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Metastable states in the Ising model with Glauber-Kawasaki competing dynamics
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Metastable states are identified in the Ising model with competition between the Glauber and Kawasaki
dynamics. The model of interaction between magnetic moments was implemented on a network where the degree
distribution follows a power law of the form P(k) ∼ k−α . The evolution toward the stationary state occurred
through the competition between two dynamics, driving the system out of equilibrium. In this competition, with
probability q, the system was simulated in contact with a heat bath at temperature T by the Glauber dynamics,
while with probability 1 − q, the system experienced an external energy influx governed by the Kawasaki
dynamics. The phase diagrams of T as a function of q were obtained, which are dependent on the initial state of
the system, and exhibit first- and second-order phase transitions. In all diagrams, for intermediate values of T ,
the phenomenon of self-organization between the ordered phases was observed. In the regions of second-order
phase transitions, we obtained the critical exponents of the order parameter β, susceptibility γ , and correlation
length ν. Furthermore, in the regions of first-order phase transitions, we have demonstrated the instability due
to transitions between ordered phases through hysteresislike curves of the order parameter, in addition to the
existence of absorbing states. We also estimated the value of tricritical points when the discontinuity in the order
parameter in the phase transitions was no longer observed.
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I. INTRODUCTION

One of the main points of interest when dealing with
nonequilibrium systems is the possibility of encountering
phase transitions with characteristics of reversible systems,
even though in this nonequilibrium thermodynamic regime,
we lack a unifying framework like a Gibbs equilibrium statis-
tical mechanics [1]. We can handle systems out of equilibrium
when the evolution process toward the steady state involves
competition between two dynamics [2–5]. This is because
individually these dynamics satisfy detailed balance, but if
both have a nonzero probability of acting on the system,
the principle of microscopic reversibility is not always re-
spected, and the system is forced out of equilibrium. Two
dynamics that are commonly employed in competition are the
Glauber dynamics with the single-spin flip process [6] and the
Kawasaki dynamics with the two-spin exchange process [7].

Given its simplicity and usefulness in studying phase
transitions, the Ising model is also widely employed in inves-
tigating nonequilibrium systems with competitive dynamics.
In such cases, considering a ferromagnetic coupling between
spins, with probability q, the system is in contact with a ther-
mal reservoir at temperature T and relaxes to the steady state
of lower energy through the Glauber dynamics. However, with
probability 1 − q, the system is subject to an external energy
influx and evolves to the state of higher energy through the
Kawasaki dynamics. In a regular square lattice [8], the Ising
model subject to these competing dynamics self-organizes
into the ordered phases, the ferromagnetic phase (F ) and the
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antiferromagnetic phase (AF ). In this self-organization, at low
values of q, the AF phase is found, corresponding to the higher
energy state of the system. But as q increases, a transition
occurs to the paramagnetic phase (P). Further increasing q
leads to another transition to an ordered phase, the F phase,
corresponding to the lower energy state of the system. In this
case, the continuous phase transitions were found between
the AF to P and P to F phases, except for q � 0.2, where a
tricritical point is present, and the first-order phase transitions
are observed from the F phase to P.

Beyond regular networks, complex networks despite not
having much evidence to describe crystals are of great interest
because they describe a range of structures found in society.
Examples of these are the small-world networks [9,10], which
encompass the property discovered by Milgram [11], wherein
any person in the world can have contact with another, requir-
ing a remarkably smaller number of intermediaries compared
to the size of the network. Another example of complex net-
works present in society are those that follow a power-law
degree distribution, p(k) ∼ k−α [12]. In this case, p(k) is the
probability of any point in the network having k other points
connected to it, and α is the exponent that depends on the
object of study. Networks of this kind stand out because, with
advances in data processing techniques and equipment, it has
been observed that networks such as the world wide web,
the internet, citation networks, networks of actors who have
appeared in the same film, networks of protein interactions,
among many others [13], despite having very distinct for-
mation origins, self-organize in such a way that the degree
distribution takes the form of a power law.

Due to the importance of complex networks, they have
been implemented in physical models to investigate their
influence on phase transitions [14–17]. These models also
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include the nonequilibrium Ising model through competitive
dynamics. With one- and two-spin flips competing dynamics
on small-world networks [18] and networks with power-law
degree distribution [19], the phenomenon of self-organization
is observed. This involves transitions from the AF to P phases
and from the P to F phases, varying the competition pa-
rameter q. In both cases, only second-order phase transitions
are found, and the universality class obtained through crit-
ical exponents, in both networks, with and without [20,21]
competitive dynamics, belongs to the mean-field regime. The
results are also available regarding the Ising model on a
2D small-world network and with competition between the
Glauber and Kawasaki dynamics [22]. In this case, the self-
organization was also observed, but in the region of phase
diagrams (T × q), where competition between the F and AF
ordered phases is present, i.e., low values of q and T , first-
order phase transitions are found, in addition to second-order
phase transitions for low values of q with high values of T ,
and high values of q with low values of T .

In these studies, both on regular [2,8] and complex net-
works [22], of the Ising model with competing Glauber and
Kawasaki dynamics, first-order phase transitions are found.
However, the metastability achieved by applying competing
dynamics can alter the topology of phase diagrams given the
regions of instability, and depending on the shape of these
regions, absorbing states can be identified, but these aspects
have not been addressed in previous works. Therefore, we
will search for the existence of absorbing states and study the
topology of the phase diagrams by altering the initial condi-
tions of the system. Additionally, we intend to make a direct
comparison between the nonconservative one- and two-spin
flip dynamics applied in previous works [19] and the compe-
tition between Glauber and Kawasaki dynamics. To achieve
this, we will investigate the Ising model on a network with a
power-law degree distribution and with competition between
the Glauber and Kawasaki dynamics. In this configuration,
each point of the network represents a spin variable that can
take values of σ ± 1, with a probability p(k) ∼ k−1 of inter-
acting with k other spins randomly distributed in the network.
For the evolution toward the steady state, with probability q,
the system is in contact with a thermal reservoir at temperature
T and it relaxes to the lowest energy state through Glauber
dynamics. Meanwhile, with a probability 1 − q, there is an
external energy flux into the system, governed by Kawasaki
dynamics, favoring the higher energy state.

