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Maximum-entropy-based metrics for quantifying critical dynamics in spiking neuron data
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An important working hypothesis to investigate brain activity is whether it operates in a critical regime.
Recently, maximum-entropy phenomenological models have emerged as an alternative way of identifying
critical behavior in neuronal data sets. In the present paper, we investigate the signatures of criticality from a
firing rate-based maximum-entropy approach on data sets generated by computational models, and we compare
them to experimental results. We found that the maximum entropy approach consistently identifies critical
behavior around the phase transition in models and rules out criticality in models without phase transition.
The maximum-entropy-model results are compatible with results for cortical data from urethane-anesthetized
rats data, providing further support for criticality in the brain.
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I. INTRODUCTION

The brain is a complex system that operates through the in-
teractions of nonlinear systems at various scales, from neurons
to circuits and brain areas. It coordinates to generate behav-
ior, thought, and cognition. An important working hypothesis
regarding the nervous system’s organization is that brain dy-
namics operate at or near a phase transition, specifically at a
critical point.

This hypothesis has gained traction, particularly with the
pioneering work of Beggs and Plenz [1], who measured
power-law distributions in the neuronal avalanches of local
field potential data from cultured cortical slices. They found
power-law exponents compatible with a critical branching
process. The notion that the brain operates within an organi-
zational regime characterized at the edge between order and
disorder carries potential benefits, including computational
advantages such as enhanced transmission capacity [2], a
larger repertoire of functional states [3,4], and a maximized
dynamic range [5–7].

Given this scenario, numerous experiments have been
conducted to evaluate exponents for both size and duration
distributions, testing the critical brain hypothesis. In exper-
iments conducted on the awake mouse and rat cortex [8,9],
the avalanche exponents were consistent with those obtained
by Beggs and Plenz. However, there are divergent findings
regarding the avalanche exponents in rats anesthetized with
different drugs [8–10]. Furthermore, significantly different
avalanche exponents were observed in ex vivo recordings from
the turtle visual cortex, as well as in M/EEG data analysis in
resting or behaving humans [11,12]. More recently, the crack-
ing noise scaling relation between critical exponents has been
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incorporated as a more rigorous way of identifying criticality
in neuronal avalanche data [13].

However, neuronal avalanches have methodological lim-
itations, particularly when applied to spiking activity. One
limitation is the lack of timescale separation, as there is no real
silence in the brain. Another, and perhaps the most studied, is
subsampling, which means that we are only measuring a sub-
set of the network activity [10,14–17]. Additionally, according
to [18], in subsampled data, it is possible to obtain apparent
exponents compatible with those found by Beggs and Plenz
for the Brunel model [19] in its synchronous irregular phase,
which occurs far away from the phase transition.

More recently, phenomenological maximum entropy mod-
els have been utilized to describe the statistics of neuronal
data sets. These models offer an alternative approach to assess
signatures of criticality, utilizing the divergence of a gener-
alized specific-heat measure. The maximum entropy method
provides a probabilistic model that reproduces a set of observ-
able statistics of the analyzed data while remaining maximally
unstructured [20]. This approach avoids biases for unstated
assumptions. Different maximum entropy models have been
developed based on the observed variables of interest and have
been used in various neural network systems [21–25]. Once
we obtain the maximum entropy model to describe the data
set, we can calculate a generalized specific heat, and a diver-
gence of this measure with the size of the system is used as a
signature of criticality [21,26,27]. However, the sensitivity of
the maximum entropy results to the distance to criticality in
neuronal data sets has not been systematically studied.

In this work, we assess the accuracy of the maximum-
entropy model developed by Mora et al. [26], which is based
on the global activity of the network, considering tempo-
ral dynamics, in neural models whose phase transitions we
know analytically (including whether or not they have one,
to start with). In the initial stage, we verified the method’s
capability to reveal a critical point. Through this investigation,
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we obtained parameters that allow us to identify criticality
in subsampled data, in conditions similar to the experimen-
tal data sets. Subsequently, we assessed the ability of the
maximum-entropy method to rule out criticality even when
the data exhibited power laws. Finally, we applied the analysis
to spiking data from urethane-anesthetized rats, categorizing
them as operating in the critical regime based on the obtained
references.

