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The economic success of individuals is often determined by a combination of talent, luck, and assistance from
others. We introduce an agent-based model that simultaneously considers talent, luck, and social interaction.
This model allows us to explore how network structure (how agents interact) and talent distribution among
agents affect the dynamics of capital accumulation through analytical and numerical methods. We identify a
phenomenon that we call the “talent configuration effect,” which refers to the influence of how talent is allocated
to individuals (nodes) in the network. We analyze this effect through two key properties: talent assortativity (TA)
and talent-degree correlation (TD). In particular, we focus ons three economic indicators: growth rate (nrate),
Gini coefficient (inequality: nGini), and meritocratic fairness (nLT ). This investigation helps us understand the
interplay between talent configuration and network structure on capital dynamics. We find that, in the short term,
positive correlations exist between TA and TD for all three economic indicators. Furthermore, the dominant
factor influencing capital dynamics depends on the network topology. In scale-free networks, TD has a stronger
influence on the economic indices than TA. Conversely, in lattice-like networks, TA plays a more significant role.
Our findings address that high socioeconomic homophily can create a dilemma between growth and equality and
that hub monopolization by a few highly talented agents makes economic growth strongly dependent on their
performances.
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I. INTRODUCTION

It is always questionable which of talent, luck, and innate
environment has the greatest impact in an individual’s success.
Pluchino et al. [1] recently proposed the “talent versus luck”
(TvL) model (see Fig. 1) to quantitatively assess the impact of
talent and luck on an individual’s success. In the TvL model,
the number of good and bad events represents the total amount
of opportunities for either the positive or negative aspects of
the environment. They showed that under a mediocre envi-
ronment with the same number of good and bad events, an
individual’s talent is not strongly related to success, whereas
under a good environment with more good events than bad
events, high talent tends to guarantee more success. It implies
the importance of the environment, in which an individual’s
talent can be fully realized. In addition to the total opportu-
nities, the agents with which an individual interacts can also
play a crucial role in wealth dynamics, further emphasizing
environmental effects. Barabási emphasized the importance of
networks in the universal laws of success [2], and Zhou et al.
[3] also presented a generative model for network growth, in
which nature (fitness) and nurture (social advantage) effects
act simultaneously.

In this paper, we propose a general framework for capital
dynamics in agent-based networks. We introduce a model
incorporating talent, luck, and social interaction (TLS). In
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the TLS model, talent acts as a fitness factor, increasing
average capital accumulation. Luck introduces random fluc-
tuations in capital holdings, while social interaction directs
capital transfers towards more connections during interagent
exchange. Consequently, we analytically demonstrate that the
TLS model can reproduce the earlier results of the TvL model
[1] and the Bouchaud-Mézard model (BM) model [4], because
the TvL model and the BM model correspond to the TLS
model without social interactions and agent talent heterogene-
ity, respectively.

Unlike the BM model and its extensions [5–8], where cap-
ital dynamics solely depend on network structure, in the TLS
model, we consider both network structure and the distribu-
tion of talent across the network (talent configuration). This
allows us to explore the impact of the talent configuration on
interactions among heterogeneous agents for a given network.
We analyze this effect through three key economic indicators:
growth rate, Gini coefficient (inequality), and meritocratic
fairness.

In order to quantify talent configuration, we employ two
key properties: talent assortativity (TA) and talent-degree
correlation (TD). Our findings show a positive correlation
between both TA and TD with three metrics in the short-time
regime. In addition, the dominant factor influencing these
indices depends on the network topology. In scale-free net-
works, TD has a stronger impact compared to TA, whereas
the opposite holds true for lattice-like networks.

The remainder of this paper is organized as follows: In
Sec. II we propose a model of wealth dynamics, which covers
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FIG. 1. Dynamics of talent versus luck (TvL) model. In the left
panel, an agent i with talent Ti and capital C meets either a lucky
event with probability g or an unlucky one with probability b. The
lucky event gives chance to multiply capital by the factor r > 1, and
the unlucky event always divides capital by r. In the right panel,
the TvL model is illustrated as a one-dimensional random walk with
probability gpg(Ti ), b, and 1 − gpg(Ti ) − b to move from the original
site in the capital level L space at the right to the left and stay, where
L = m − n with the number of lucky (unlucky) events m (n).

two earlier models, the TvL model and the BM model. In
Sec. III we define two talent configuration (TC) properties in
the TLS model to speculate how TC properties affect three
economic indicators: growth rate, Gini coefficient, and meri-
tocratic fairness. In Sec. IV we conclude by summarizing our
findings with some remarks. Detailed mathematical deriva-
tions and explanations are also provided as well as mean-field
calculations of the TLS model in Appendixes.