This article is organized as follows: In Sec. II, we present
the network, the dynamics involved in the system, and how
they drive the evolution of the Ising system. In Sec. III, we
provide details about the Monte Carlo method, the thermo-
dynamic quantities of interest, and the scaling relations for
each of them. The phase diagrams and a detailed description
of both first- and second-order phase transitions present in
these diagrams are discussed in Sec. IV. Finally, in Sec. V,
we present the conclusions drawn from the study.

II. MODEL

Here, we have utilized a network divided into two sublat-
tices. The sites from one sublattice can only randomly connect
to spins of the other sublattice, and the degree of the sites

FIG. 1. Representation schematic of the network with a power-
law degree distribution, with exponent α = 1, km = 4, k0 = 2, and
size N = (10)2. The green (light gray) circles represent one of the
sublattices, while the red (dark gray) circles represent the other
sublattice. The black lines indicate the connections between the
sublattices. The size of the circles corresponds to the degree of the
vertex in the network.

follows a power-law distribution of the form

p(k) = k−α∑km
k=k0

k−α
. (1)

With k0 = 4 being the minimum degree of the sites, km = 10
the maximum degree present on the network, and a fixed value
of α = 1, we impose limitations on the degrees of the network,
thereby disrupting the scale-free network property typically
found in real networks exhibiting growth and preferential
connections [12]. An example of the network can be seen in
Fig. 1, indicating the connection between the two sublattices
and the limitation in the network degrees. These choices are
made to ensure finite critical points and to verify whether the
universality class obtained for the model in the thermody-
namic equilibrium regime will prevail in this nonequilibrium
system. Therefore, our focus in this study is on the effects
of reactive-diffusive competing dynamics on the well-defined
network implemented in the Ising model. Further details on
the network construction and the effect of the exponent α

at the criticality of the system can be found in two previous
works [19,21].

In the Ising model, the interaction energy between the spins
is defined by the Hamiltonian in the form

H = −
∑
〈i, j〉

Ji jσiσ j, (2)

where σi = ±1, the sum is over all pair of spins, and we
use Ji j = 1, meaning ferromagnetic interaction if sites i and
j interact between the sublattices, and zero otherwise.

For our nonequilibrium system, let us denote p({σ }, t )
as the probability of finding the system in the state {σ } =
{σ1, . . . , σi, . . . , σ j, . . . σN } at time t . The equation governing
the evolution of the probability of states over time is given by
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the master equation

d

dt
p({σ }, t ) = qG + (1 − q)K, (3)

where qG represents the one-spin flip process, associated with
the Glauber dynamics, which relaxes the spins in contact with
a heat bath at temperature T , favoring the lowest energy state
of the system, and have probability q to occur. However,
(1 − q)K represents the two-spin exchange process, related
with the Kawasaki dynamics, where the system is subjected
to an external flux of energy into it, increasing the energy of
the system, and have probability 1 − q to occur. G and K are
described as follows:

G =
∑
i,{σ ′}

[W (σi → σ ′
i )p({σ }, t )

− W (σ ′
i → σi )p({σ ′}, t )], (4)

K =
∑

i, j,{σ ′}
[W (σiσ j → σ jσi )p({σ }, t )

− W (σ jσi → σiσ j )p({σ ′}, t )], (5)

where {σ ′} is the new the spin configuration, W (σi → σ ′
i )

is the transition rate between the states on the one-spin flip
process, and W (σiσ j → σ jσi ) the transition rate between the
states in the two-spin exchange process.

III. MONTE CARLO SIMULATIONS

In our Monte Carlo simulations, we have considered two
possible initial states for the system: the ordered state, where
all the spins are the same state, and the disordered state,
where the spin states are randomly chosen. Starting from the
initial state, a new spin configuration is generated following
the Markov process: for a given temperature T , competition
probability q, and network size N , we randomly select a spin
σi in the network and generate a random number r, uniform
distributed between zero and one. If r � q, then we choose
the one-spin flip process, in which the flipping probability is
given by the Metropolis prescription:

W (σi → σ ′
i ) =

{
e(−�Ei/kBT ) if �Ei > 0,

1 if �Ei � 0,
(6)

where �Ei is the change in energy, based in Eq. (2), after
flipping the spin σi, kB is the Boltzmann constant, and T the
temperature of the system. In summary, a new state is ac-
cepted if �Ei � 0. However, if �E > 0, then the acceptance
is determined by the probability exp(−�Ei/kBT ), and it is
accepted only if a randomly chosen number r1 uniformly dis-
tributed between zero and one satisfies r1 � exp(−�Ei/kBT ).
If none of these conditions are satisfied, then the state of the
system remains unchanged. Now, if r > q, then the two-spin
exchange process is chosen, and in addition to the spin σi we
also randomly choose one of its neighbors σ j , and the state of
these two spins are exchanged according to transition rate

W (σiσ j → σ jσi ) =
{

0 if �Ei j � 0,

1 if �Ei j > 0,
(7)

where �Ei j is the change in the energy after exchange the
state of the spins σi and σ j . In this process, the new state

is accepted only if the change in energy is positive. This
approach simulates the system with an external energy input,
where an increase in energy is anticipated.

Repeating the Markov process N times, we have one Monte
Carlo step (MCS). We allowed the system to evolve for
104 MCS to reach a stationary state, for all network sizes,
(32)2 � N � (256)2. To calculate the thermal averages of the
quantities of interest, we conducted an additional 4 × 104

MCS, and the averages over the samples were done using
10 independent samples of the initial state of the system. The
statistical errors were calculated using the Bootstrap method,
which means they were estimated from random samplings of
the total number of MCS in the stationary state.