II. METHODS

A. A spiking neuronal network with excitation and inhibition

Here we will briefly describe the neuronal model presented
by Girardi-Schappo et al. [28]. This model consists of N neu-
rons undergoing stochastic integrate-and-fire dynamics with a
discrete time equal to 1 ms. Neurons are divided into excita-
tory (NE = 0.8N) and inhibitory (NI = 0.2N) subpopulations
and are connected in an all-to-all graph. The neuron states are
defined by the boolean variable X (t ) = 1 for those that are
spiking at time t , and X (t ) = 0 for those that are not. The
membrane potential for neuron i in the excitatory (E ) and
inhibitory (I) population is given by

V E/I
i (t + 1) =

⎡
⎣μV E/I

i (t ) + Ie + J

N

NE∑
j=1

X E
j (t )

−gJ

N

NI∑
j=1

X I
j (t )

⎤
⎦(

1 − X E/I
i (t )

)
, (1)

where J represents the synaptic coupling strength, g is the
inhibition-to-excitation (I/E ) coupling strength ratio, μ de-
notes the leak time constant, and Ie stands for an external
current.

The differential aspect of this model, compared to other
integrate-and-fire models, lies in the existence of a probability
of the neuron firing given its potential V . This probability is
governed by the function

�(V ) ≡ P(X = 1|V )

= �(V − θ )�(V − θ )�(VS − V ) + �(V − VS ), (2)

where θ = 1 represents the firing threshold, � is the firing gain
constant, VS = 1/� + θ denotes the saturation potential, and
�(x > 0) = 1 (zero otherwise) is the Heaviside step function.
To initiate activity in the network, a seed is sent to just one
single excitatory neuron through the external current Ie > VS ,
which after starting activity is maintained at Ie = θ . This
procedure is repeated whenever network activity dies off. For
simplicity, we consider μ = 0, which does not change the
phase transition of the model.

This model leads to an active phase where excitation dom-
inates (characterized by a low value of g), and an absorbing
phase where inhibition dominates (characterized by a high
value of g). The transition between these phases occurs at
gc = 1.5 (for � = 0.2 and J = 10) at a directed percolation
critical point, as demonstrated previously [28].

We selected this model because it has a well-defined
critical point, thereby providing a theoretical reference for
the results obtained from the maximum entropy analysis.

Additionally, it accurately reproduces experimental activity
and avalanche results [17] in the data that will be analyzed
here. We simulated this model with a time of t = 10 000 s,
equivalent to the time of the experimental data analyzed later.
Here, the network has N = 105, and we used the following
parameter values: � = 0.2, J = 10, � = 1, and Ie = 1.

B. Probabilistic cellular automaton model

In this subsection, we will describe the neuronal model
introduced by Kinouchi and Copelli [5]. Similar to the model
presented in the previous subsection, this model belongs to
the same mean-field direct percolation (MF-DP) universality
class and operates with discrete time steps (�t = 1 ms). Our
objective with this model is to assess the robustness of the
results obtained from the maximum-entropy analysis for the
model described in the previous section.

The network consists of N probabilistic excitable cel-
lular automata, each of which randomly connects with K
presynaptic sites. Each site possesses n possible states di-
vided into three different regimes: the resting state (si = 0),
the excited state (si = 1), and n − 2 refractory states (si =
2, 3, . . . , n−1). The excitation of a site can occur in two
ways: via an external stimulus, modeled by a Poisson process
with rate r [ph(r) = 1 − exp(−r�t )], or via stimuli from its
presynaptic neighbors, with pi j representing the probability
of this stimulus if neighbor j is active at time t . The other
transitions occur with probability 1.

The control parameter is determined by the branching
parameter σ = K〈pi j〉, where pi j is a random variable with
uniform distribution in the interval [0, 2σ/K]. The mean-field
analysis indicates that the model belongs to the MF-DP uni-
versality class. In this analysis, σ = 1 is the critical point of
the system, σ < 1 corresponding to the subcritical regime,
where the system inevitably reaches the absorbing state (all
sites quiescent), and for σ > 1 we have the active state (the
activity continues propagating in the network) that character-
izes the supercritical phase.

