ratio. Clinical results show
that myelin becomes thinner with age and the likelihood of
neurodegenerative diseases increases [38,39]. These observa-
tions may underline a further relationship between the two
phenomena.

Finally, due to the nature of such research, we may excise
some speculations at this stage. It was experimentally shown
that the midinfrared light energy at 53.53 THz has a modu-
lating effect on the activity of K+ ion channels. Furthermore,
the activity is strong and not proportional to the number of
photons [16]. One explanation is that the eight C=O bonds
in an ion channel may be in a critical state of maximum
superradiation. Such a state has the energy of three excited
C=O bonds whose value equals roughly that of photon energy
released by a single C-H bond. As the energy scales match up,
it is plausible that the entanglement of the photons can pass on
to the ion channels, namely, entangled photon pairs emitted

through cascade radiation can link the K+ ion channels at
different positions by entanglement. When one channel is
activated by a neuron, it affects the state of the other ones via
quantum measurement, creating likely nonlocal correlations
among them.

Polaritons inside a myelin sheath involve a large number
of vibronic states [17]. As a result, the effect of thermal
fluctuation on the states of the polaritons (i.e., photons) can be
negligible. In recent years similar systems such as cold-atom
ensembles [40] were used as quantum memories, which can
protect quantum entanglement between photons. When the lo-
cal entanglement generated in each neuron could spread over
to a larger region through entanglement swapping [6], the neu-
rons in the brain becomes further correlated. In this way, the
entanglement can propagate out within the neuromedullary
sheaths, serving as a quantum communication resource in the
nervous system. It can possibly offer a mechanism of over-
distance synchronization.
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