The measured thermodynamic quantities in our simula-
tions are: magnetization per spin mF

N, staggered magnetization
per spin mAF

N , magnetic susceptibility χN, and reduced fourth-
order Binder cumulant UN:

mF
N = 1

N

[〈
N∑

i=1

σi

〉]
, (8)

mAF
N = 1

N

[〈
N∑

i=1

(−1)(l+c)σi

〉]
, (9)

χN = N

kBT
[〈m2〉 − 〈m〉2], (10)

UN = 1 − [〈m4〉]
3[〈m2〉2]

, (11)

where [. . .] representing the average over the samples, and
〈. . .〉 the thermal average over the MCS in the stationary state.
To facilitate the calculation of mAF

N , the sites on the network
are labeled as if we had a square lattice, N = L2, in this way,
l and c are the row and column of the site i, respectively. In
Eqs. (10) and (11), m can represent either mF

N or mAF
N .

Near the stationary critical point 	c, Eqs. (8), (9), (10),
and (11) obey the following finite-size scaling relations [23]:

mN = N−β/νm0(N1/νε), (12)

χN = Nγ /νχ0(N1/νε), (13)

U′
N = N1/ν U ′

0(N1/νε)

	c
, (14)

where ε = (	 − 	c)/	c (	 can be T or q), β, γ and ν are
the critical exponents related the magnetization, susceptibility
and correlation length, respectively. The functions m0(N1/νε),
χ0(N1/νε) and U0(N1/νε) are the scaling functions.

IV. RESULTS

This section is divided into four subsections. Sections IV A
and IV B are related to the conditional phase diagrams
obtained for the system with two different initial states,
and the complete phase diagram of the system, contain-
ing all the points obtained from these conditional diagrams.
Sections IV C and IV D concern the different phase transition
types found in the phase diagrams, namely, second- and first-
order phase transitions, respectively.
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FIG. 2. Conditional phase diagrams q × T for the ordered initial state of spins in the simulations. These diagrams present regions with
different colors and denote the stable phases, AF (purple in the upper left corner), F (green at the bottom), P (red in the upper right corner),
and the metastable phases, AF or F (white), F or P (black). The cyan (light gray) circles indicate second-order phase transition points and
the white squares indicate first-order phase transition points. The red (dark gray) points represent the tricritical points, and the dashed arrows
indicate the direction of sweeping of the parameters T and q in the simulations. The dotted and straight lines are only guides for the eyes, and
the error bars are smaller than the symbol sizes.

A. Ordered initial state

In this subsection, the conditional phase diagrams of the
system were obtained with the ordered F initial state in the
simulations. In the diagram of Fig. 2(a), the phase transition
points were found by varying the external parameters, T or
q, from the lowest to the highest value (black dashed arrows
in the figure). At high values of q and varying T , we have
observed a second-order phase transition between the F and
P phases. Thus, regardless of the initial state of the system and
the starting point of the simulation, we consistently obtained
the same critical point value. For temperatures T � 3.18 and
up to T = 6.235, we have observed the self-organization phe-
nomena in the system, where we start from the AF phase, at
low values of q, and pass to the disordered P phase when re-
ducing the external energy flow into the system. However, we
found another ordered phase, the F phase, when the prevailing
dynamics involve the system being in contact with a heat bath,
at high values of q. A characteristic of the critical points at
high temperatures is that they indicate a second-order phase
transition. However, at low values of q and T , the first-order
phase transitions are found. Regarding these first-order phase
transitions, the white-colored region in the diagram indicates
that we can have both the F and AF phases in this region,
depending on the starting point of the simulations. If we start
the simulation with parameter values in the purple region, then
we find the AF phase in the white region. Conversely, if we
start the simulations with the parameter values in the white
region, then we only find the F phase. The black region of the
diagram indicates that we can have both the P and F phases
in this region, depending on the initial parameter values of
the simulations. If we start the simulations with parameter
values in the purple region, then we find the P phase in the
black region. Nevertheless, if we initiated the simulations with
parameter values in the white region, then we have found only
the F phase in the black region.

The existence of these phases can be explained by the
dynamics implemented in the system. At low values of q,

the Kawasaki dynamics prevail in the system, simulating an
external energy flow into the system. In this dynamics, the
order parameter is conserved, so if we have an initial state
with all spins up, as is the case of the diagram in Fig. 2(a) at
q = 0, the only possible state is the F state. However, if q �= 0,
then the system is also influenced by the dynamics simulating
the system in contact with a heat bath at temperature T , so
at low temperatures, the F phase is expected. Now, when
the temperature increases, for low values of q, the Kawasaki
dynamics that prevail in the system organize it into the AF
phase, the phase of higher energy of the system, as expected,
because the dynamics governed by the Metropolis mechanism
altered the spin states, so it is possible to find a state different
from F . Thus, for high values of T and q, when the dynam-
ics simulating a system in constant contact with a heat bath
prevails in the system, the P phase is found. Additionally,
characterizing the first-order phase transitions, the white and
black regions in the diagram indicate the instability of these
states near the critical point and can be further identified in
the results throughout this work.