Here, we simulate with N = 105 sites, K = 10 presynaptic
neighbors, n = 5 possible states, and r = 0 (no external stim-
uli). Whenever the network reaches the absorbing state, a site
is randomly activated (si = 1) in order to start a new activity.

C. Brunel model

We also apply the maximum-entropy analyses to the non-
critical model proposed by Brunel [19]. This model consists
of excitatory and inhibitory neurons governed by the leaky
integrate-and-fire dynamics

τm
dVi(t )

dt
= −Vi(t ) + τ

∑
j

Ji j

∑
k

δ
(
t − t k

j − D
)
, (3)

where τm represents the membrane time constant, and D cor-
responds to the transmission delay. The membrane potential
of neuron i is denoted as Vi. When Vi reaches the threshold θ ,
a spike is generated, and the membrane potential is reset to
Vr . During the refractory period τrp the cell is insensitive to
stimulation. The second term in Eq. (3) accounts for the con-
nection with the other neurons in the network. The δ function
computes the time of arrival of the kth spike of neuron j, t k

j ,
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at the neuron i at time t . The synaptic coupling strength from
neuron j to neuron i is given by Ji j . For excitatory synapses,
we have JiE = J , and for inhibitory synapses, JiI = −gJ . The
parameter g acts as a control parameter in the model, regulat-
ing the balance between excitatory and inhibitory components
in the network.

The network consists of N = 12 500 neurons, where
NE = 0.8N are excitatory neurons and NI = 0.2N are in-
hibitory neurons. The connections between the neurons in
the network are sparse and random. Each neuron receives
internal connections from CE = 0.1NE excitatory neurons and
CI = 0.1NI inhibitory neurons. Also, each neuron receives
Cext = CE connections from excitatory neurons outside the
network. The external synapses are activated by an indepen-
dent Poisson process with rate νext.

The external rate νext will be compared with the rate needed
for a neuron to reach the threshold in the absence of feed-
back, which is νthr = θ/(JCEτ ). The ratio νext/νthr serves as
a secondary control parameter. The interplay between these
two control parameters leads to distinct dynamical patterns
within the network and among individual neurons. In terms of
network behavior, the firing activity can be either synchronous
or asynchronous. On the other hand, when considering indi-
vidual cells, one can observe varying degrees of regularity or
irregularity in their spike patterns.

We selected this model for our analyses based on the
discovery of power-law avalanche distributions in the syn-
chronous irregular phase, i.e., in a noncritical region (outside
a phase transition) [18]. This finding highlights the impor-
tance of recognizing that power-law avalanches alone do not
necessarily indicate criticality. As we will demonstrate, the
Brunel model does not exhibit criticality when subjected to
the maximum-entropy analysis. This serves to illustrate that
such an analysis has the capability to identify and dismiss
criticality.

D. Data acquisition

The data used here are the same as those utilized in
Ref. [17]. As has been described previously [17], we used
six Long-Evans (Rattus norvegicus) rats (male, 280–360 g,
24 months old). The animals were anesthetized with urethane
(1.55 g/kg), diluted at 20% in saline, in three intraperitoneal
(i.p.) injections, 15 min apart [29]. Some animals demanded
supplement (max 5%) urethane to reach the proper level of
analgesia. The primary visual cortex (V1) was marked by
coordinates: AP = −7.2, ML = 3.5 relative to Bregma [30].
We performed recordings of extracellular voltage of neu-
ronal populations by using a 64-channel multielectrode silicon
probe (Neuronexus technologies, Buzsaki64spL-A64). This
probe has 60 electrodes disposed in six shanks separated
by 200 µm, 10 electrodes per shank with an impedance of
1–3 M� at 1 kHz. Each electrode has 160 µm2 and they are
in staggered positions 20 µm apart. We recorded from deeper
layers of the rat cortex, similarly to what was previously done
in Ribeiro et al. [10] under ketamine-xylazine and Fontenele
et al. [13] under a setup similar to the one presented here.