II. MODEL

We propose a model of wealth dynamics with talent,
luck, and social interaction (TLS), which covers both the
“talent versus luck” (TvL) model [1] and the Bouchaud-
Mézard (BM) [4] model, named the TLS model. In the TLS
model, agent i (1 � i � N ) has talent Ti, degree ki, and time-
dependent capital Ci(t ) at time t . The last one is extrinsic,
whereas the first two are intrinsic.

In order to study the capital change of N agents in the TLS
model, similar to the TvL model with social interaction among
neighboring agents (see Appendix A for the detailed analysis
of the original TvL model), we denote the capital set, C(t ) =
{C1(t ),C2(t ), . . . ,CN (t )}, the talent set, T = {T1, T2, . . . , TN }
following a normal distribution Ti ∼ N (μ, σ 2) with the mean
talent μ and the standard deviation σ , and the degree set, k =
{k1, k2, . . . , kN }. Initially, every agent starts with the same
capital as Ci(0) = C0.

As illustrated in Fig. 1, the capital of each agent, C, can
be updated by the following parameters: the capital multiplier
r(> 1), and the event probabilities of lucky, unlucky, and
nothing-happened events, {gpg(T ), b, 1 − gpg(T ) − b}, re-
spectively, where g + b � 1 and pg(T ) = min{1, max[T, 0]}.
The probability of winning capital for the lucky event, gpg(T ),
implies that for the agent with talent T , the probability to gain
the capital rC is proportional to the probability of a lucky
event occurring and the probability that rand[0, 1] falls below
T . In the discrete time update from t to t + 1, one of three
events occurs to every agent: (1) For a lucky event, a random
number is generated from a uniform distribution between 0
and 1 (written as rand [0,1]). If rand[0,1] < Ti, agent i’s capital

is increased by r times, Ci(t + 1) = rCi(t ). (2) For an unlucky
event, its capital is reduced by 1/r times: Ci(t + 1) = Ci(t )/r.
(3) When nothing has happened, its capital remains the same
as before, Ci(t + 1) = Ci(t ).

Since r is a constant, the amount of capital per agent is
determined by the number of times for the agent to win and
lose the capital by rules (1) and (2). Let m and n represent the
number of times the agent wins and loses capital according to
rules (1) and (2), respectively (m = 0, 1, . . ., n = 0, 1, . . .), so
that the capital level L ≡ m − n. Then the amount of capital is
equal to C = C0rL. The change of L at each time step, �L, can
have a value among {−1, 0, 1}. However, the probability per
each agent differs by the talent of agent. It can be considered
as the ensemble of random walkers [9] (see Fig. 1). For the
agent with talent T , �L satisfies the following probability
mass function:

pL(�L) =

⎧⎪⎨
⎪⎩

b for �L = −1,

1 − gpg(T ) − b for �L = 0,

gpg(T ) for �L = +1.

(1)

In the original TvL model, capital discontinuously changes
at each time step. To construct a continuous model, we em-
ploy the well-known geometric Brownian motion (GBM) (see
Appendixes A and B for detailed mathematical derivations
and additional explanations from the discrete version of the
TvL model to the continuous version), then we can write the
stochastic differential equation (SDE) for the capital of agent
i, Ci(t ), such that

dCi(t ) = α(Ti )Ci(t )dt + β(Ti )Ci(t )dWt,i. (2)

This is the continuous version of the TvL model, where dt
is time interval, Wt,i is the Wiener process of agent i at time
t , α(Ti ) is the percentage drift as a function of talent Ti, and
β(Ti ) is the percentage volatility, respectively. The detailed
definitions of α and β by the identity of C and L can be
found in Appendix B. In addition, by introducing the social
interaction between agents, we denote the SDE for the TLS
model as follows:

dCi(t ) = α(Ti )Ci(t )dt + β(Ti )Ci(t )dWt,i

+
∑
j( �=i)

[Ji jCj (t ) − JjiCi(t )]dt . (3)

The last interaction term in Eq. (3) describes the capital trans-
fer by exchange among neighboring agent pairs (i, j), which
is also suggested in the BM model [4]. Summing up together
for all i, the interaction term cancels out to 0. This implies
that exchange itself does not change the total capital at a
given time. However, since all agents have different α and β,
capital transfers between heterogeneous agents can promote
or disrupt average capital growth of a system eventually.