The diagram in Fig. 2(b) was also obtained with the or-
dered F initial state in the simulations, but the points in this
diagram were found by varying the values of the external pa-
rameters, T or q, from the highest to lowest (red dashed arrows
in the figure). In this case, the second-order phase transition
points are the same as those in the diagram in Fig. 2(a), but
the way we varied the external parameters allows us to ob-
serve new regions due to first-order phase transitions. Similar
to the diagram in Fig. 2(a), the white region indicates both
the AF and F phases, depending on the parameter values at
the beginning of the simulation. If we start the simulation
with the parameter q value in the purple region and decrease
T , then we always find the AF phase, but if we start the
simulation with the T value in the white region, we only find
the F phase. The black region indicates both the P and F
phases, depending on the parameter values at the beginning of
the simulation. If we start the simulation with the parameter
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FIG. 3. Conditional phase diagrams q × T for the random initial state of spins in the simulations. These diagrams present regions with
different colors and denote the stable phases, AF (purple on the left side), F (green in the lower right corner), P (red in the upper right corner),
and the metastable phases, AF or F (white), F or P (black). The cyan (light gray) circles indicate second-order phase transition points and
the white squares indicate first-order phase transition points. The red (dark gray) points represent the tricritical points, and the dashed arrows
indicate the direction of sweeping of the parameters T and q in the simulations. The dotted and straight lines are only guides for the eyes, and
the error bars are smaller than the symbol sizes.

values in the red region, then the black region represents the
P phase. However, if we start the simulation with external
parameter values from the black region, then we only find
the F phase. The white and black regions were delimited by
the points from the diagram in Fig. 2(a), since we could not
find transitions from the AF phase to the P phase and from
the P phase to the F phase in this diagram. The first-order
phase transition points present in the diagram in Fig. 2(b) were
obtained by fixing T and varying q, or fixing q and varying T
starting from the purple or red region.

The different regions of the diagram in Fig. 2(b), when
compared to Fig. 2(a), result of the dynamics involved, as well
as the values of the parameters that start the simulation and
how they are changed. At low values of q and high values of
T , if q �= 0, then the influence of the heat bath on the system
is sufficient to change randomly the spin states. Nonetheless,
since the prevailing dynamics in the system force it toward the
state of higher energy, we can still find the ordered state of the
AF phase. Maintaining low values of q and starting from high
values of T , when we decrease the temperature in the system,
the influence of the dynamics simulating the heat bath in the
system is insufficient to obtain an F phase, and only the AF
phase is observed. However, at low values of q and starting
from T values in the white-colored region, the temperature in
the system is not high enough to have disordered spins, so the
Glauber mechanism keeps the system ordered.

B. Disordered initial state

In the conditional phase diagrams of Figs. 3(a) and 3(b), we
have the steady states obtained for the system with the random
spin initial state (disordered initial state) in the simulations.
In Fig. 3(a), the variation of the external parameters, T or
q, occurs from the lowest to the highest value (black dashed
arrows in the figure). When, we have a high external energy
flow into the system, i.e., low values of q, only the ordered
AF state is found in the system. Yet, when we increase q, the
first-order phase transitions from the AF to the F phases are

observed. In this diagram, the white-colored region indicates
both the AF and F phases, depending on the value of the
external parameter from which we start the simulation. If the
value of parameter T starts as one of the values in the green
region, then the white region represents the F phase. However,
if the initial temperature of the system lies between the values
of the white region, then only the AF phase is found in this re-
gion. The black region in the diagram of Fig. 3(a) can indicate
both F and P phases. Starting the simulation with parameter
values in the green region, the black region represents the
F phase. Now, if the parameter values are in the white or
purple region, then the phase found in the black region is the
P phase. Additionally, in this diagram, the second-order phase
transition points are the same as those found in the diagrams
of Figs. 2(a) and 2(b).

The white and black regions in Fig. 3(a) can be interpreted
as a metastable state due to the first-order phase transitions in
this part of the diagram, where we have a greater influence of
the diffusive dynamics, which conserves the order parameter,
the Kawasaki dynamics. In this figure, the initial state is one
where the spin states are randomly distributed on the lattice
sites. At low values of q, the high energy flow into the system
ensures that we always have obtained the state of higher
energy, given the Hamiltonian of the Ising model. However,
when the energy flow decreases, increasing q, the dynamics
favoring the lower energy state prevail in the competition
between dynamics, and we begin to find the F state in the
system at low values of T .

Finally, in the diagram in Fig. 3(b), we also used the disor-
dered initial state of the spins in the simulation, but now the
sweeping of the external parameters occurs from the highest
to lowest values (red dashed arrows in the figure). In this dia-
gram, there is also a region where both the AF and F phases
can coexist, represented by the white-colored region. When
fixing q and varying T , we only observed the AF phase in this
region. However, when fixing T and varying q and starting
from values in the green region, only the F phase is observed.
The black region in this diagram also indicates both the P
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FIG. 4. Phase diagram of the Ising model with competition
between Glauber and Kawasaki dynamics on a network with a
power-law degree distribution. This diagram presents regions with
different colors and denotes the stable phases, AF (purple in the
upper left corner), F (green in the lower right corner), P (red in the
upper right corner), and the metastable phases, AF or F (white), F or
P (black). The cyan (light gray) circles indicate second-order phase
transition points and the white squares indicate first-order phase
transition points. The red (dark gray) points represent the tricritical
points. Dotted and straight lines are only guides for the eyes, and the
error bars are smaller than the symbol sizes.

and F phases. If the external parameters in the simulation are
initialized with values from the black region, then we find the
P phase in this region. However, if the parameter values at
the beginning of the simulation are in the green region of the
diagram, then the black region refers to an F phase.

In Fig. 3(b), since the initial state of the spins is random and
the parameters are swept from highest to lowest value, at low
values of q, even though it is a dynamics that conserves the
order parameter, such as the Kawasaki dynamics prevailing in
the system, we always find the AF phase. Increasing q, we
found a first-order phase transition between the AF and F or-
dered phases. From these points, at low values of temperature,
we only have the presence of the F phase since the system is
simulated in contact with a heat bath at temperature T , where
the one-spin-flip dynamics are prominent for high values of q.
In this diagram, the metastable states of the first-order phase
transitions in the white and black regions are also evident,
along with the self-organization phenomenon mentioned in
the description of Fig. 2(a), which can also be seen in all
diagrams of Figs. 2 and 3.