Data were sampled at 30 kHz, and amplified and digitized
in a single head-stage (Intan RHD2164) [31]. We recorded
spontaneous activity during long periods (�3 h). We used

the open-source software KLUSTA to perform the automatic
spike sorting on raw electrophysiological data [32]. The au-
tomatic part is divided into two major steps: spike detection
and automatic clustering. Manual spike sorting allows the
identification of each cluster of neuronal activity as single-unit
activity (SUA) or multi-unit activity (MUA). We used both
SUA and MUA clusters for our study.

E. Spiking-time maximum entropy model

The maximum-entropy method provides a bias-free prob-
ability distribution that reproduces a set of observed data
statistics. In neuroscience, these statistics are typically ex-
tracted from the binary spike matrix {si,t }. The time series is
segmented into temporal windows �t . If neuron i spiked at
least once within window t , then si,t = 1 (otherwise, si,t = 0).

Here we use a maximum-entropy model that is based on
the firing rate of the network in different time steps. To capture
the temporal dynamics, the maximum-entropy model by Mora
et al. [26] uses observables like the joint distribution of the
number of spiking neurons (Kt = ∑N

i=1 si,t ) at different times
windows, denoted as

Pu(K, K ′) = 1

L − u

L−u∑
t=1

∑
{si,t }

δK,Kt δK ′,Kt+u P({si,t }), (4)

where u = 1, . . . , ν controls the temporal distance between
two windows, and L is the number of times bins.

The probability distribution to be inferred is written in
Boltzmann form,

Pβ (si,t ) = 1

Z (β )
exp[−βE ({si,t })], (5)

where Z (β ) is the normalization constant. Here β ≡ 1/T is an
adjustable parameter equivalent to the inverse of temperature
T . When β = 1, the model describes spike statistics. By vary-
ing β close to 1, different probability distribution models are
obtained, enabling us to assess the proximity of the current
state to the critical regime. To satisfy the observables, the
“energy of spike trains” E is defined as follows:

E = −
L∑
t

h(Kt ) −
L∑
t

v∑
u=1

Ju(Kt , Kt+u), (6)

where the terms h(Kt ) and Ju(Kt , Kt+u) are Lagrange mul-
tipliers associated with the constraints Pu(K, K ′). With the
appropriate Lagrange multipliers, Pu,model is computed using
the transfer-matrix technique (see [26,27] for details), while
Pu,data is directly calculated from the data.

Note that we are faced with an inverse problem. It is nec-
essary to calculate the Lagrange multipliers such that Pu,model

is consistent with Pu,data. Model learning is achieved through
an interactive process that is implemented based on the differ-
ence between the probabilities estimated by the model and the
probabilities obtained from the data,

h(Kt ) ← h(Kt ) + ε[Pdata(Kt ) − Pmodel(Kt )], (7)

Ju(Kt , Kt+u) ← Ju(Kt , Kt+u) + ε[Pdata(Kt , Kt+u)

− Pmodel(Kt , Kt+u)]. (8)
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Such a procedure is equivalent to performing gradient descent
on the log-likelihood [26]. Choosing a small enough value of
ε ensures the convergence of h(Kt ) and Ju(Kt , Kt+u).

Once the probability distribution Pβ is estimated, the spe-
cific heat can be calculated as a function of β,

c(β ) = β2

NL
〈δE2〉β, (9)

where δE ≡ E − 〈E〉β represents the fluctuation from the
mean energy, and its average is taken under Pβ . For a system
operating in the critical regime, it is expected that there will be
a divergence of the specific heat as the network size increases,
thus indicating the thermodynamic limit.

By varying T (β ≡ 1/T ), we are exploring a family of
probability distributions in search of the divergence of specific
heat. The system is interpreted as critical as the peak of c
approaches T = 1 with increasing N .

To investigate the dependence of c on the system size,
samples of neurons were collected from simulations, chosen
randomly. The creation of different subsamplings starts from
the smallest subpopulation to be analyzed, adding neurons to
form larger subpopulations. This ensures that the larger sub-
populations include the same neurons as the smaller ones. For
each model parameter, this process was repeated ten times.
The consistency of our results is verified through the repetition
of the same procedure for surrogate data, where for each
neuron the sequence of interspike intervals was shuffled.