Using the conditional phase diagrams from Figs. 2 and 3,
we can produce a complete phase diagram of the system that
includes all points and regions of metastability: the white
region, which represents instability between the AF and F
phases, and the black region, which represents instability be-
tween the F and P phases. This complete phase diagram is
presented in Fig. 4 and contains all the points obtained in
constructing the conditional phase diagrams.

C. Second-order phase transitions

This subsection aims to present the critical behavior ob-
served in the second-order phase transitions as can be seen

in the conditional phase diagrams of Figs. 2 and 3, and the
complete phase diagram of Fig. 4. The continuous variation
of the order parameter during the transition from an ordered
phase to the higher symmetry disordered phase can be identi-
fied by analyzing the crossing of the Binder cumulant curves
at the phase transition point [24,25]. In our system, the Ising
model on the complex network with competing dynamics
exhibits two regions in the phase diagram, of T versus q, with
second-order phase transitions.

The first region is observed at low values of q and high of
T , in the transition from the AF to the P phase as q increases.
In this part of the diagram, there is a high external energy flow
into the system. Therefore, whereas the dynamics responsible
for this energy flow favors the state of higher energy in the
system, the AF phase is expected. The AF phase is observed
only at high values of T in a second-order phase transition.
This occurs because at high T , the only possible steady state in
the Glauber dynamics is the disordered phase, P. Thus, there
is no competition between two ordered phases, which is one
of the main reasons for observing first-order phase transitions
in the system, allowing the system to self-organize into the
AF phase for low values of q.

The second region where we found second-order phase
transitions in the diagrams of Figs. 2–4 are the ones with high
values of q. In this case, the dominant dynamics in the system
simulate the contact with the heat bath through the one-spin
flip mechanism. This dynamics does not conserve the order
parameter. Therefore, given favorable conditions, i.e., low
temperatures, we will always find the state of lower energy,
the F phase, independently of the initial state of the system.
This characteristic of the dynamics in the system prevents the
existence of metastable states, and we can observe continuous
phase transitions between the F to P phases.

In Fig. 5, the Binder cumulant curves for the two types
of second-order phase transitions observed are presented. In
Fig. 5(a), the crossing of the curves indicates the transition
point between AF to P phase as a function of q and for a fixed
value of T = 5.0. At this same temperature, further increasing
q, is observed transitions from the P to F phases, as indicated
by the crossing of the Binder cumulant curves in Fig. 5(b).
Transitioning from the ordered AF phase to the disordered
P phase, and from this disordered phase back to an ordered
phase, the F phase, it characterizes the phenomenon of self-
organization in our nonequilibrium system.

Another property that we can obtain from the second-order
phase transitions is the universality class of the system. This
universality class can be identified through critical exponents,
which they were obtained here through scale relations in
Eqs. (12), (13), and (14). Using these scale relations, there
are two main methods to obtain the exponents of the system.

The first method can be seen in Fig. 6, where we have
utilized the fact that scale relations are valid in the vicinity
of the critical point. By collecting data on thermodynamic
quantities at the phase transition for different lattice sizes, the
slope of the linear fit of these points on a graph with axes
in logarithmic scale returns the ratios between the critical
exponents. Using the scale relation of Eq. (12), the points
of magnetization at qc as a function of lattice sizes yield
the ratio β/ν, as indicated by the linear fit of the black
points in Fig. 6. Similarly, using the relation of Eq. (13), the
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FIG. 5. Binder cumulants U AF
N (a) and U F

N (b) as a function of
the competition parameter q, and for a fixed value of T = 5.0. The
crossing point for different network sizes N (see in the figure) indi-
cates the second-order phase transition point in qc = 0.28 ± 0.005
(a) and qc = 0.694 ± 0.005 (b).

susceptibility points show us the ratio γ /ν, while with
Eq. (14), utilizing data from the derivative of the Binder
cumulant, we obtain information about the exponent related
to the correlation length, 1/ν. The linear fit for the ratios γ /ν

and 1/ν can be seen respectively in the red (dark gray) and
green (light gray) points in Fig. 6. Additionally, in this figure,
the square points indicate the thermodynamic quantities at the
transition between the AF to P phases, while circle points
denote the quantities at the transition between the P to F
phases. In these two transitions, equivalent critical exponents
are obtained for T = 5.0. At the AF to P phase transi-
tion, therefore, we found (β/ν)AF = 0.24 ± 0.01, (γ /ν)AF =
0.51 ± 0.02, and (1/ν)AF = 0.51 ± 0.09, while at the P to
F phase transition we have obtained (β/ν)F = 0.26 ± 0.06,
(γ /ν)F = 0.50 ± 0.06, and (1/ν)F = 0.49 ± 0.09.

Another method that we can employ to find the critical
exponents of the system is data collapse. In this method, the
goal is to find the scaling function contained in the scaling re-
lations by collapsing the curves of thermodynamic quantities
with different lattice sizes. To achieve this, isolating the scal-
ing function from the scaling relations, i.e., plotting mN Nβ/ν

against εN1/ν for magnetization curves, we have adjusted the
critical exponents until we obtained a single curve with the

7 8 9 10 11
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0
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4

ln(m
N

(q
c
)) ln(

N
(q

c
)) ln(U

N
(q

c
))

FIG. 6. Linear fit of the thermodynamic quantities at the critical
point as a function of the network size N , and for a fixed value of
T = 5.0. The square symbols represent the values of the mAF

N , χAF
N ,

and U AF
N , already the circle symbols indicate the values of the mF

N ,
χF

N , and U F
N . The results are well-fitted by dashed straight lines. The

error bars are smaller than the symbol sizes.

different lattice sizes. When this occurs, the exponents used
in this data collapse are the critical exponents of the system,
since the scaling function is only obtained in the vicinity of
the critical point and if the correct critical exponents of the
system are used. In Fig. 7(a), we have presented the data
collapse for the magnetization curves, mAF

N and mF
N , while in

Fig. 7(b), the data collapse for the susceptibility curves in the
two types of transitions can be seen. These plots were made
with logarithmic scales axes as this also allows us to identify
the asymptotic behavior, far from qc, of the scaling functions
through the slope � presented in Figs. 7(a) and 7(b). Fixed
at T = 5.0, for the collapse of curves at the AF transition,
we used (β/ν)AF = 0.25, (γ /ν)AF = 0.50, (1/ν)AF = 0.50,
e qc = 0.28 ± 0.005, and at the F transition, we have used the
exponents (β/ν)F = 0.23, (γ /ν)F = 0.52, e (1/ν)F = 0.50,
along with the phase transition point qc = 0.694 ± 0.005.