F. Critical metrics

We conduct the maximum entropy analysis by systemati-
cally exploring the control parameters in neural models. As
will be shown in Sec. III, we obtained specific-heat curves
that could lead to interpretations suggesting criticality in data
that were previously known to be noncritical. For a systematic
analysis, and to eliminate this ambiguity, we propose three
metrics here that, when combined, are capable of character-
izing the critical dynamics or lack thereof. In addition, they
provide us with a quantitative analysis approach, which can
be applied in the investigation of experimental data.

The first metric takes into consideration the relative dis-
tance between the critical temperature T ∗ and the temperature
T = 1 that fits the data. Thus, we define

DN = 1 − |1 − T ∗
N |. (10)

Note that in the ideal case, |1 − T ∗| will become zero, hence
D = 1. The second metric takes into consideration that at the
critical point, the c(T ) curves become sharper as N increases.
To quantify this aspect, we calculate the width at half-height
through |T ∗ − T †| as illustrated in Fig. 1. Here, T † is defined
by c(T †) = c(T ∗)/2, corresponding to half of the maximum
value of the c(T ) curve. Thus, we define the second metric as

WN = 1 − |T ∗
N − T †

N |. (11)

Notice that as N grows, W tends to 1.
As we will see in the next section, these two factors alone

are not enough to classify the analyzed data as operating in
criticality. In the supercritical regime, curves with T ≈1 were
obtained, and we obtained very sharp curves with T ∗ ≈ 1.
To distinguish between critical and supercritical regimes, we

FIG. 1. Examples of specific-heat curves as a function of T
and N . For the quantitative comparison of curves, we define three
metrics. The metric D considers the distance from the specific-heat
peak temperature T ∗ to T = 1, which fits the data. In the metric
W , we consider the width of the curve at half-height by extract-
ing |T ∗ − T †|, where T † is defined as the temperature at which
c(T †) = c(T ∗)/2. The last metric is based on the finite-size scaling
theory, which takes into account that the specific-heat peak c(N, T ∗)
for a population N of neurons scales with Nα/ν , where α and ν are
critical exponents.

propose a third metric based on the monotonic increase of the
specific-heat peak as N increases. According to the theory of
finite-size scaling [33], at the critical point,

c(N, T ∗) ∝ Nα/ν, (12)

where α and ν are critical exponents. On logarithmic scales,
Eq. (12) is expected to yield a linear relationship between
c and N at the critical point. To confirm the linear trend of
the set of specific-heat peaks for each value of N , we applied
Pearson’s test [34]. The linear trend is provided with the value
of r, which ranges from −1 to 1, where r = 1 and −1 indicate
perfect positive and negative correlations, respectively, and
r = 0 indicates that there is no linear correlation between the
variables. Therefore, we will utilize r as the third metric.

It is worth noting that each metric was defined to yield the
value 1 as the ideal case for the specific aspect being captured.
In Sec. III, we will see that these metrics can reach a value of
1 for noncritical regimes, but not simultaneously. Only in the
critical regime do these three metrics achieve a value of 1.
Therefore, for the critical regime, the product

DW r → 1 (13)

as N increases.

III. RESULTS

Maximum-entropy models have been used to identify
criticality in experimental data sets [21,27,35]. However, a
thorough investigation of direct comparisons with neuron
models has been lacking. Here we evaluate the results from
the maximum-entropy model described in Sec. II E in data
sets from different neuron models. We evaluate the method’s
ability to identify signatures (or absence) of criticality in data
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FIG. 2. Results for the spiking neuronal network (Sec. II A): Parts (a)–(c) illustrate specific-heat curves corresponding to the subcritical
(g = 1.6), critical (g = 1.5), and supercritical (g = 1.4) regimes, respectively. Parts (d)–(f) depict c(N, T ∗) × N on a logarithmic scale for
different sample sets (symbols and colors correspond to the individual sets) obtained from the data across diverse dynamic regimes. The linear
trend is exclusively noticeable for the critical regime (e), aligning with finite-size theory. Part (g) shows metric D assessing the proximity of T ∗

to T = 1, while (h) exhibits metric W representing width at half-height of the curves concerning g and N . Part (i) reveals metric r evaluating
the linear trend in c(N, T ∗) ∝ Nα/ν , where α and ν are critical exponents. Finally, (j) illustrates the combination of the three metrics DW r.
The dashed line in (g)–(j) indicates the model’s critical point. The gray band establishes the criterion observed in the models that indicate the
critical regime.