In both methods used for calculating the critical exponents,
we obtained equivalent results. We also calculated the criti-
cal exponents for other temperature values and verified that
these are also in accordance with those obtained from the
mean-field approximation, since β = 0.5, γ = 1.0, e ν = 2.0.
These exponents are expected because we are dealing with
the Ising model on a complex network where the second and
fourth moments of the degree distribution are convergent [26].
With this result, we have further evidence that the Ising model
belongs to the same universality class both in thermodynamic
equilibrium and out of it [21].

D. First-order phase transitions

As mentioned in the description of the phase diagrams in
Figs. 2–4, we found first-order transitions at low values of q.
In this part of the diagrams, when we decrease q, we increase
the external energy flow into the system. In this case, the
Kawasaki dynamics tend to govern the system. As a dynamic
that conserves the order parameter, it depends on initial con-
ditions or complementary dynamics to reach specific steady
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FIG. 7. Data collapse of the magnetizations (a) and susceptibili-
ties (b) for different network sizes N , as indicated in the figure, and
for a fixed value of T = 5.0. The curves of mAF

N and χAF
N can be

seen in the right side of the figures, and for mF
N and χF

N the collapsed
curves are in the left side of the figures. The data collapse validates
our estimates for the critical parameters β/ν, γ /ν, 1/ν, and qc. The
error bars are smaller than the symbol sizes.

states. If we only have the Kawasaki dynamics acting on the
system (q = 0), as it is predefined to favor the higher-energy
state, and if the initial state of the system is F , then it will
not be altered because the dynamics do not change the spin
states. Additionally, if the initial state of the system is P,
then the system evolves to the AF state, whereas this is the
higher-energy state and the initial spin states do not need to be
altered, only exchanged with each other. Now, if the system
has an initial AF state, then it remains unchanged. However,
if we have a nonzero probability of the one-spin flip dynamics
acting on the system (q �= 0), as it is strongly dependent on
temperature and favors the lower-energy state of the system,
at high values of T , then the spin states are altered to have
the disordered state P as the steady state. Yet, if q remains
small, at these temperature values, then the state of the system
can be organized into the AF phase because the Kawasaki
dynamics still dominates the system. This phase is observed
in all diagrams of Figs. 2–4 at second-order phase transitions.

For low values of T and q �= 0, we have two ordered state
possibilities for the system. This is because, from the Glauber
dynamics, the steady state is the F phase, while from the
Kawasaki dynamics, we expect the AF phase. In this case, the

1 1.5 2 2.5 3

T

0

0.2

0.4

0.6

0.8

1

N = (32)2

N = (64)2

N = (82)2

N = (96)2

N = (128)2

N = (192)2

FIG. 8. Behavior of the magnetization mF
N (dotted lines) and mAF

N

(solid bold lines) as a function of T , and for different network sizes
N , as indicated in the figure. Here, we used the fixed value of q = 0.2.
These hysteresis-type curves were obtained with the ordered F initial
state of the system, we start from the smallest to the largest value of
T , and then in the opposite direction, as indicated by the arrows in
the figure. The error bars are smaller than the symbol sizes.

initial state of the system makes a total difference, because
starting from the initial F state [see Fig. 2(a)], even with the
Kawasaki dynamics as the most dominant in the system, we
do not find any other phase than F , which prevails for all
values of q. However, if we have a disordered initial state
[see Figs. 3(a) and 3(b)] or we start from an ordered state
that becomes disordered by the Glauber dynamics due to high
temperatures [see Fig. 2(b)], then the system evolves into
the ordered AF state when the Kawasaki dynamics domi-
nates. However, in this low-temperature regime, there is also
competition between ordered phases, as there are favorable
conditions for the F phase of the Glauber dynamics. So, if we
decrease the external energy flow and the system is dominated
by the heat bath, i.e., increasing q, then an abrupt transition
from the AF to F phases is observed. It is in this transition
between the ordered phases that we find the majority of the
first-order transitions in the system. This transition between
ordered phases can also be observed by changing the temper-
ature of the system, because at low values of q and initial F
state, increasing T , transitions to AF phase is observed.

Due to the metastable states close to first-order phase tran-
sitions, one way to identify these transitions is by examining
the dependence of the transition point on the system size.
Another result of this instability is the possibility of obtaining
hysteresislike curves by changing the direction of parameter
sweeping in first-order phase transitions. One of the most
interesting points to observe these instabilities is q = 0.2 be-
cause it passes through all ordered phases and regions where
both the ordered F phase and the ordered AF phase can
exist. In Fig. 8, for the ordered initial state in the system, we
present the plot of mAF

N and mF
N at q = 0.2 as a function of T ,

varying from the lowest to the highest temperature, and then
reversing, varying from the highest to the lowest temperature.
Comparing these magnetizations with the phases obtained in
the diagrams of Fig. 2, we can see that the approximate point
where mF

N tends to zero is precisely on the transition line from
the F to AF phase observed in the diagram of Fig. 2(a). As we
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FIG. 9. Linear adjustment of the temperature where we have the
susceptibility peak, as a function of the inverse of the network size
N , to estimate the critical point in the system. In the adjustments
in panel (a), we have networks with sizes ranging from N = (32)2

to N = (256)2, and in panel (b), networks with sizes ranging from
N = (32)2 to N = (128)2. These were used to find the critical points
in Figs. 2(a) and 2(b), respectively. Here the x axis is on a logarithmic
scale just to better visualize the points, and the error bars are smaller
than the symbol sizes.

decrease the temperature, we already have a nonzero value for
mAF

N , transitioning from the AF to F phase in the vicinity of
the transition point in the diagram of Fig. 2(b).