024401-5



SERAFIM, CARVALHO, COPELLI, AND CARELLI PHYSICAL REVIEW E 110, 024401 (2024)

from both critical and noncritical models, and we compare to
experimental results.

Our analyses rely initially on the models presented in
Secs. II A and II B, which are known to exhibit critical be-
havior. Near the critical point, these models exhibit dynamics
that resemble the characteristics and diversities observed in
experimental data, such as the statistics of avalanches [17].

Notably, at the critical point and its proximities, DW r
shows considerable values (≈0.7) for smaller N values, a
trend that diminishes as the control parameters move away
from the critical point. In this study, we will subject them
to maximum-entropy analyses to assess their agreement with
criticality, as determined by avalanche statistics.

The maximum-entropy approach identifies a data set as
operating in the critical regime with a progressive increase
of the peak of c(T ∗) as N grows, with T ∗ ≈ 1. This trend
implies a divergence in the thermodynamic limit. Although
this interpretation seems clear, we need to identify how the
growth occurs and how close to T ∗ ≈ 1 we must be in limited
data sets to imply criticality.

Figures 2(a)–2(c) illustrate the specific-heat curves, re-
spectively, for the subcritical (g = 1.6), critical (g = 1.5),
and supercritical (g = 1.4) cases of the model described in
Sec. II A. It is noticeable in both sub- and supercritical
regimes that there is a growth of the specific-heat peak around
T = 1, which could lead to a misinterpretation of criticality.
However, it is possible to distinguish each of these cases. In
Sec. II F, we introduced three metrics capable of making such
a distinction.

Lotfi et al. proposed a measure aimed at calculating the
normalized distance to criticality [27]; however, this measure
was only applied to experimental data without a theoretical
reference, and we verified the need to improve measures of
criticality as shown here. The D and W metrics proposed
here draw inspiration from elements of that measure. They are
successful in characterizing the subcritical regime (g � 1.60),
Figs. 2(g) and 2(h), since these factors differ from D = 1
and W = 1 (the critical result), tending to move away as the
control parameter moves away from the critical point in the
direction of the subcritical dynamics. However, they lack the
sensitivity to distinguish the supercritical (g < 1.40) regime
from the critical regime (g = 1.5), with D and W tending to 1
in either case.

In this context, we introduce the third metric, r. This metric
is based on the linearity of the plot c(N, T ∗) × N on a logarith-
mic scale, where we expect to observe a linear behavior for the
critical point, as indicated by the theory of finite-size scaling.
Figure 2(e) clearly demonstrates a linear trend for the critical
points of the model across different sets of N . The same trend
is not observed for the other dynamic regimes, as shown in
Figs. 2(d) and 2(f).

Figure 2(i) displays r for the different dynamic regimes.
We can observe that only this metric is capable of distinguish-
ing between the different regimes. However, in the vicinity of
the critical point, it is not as pronounced. For this reason, the
product of the three metrics DW r provides a better distinction,
as we can see in Fig. 2(j).

To check the consistency of these results, we applied the
same methodology to the cellular automaton model described
in Sec. II B, which also features a critical point (σ = 1.00) and

FIG. 3. Combination of the DW r metrics vs the control parame-
ter of the cellular automaton and Brunel models. Part (a) presents the
outcome for the cellular automaton model described in Sec. II B. The
dashed line indicates the model’s critical point. Here, we observe the
method’s consistency in distinguishing the critical point (σ = 1.0)
from other dynamic regimes, evidenced by DW r � 1. (b) Results
for the Brunel model described in Sec. II C. In this case, DW r does
not approximate 1, as expected, given the absence of a critical point
in the model. These outcomes illustrate the method’s consistency in
detecting the critical or noncritical regime. The gray band establishes
the criterion observed in the models that indicates the critical regime.

the same universality class as the previously analyzed model,
albeit with a very different underlying topology. Figure 3(a)
shows DW r for different dynamics regimes. As observed at
the critical point (σ = 1.00), DW r → 1, while the various
noncritical regimes remain distant from this level (more de-
tails can be found in Fig. 5). This result demonstrates the
methodology’s efficiency in identifying critical dynamics.

We also subject it to Brunel’s integrate-and-fire model de-
scribed in Sec. II C. Such a model does not exhibit a critical
point. In this model, Touboul and Destexhe [18] claim to
find power-law distributions in its irregular synchronous phase
with critical exponents consistent with the experimental data
of Beggs and Plenz—a result that can be mistaken for critical-
ity. We investigate the behavior of the specific heat exploring
the synchronous irregular (SI) and asynchronous irregular
(AI) phases as well as the border between them. We vary the
control parameter νext/νth within the interval [0.85,1.2], fixing
g = 6, traversing from the SI to the AI phases [19]. Figure 3(b)
displays the result for this model. It can be observed that
for no control parameter (νext/νth) does DW r tend towards
1, as expected. Hence, complemented by the three metrics

024401-6



MAXIMUM-ENTROPY-BASED METRICS FOR QUANTIFYING … PHYSICAL REVIEW E 110, 024401 (2024)

FIG. 4. Maximum-entropy results for V1 spiking data of urethane-anesthetized rats. (a)–(c) Specific-heat curves for different rats. (d)–(f)
c(N, T ∗) × N on a logarithmic scale for different rats. (g) Metric D assessing the proximity of T ∗ to T = 1, while (h) exhibits metric W
representing width at half-height of the curves concerning different rats and N . (i) Metric r evaluating the linear trend in c(N, T ∗) ∝ Nα/ν .
Finally, (j) illustrates the combination of the three metrics DW r. The gray band establishes the criterion observed in the models that indicate
the critical regime.

introduced here, the maximum-entropy approach successfully
ruled out criticality.

Based on observations from the neural models investigated
here, it is viable to establish a quantitative criterion to classify
experimental data as operating within the critical regime or its
vicinity. In Fig. 2(j), we observe that DW r varies slowly as a

function of the control parameter; however, in Fig. 3(a), DW r
changes abruptly. These results are related to the sensitivity of
the models to the control parameter affecting their dynamics.
A slower change of dynamics as a function of the control
parameter allows us to investigate the sensitivity of DW r as
we slowly move away from the critical point. In Fig. 2(j), we

024401-7



SERAFIM, CARVALHO, COPELLI, AND CARELLI PHYSICAL REVIEW E 110, 024401 (2024)

FIG. 5. Results for the cellular automaton model (Sec. II B). (a)–(c) Specific-heat curves corresponding to the subcritical (σ = 0.950),
critical (σ = 1.000), and supercritical (σ = 1.050) regimes, respectively. (d)–(f) c(N, T ∗) × N on a logarithmic scale for different sample sets
obtained from the data across diverse dynamic regimes. The linear trend is exclusively noticeable for the critical regime (e), aligning with
finite-size theory. (g) Metric D assessing the proximity of T ∗ to T = 1, while (h) metric W representing width at half-height of the curves
concerning g and N . (i) Metric r evaluating the linear trend in c(N, T ∗) ∝ Nα/ν , where α and ν are critical exponents. Finally, (j) combination
of the three metrics DW r. The gray band establishes the criterion observed in the models that indicate the critical regime. The dashed line in
(g)–(j) indicates the model’s critical point.

notice that DW r begins to move away from 1 reaching values
lower than 0.89 (gray band) as we vary the control parameter
by 5% (g = 1.425 and 1.575) in relation to the critical point.

Furthermore, we notice that within this interval, DW r reaches
values greater than 0.89 already with N = 50, which does not
occur outside this interval even with N = 200. Therefore, to
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classify experimental data operating within the critical regime
or its neighborhood, we set a threshold of DW r � 0.89. This
criterion raises the requirement to be considered critical, since
it is possible to obtain relatively high values of DW r, as in
the case of the shuffled data in Fig. 6(a), where we obtained
DW r ≈ 0.8.