Owing to system-size dependence, we cannot use the
crossing of the fourth-order Binder cumulant curves to obtain
the first-order transition points of the system. However, we
can use the linear behavior of the peaks of the magnetic
susceptibility for different lattice sizes. In this case, we ex-
trapolated the value of the critical point to an infinite-sized
lattice, assuming that Tc(χmax

N ) = N−1� + Tc(χmax
N→∞), where

Tc(χmax
N ) is the pseudo-critical point for each lattice size and

Tc(χmax
N→∞) is the extrapolation of the critical point for infinite

lattices. Thus, we can fit Tc(χmax
N ) as a function of N−1 to

obtain an estimate for Tc(χmax
N→∞) with the linear coefficient of

this fit. Examples of these fits for different values of q and for
both first-order and second-order phase transitions can be seen
in Fig. 9, where we have placed the N−1 axis on a logarithmic
scale for better visualization of the points for the different

FIG. 10. Behavior of the magnetizations as a function of T of the
system for network size N = (128)2 and q = 0.2. We performed 10
cycles of variation of T , where the initial state of the system was with
all spins in the same state. The error bars are smaller than the symbol
sizes.

lattice sizes after estimating the phase transition points. In
Fig. 9(a), we have the adjustments for the points used in
Fig. 2(a), where we sweep the external parameters from the
lowest to the highest value, while in Fig. 9(b), the adjustments
correspond to the points used in Fig. 2(b), where we sweep
the external parameters from the highest to the lowest value.

As seen in Fig. 8, the hysteresislike curves become even
more unstable when dealing with regions in the phase diagram
where two types of phases can coexist. Another way to ob-
serve this characteristic is by performing multiple loops of the
external parameter, in this case T , for q = 0.2, thus creating
several hysteresis curves, as shown in Fig. 10. In this case, we
have a single path when increasing T , but when we reverse
the way, decreasing T , in this region where both phase F
and phase AF can exist, we observed variations regarding the
point where the transition between the ordered phases occurs.

When we decrease the external energy flux into the system,
we reduce the main reason for the existence of first-order
phase transitions, i.e., the coexistence between two ordered
phases, as the prevailing dynamics in the system depends only
on temperature and not on the initial state of the system or
auxiliary dynamics. The reduction in system instability until
it reaches the second-order phase transition as q increases can
be observed in Fig. 11: for the ferromagnetic magnetization
curves in Fig. 11(a), Binder cumulant in Fig. 11(b), and mag-
netic susceptibility in Fig. 11(c). In this figure, the hysteresis
curves were constructed somewhat differently from those in
Figs. 8 and 10. The curves with square points represent the
results of the system with an ordered initial state, where all
sites have the same spin value, while the points of the curves
with circles represent a system with a random initial state.
Additionally, the dashed curves indicate that T was swept
from higher to lower values, while the solid curves indicate
that the temperature was swept from lower to higher values.

Another interesting point, that we can observe in Fig. 11
and in the phase diagrams of Figs. 2 and 3, is the existence of
absorbing states which can be found at q � 0.172. In the case
of q = 0.1, Fig. 11 provides an example of how this absorbing
state arises, i.e., starting from the ordered state and increasing
the temperature, looking at mF

N , we have a transition from
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FIG. 11. Behavior of the thermodynamic quantities of the system
mF

N (a), UN (b), and χN (c). Here are presented curves for different
values of q (from the left side q = 0.1 to the right side q = 0.6)
as a function of T , and network size N = (128)2. The solid curves
denote the sweep of T from the smallest to the largest value, while the
dotted curves denote the sweep of T from the largest to the smallest
value. The curves with square points indicate that the system had an
initial state with a ordered F state, while in the curves with circular
points the initial state of the system was disordered. The error bars
are smaller than the symbol sizes.

F to P phase, but when we return in the opposite direction
by decreasing the temperature, we have not reached the F
phase again. However, if we start from a disordered initial
state, characteristic of phase P, then we never reach phase

F . Another example of this absorbing state, which can be
identified at q � 0.172, is not shown here but can be analyzed
in Figs. 2 and 3. Looking at mAF

N , if initially all spins in the
system are in the same state, then increasing the temperature
transitions from phase P to phase AF is observed. But, if we
reverse the path by decreasing the temperature, then we do
not reach phase P again, only observing AF phase. Starting
from a random initial state and still considering mAF

N , we
always found phase AF as the steady state. This indicates that
for q � 0.172, we find the absorbing state by increasing the
temperature, during the transition from the F phase to the AF
phase. Once this AF phase is reached, we cannot exit it by
decreasing the temperature. This characterizes the absorbing
states and can be further verified in the phase diagrams of
Figs. 2–4 for q � 0.172.

In the phase diagrams of Figs. 2–4, we have found both
first- and second-order phase transitions, and the point where
one type of transition starts and the other ends, where we
can identify as the tricritical point. We do not have a very
precise technique to define the tricritical point, but we can
analyze some evidence that characterizes these types of phase
transitions (first- and second-order) and estimate the value
of this point. The most common way of distinguishing these
two types of phase transitions is the continuity of the order
parameter. For low values of q, we have a discontinuity of
the order parameter in the first-order phase transition, while
the continuous phase transition for high values of q charac-
terizes the second-order phase transitions (see Fig. 11). In
addition to the discontinuity in first-order phase transitions,
we also have evidence of coexistence between the ordered
and the disordered phases, which can be verified with the
distribution of the order parameter in the vicinity of the crit-
ical point. Therefore, from Monte Carlo simulations, even if
we apparently cannot observe the discontinuity of the order
parameter, if we analyze the distribution of this parameter in
the vicinity of the critical point and observe the coexistence
of phases, then we can identify this as a first-order phase
transition.