Having established this criterion, we analyzed spiking data
from the primary visual cortex (V1) of rats anesthetized with
urethane (see Sec. II D). This drug induces various cortical
states in the brain, ranging from high levels of spiking vari-
ability (synchronous state) to low levels of spiking variability
(desynchronized state). Data similar to this have been utilized
to establish the presence of criticality within an intermedi-
ate level of spiking variability for both avalanches [13] and
maximum-entropy analyses [27]. In contrast to Ref. [27],
which accessed different levels of spiking variability by seg-
menting the data based on the coefficient of variation, here we
analyzed the entire time series.

Here, we used a standard of 200 neurons in each experi-
mental data set. This number of neurons is of the same order
of magnitude as the total number of neurons we obtained
experimentally in all data sets, providing a consistent analy-
sis, being computationally feasible for the maximum-entropy
model, and already being a reliable size when compared to
the analysis of computational model data. This aspect is sig-
nificant as it allows us to establish criteria when the analysis
is performed with a few neurons.

Figures 4(a)–4(c) depict the specific-heat curves for three
out of the six analyzed rats. The metrics D and W [Figs. 4(g)
and 4(h)] reach values very close to 1, similarly to what is
observed in both the critical and supercritical regimes of the
neural models [Figs. 2(g) and 2(h) and Figs. 5(g) and 5(h)].
The third metric, r, reaches values close to 1 [Fig. 4(i)]. This
trend is confirmed in Figs. 4(d)–4(f).

By combining the metrics in Fig. 4(j) and adopting the
quantitative criteria established (gray range), it can be inferred
that all analyzed experiments are operating within the critical
dynamics. Moreover, we observe that akin to the critical point
in the models, such criteria are already met with smaller neu-
ronal subsets. These results align with the analyses conducted
on avalanches [13,17].

IV. CONCLUSION

Here, we investigated the ability of the maximum-entropy
model developed by Mora et al. [26,27] in distinguishing crit-
ical and noncritical behavior, in particular using limited data
sets. Using models that we analytically know to be critical, we
developed and calibrated a criticality indicator DW r based on
the analysis of generalized specific-heat curves. We were also
able to rule out criticality in the Brunel model, which some
authors argued could have misleading results with avalanches
analysis over limited data sets [18]. Despite the proposed
DW r metric demonstrating robustness in detecting criticality
in known models, it alone does not distinguish between sub-
critical and supercritical states. However, as shown in Figs. 2
and 5, these cases can be detected by calculating the difference
between the peak temperature and T = 1.

With the indicator DW r established and tested, we em-
ployed the same methodology on long recordings of cortical

spiking data from urethane-anesthetized rats. For all experi-
mental data sets analyzed, we obtained DW r → 1, indicating
critical dynamics in the data. This result agrees with the con-
clusions drawn from different criticality signatures observed
in similar data [13,27,36].

FIG. 6. DW r results for shuffled data vs the control parameter
of the models (a)–(c) and experimental set (d). The dashed line
in (a) and (b) indicates the model’s critical point. The gray band
establishes the criterion observed in the models that indicates the
critical regime.
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APPENDIX: APPLICATION OF MAXIMUM ENTROPY
METHOD METRICS TO THE KC MODEL

AND SHUFFLED DATA

Figure 5 shows the results in an extended form for
the cellular automaton model described in Sec. II B.

Figures 5(a)–5(c) shows the specific-heat curves for three
different dynamic regimes illustrating the variety of possible
results. In Figs. 5(d)–5(f) we can observe the linear trend of
specific-heat peaks c(N, T ∗) as a function of the analyzed
subpopulation N . This result clearly demonstrates that this
trend only occurs at the critical point. Figures 5(g) and 5(h)
individually present the three metrics D, W , and r, respec-
tively. Finally, Fig. 5(j) combines the three metrics, which
clearly distinguishes the critical point from the other dynamic
regimes.

Figure 6 shows the results of DW r for shuffled data from
all three models, as well as from experiments. We note that in
no case does DW r → 1.
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