In Fig. 12(a), we display the distributions of mF
N , ρ(mF

N ),
for some values of q in the vicinity of the transition point.
We can see ρ(mF

N ) on the left side before Tc and ρ(mF
N ) on

the right side after Tc. Before Tc, we can observe two peaks
representing the symmetric values of the order parameter,
±mF

N . After Tc, we have only one peak, representing only
the disordered phase, where mF

N = 0. For low values of q in
Fig. 12(a) and at the phase transition, we can observe three
peaks, indicating the coexistence of ordered and disordered
phases, characteristic of a first-order phase transition. When
we increase the values of q, we can not distinguish the peaks
corresponding to the coexistence phases, indicating that we
have a second-order phase transition. For instance, based on
these distributions, we have estimated the tricritical point of
the system given by qt = 0.515 ± 0.01 for T = 4.10. Another
tricritical point present in the phase diagrams of Figs. 2 and 3
is related to the transitions from the AF to F phase, and
it was also estimated by this method, where we obtained
Tt = 3.18 ± 0.02 for q = 0.27.

We can also observe the values of the Binder cumu-
lant at the first-order phase transition. For this, with the
same values of q as in the distributions of Fig. 12(a), we

024315-10



METASTABLE STATES IN THE ISING MODEL WITH … PHYSICAL REVIEW E 110, 024315 (2024)

-0
.5 0

0.
5

-0
.5 0

0.
5

-0
.5 0

0.
5

-0
.5 0

0.
5

-0
.5 0

0.
5

m
N
F

(m
NF

)
(a)

Tc= 3.90

Tc= 3.95

Tc= 4.00

Tc= 4.05

Tc= 4.10

Tc= 4.15

Tc= 4.20

Tc= 4.25

3.7 3.8 3.9 4 4.1 4.2 4.3

T

-0.4

-0.2

0

0.2

0.4

0.6

U
N

(b)

q = 0.47
q = 0.48
q = 0.49
q = 0.50
q = 0.51
q = 0.52
q = 0.53
q = 0.54

FIG. 12. (a) The distribution ρ(mF
N ) is presented for five val-

ues of T around Tc (T = Tc − 0.01, T = Tc − 0.005, T = Tc, T =
Tc + 0.005, T = Tc + 0.01, respectively), and values of q near the
tricritical point. Here, we used N = (128)2. (b) Binder cumulant
UN for mF

N with two network sizes L = (32)2 (square symbols) and
L = (128)2 (circle symbols). The horizontal dashed lines are for
UN = 0 and the crossing of the curves for q = 0.54 at UN = 0.367.
The colors of the curves in panel (a) (from q = 0.47 a the bottom to
q = 0.57 at the top) refer to the q values presented in panel (b) (from
q = 0.47 on the left side to q = 0.57 at the right side).

present the curves for two different network sizes for the
Binder cumulant in Fig. 12(b). With these curves, we can
see that the Ising model on a complex network with com-
petitive dynamics and in the first-order phase transitions,
also presents negative values of the Binder cumulant. The
dashed lines in Fig. 12(b) indicate references at UN = 0, and
the point where the curves cross for q = 0.54, UN = 0.367.
This last reference line indicates that the crossing of the UN

curves changes their values, and this remains even in the

second-order phase transitions, and when q = 1.0 the crossing
is at UN = 0.26.

V. CONCLUSIONS

We have employed Monte Carlo simulations to investigate
the Ising model on a network with power-law degree dis-
tribution, subject to two competing dynamics. Considering
the ferromagnetic coupling between spins, with probability
q, the system is governed by Glauber dynamics, favoring
the lowest energy state, while with probability 1 − q, the
Kawasaki dynamics evolves the system toward the highest
energy state. Given that Kawasaki dynamics conserves the
order parameter, we built the phase diagrams T versus q with
different initial states in the simulations. The topology of
theses diagrams revealed regions with both first- and second-
order phase transitions, leading to the discovery of tricritical
points at coordinates (q = 0.27, Tt = 3.18 ± 0.02) in the AF
to F transition, and (qt = 0.515 ± 0.01, T = 4.1) in the F to
P transition. The tricritical points in the F to P transition have
already been verified in systems dealing with these competing
dynamics [8,22]. However, in the present work, a tricritical
point is also observed in the AF to F transition, which is a
result of the high average coordination number of the network
used. In regions of second-order phase transitions, just like in
other nonequilibrium systems on complex networks [18,19],
we find critical exponents from mean-field approximation,
ν = 2, γ = 1 and β = 0.5, predicted for systems in thermody-
namic equilibrium with networks where the second and fourth
moments of the degree distribution converge [26]. However,
unlike systems employing dynamics that do not conserve the
order parameter [18,19], the phase diagrams presented here
exhibit first-order phase transitions. This region, characterized
by a discontinuity in the order parameter, altered the phase
diagram topology depending on the initial conditions of the
system and arises due to the competition between AF and
F ordered phases. Absorbing states have been identified in
the system for below q = 0.172, during the transition from
the F phase at low temperatures to the AF phase at high
temperatures, remaining in this phase even when the temper-
ature is decreased again. Finally, for 3.18 � T � 6.235, we
also observed the phenomenon of self-organization, which is
common in systems with competing dynamics that favor dif-
ferent ordered states [3–5,8,18,19,22]. Here, at low q values,
the system exhibits the AF phase, transitioning to the P phase
as q increases, and further transitioning to an ordered phase,
F phase, for higher q.
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