In this paper, we introduce the matrix element Ji j as the
pooling and sharing [10] interaction, so that every agent acts
as both a sharing node and a pooling node as

Ji j =
{

J/k j if ai j = 1,

0 if ai j = 0,
(4)
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FIG. 2. Illustration of pooling sharing interaction [10]. The cap-
ital of JdtCi/ki is given to all neighbors of agent i, and agent j does
in the same manner [11].

where ai j is the adjacency matrix element for a given network,
either 1 or 0, J (> 0) is the exchange strength, and k j is the
degree of agent j; see Fig. 2.

For simplicity, Eq. (3) can be rewritten with Eq. (4), αi =
α(Ti ), and βi = β(Ti ) as follows:

dCi(t ) = αiCi(t )dt + βiCi(t )dWt,i

− Jdt
∑

{ j|ai j=1}

(
Ci(t )

ki
− Cj (t )

k j

)
. (5)

As shown in Fig. 1 and Fig. 2, capital dynamics in the TLS
model is influenced by individual talent, luck, and interaction
among neighboring agents. The interaction term of Eq. (5)
represents capital transfer between the connected link of agent
i and j, where agent i gives JdtCi(t )/ki the amount of capital
to j, and j does vice versa.

For the case of Ci(t ) = Cj (t ), the agent with the larger
degree gains the more capital from the opponent by exchange.
We call this kind of advantage “high-degree advantage.”
Hence, in the TLS model, higher talent and higher degree are
advantageous to capital growth. It can be regarded as individ-
ual advantage (or nature) and social advantage (or nurture) for
each agent, in the context of the concept suggested by Zhou
et al. [3].

Moreover, in the TLS model, the network structure
described by ai j also affects capital dynamics. For the com-
plete network described by adjacency matrix ai j = 1 − δi j ,
where δi j is the Kronecker delta, 1 if i = j and 0 otherwise.
For this case, the interaction term simply becomes as

−Jdt

[(
N

N − 1

)
Ci −

(
N

N − 1

)
C̄

]
� −Jdt (Ci − C̄), (6)

where N is large enough. The term of −Jdt (Ci − C̄) is exactly
the same as the mean-field interaction suggested by Bouchaud
and Mézard [4]. Therefore, the TLS model represented by
Eq. (5) on a large complete network is approximately the same
as the mean-field TLS model (see Appendix D for analytic
results of the mean-field TLS model).

Before moving on to Sec. III, we would like to make a
couple of interesting remarks concerning mean-field models:
(1) The BM model without interaction is exactly the same
as the GBM. The mean capital of both the GBM and the
mean-field BM model are the same and exponential. (2) The
TLS model without interaction is exactly the same as the TvL
model. However, the mean capital of the TvL model is not
exponential, whereas the mean-field TLS model is. Hence, it

is found that the mean-field interaction plays such a different
role in the GBM and the TvL model.

In addition, regarding the power-law tail exponent γ , talent
heterogeneity does not change γ of noninteractive models but
changes γ for mean-field models. The characteristics of each
wealth dynamics model is summarized in Table I (see the
details in Appendix D).

III. TALENT CONFIGURATION (TC) EFFECT

In order to analyze the effect of talent configuration (TC)
properties on capital dynamics, we consider the TLS model on
agent-based networks (see Fig. 2). The most interesting point
is that in the TLS model, different talent allocations on a given
network give different capital dynamics. We call this the TC
effect. For node index i (1 � i � N ), the talent configuration
is defined as a vector T = (T1, . . . , TN ).

Due to the fact that the talent distribution follows a normal
distribution, Ti ∼ N (μ, σ 2), there are a huge number of cases
that allocate talent samples to nodes on a given network,
but we cannot investigate all of those cases. Therefore, it is
important to extract statistical properties of talent configura-
tion that consistently correlate with capital dynamics in the
TLS model. These will be discussed in Sec. III B. Similarly,
capital dynamics is also influenced by the four environmental
parameters (r, g, b, J ) and network structure ai j . It is noted
that (r, g, b, J ) and ai j correspond to capital multiplier, lucky
and unlucky event probabilities, exchange strength, and the
elements of adjacency matrix, respectively.

In this study, to consider the TC effect only, we set the
environmental parameters as (r, g, b, J ) = (2.0, 0.1, 0.1, 0.1)
unless described, and analyze two representative network
cases, the Barabási-Albert (BA) network [12] with the
degree heterogeneity and the scale-free property, and the
Watts-Strogatz (WS) network [13] with the small rewiring
probability pre = 0.1 as well as the small-world property.

For the BA network generation, the linear preferential
attachment is used with an additional link attachment per
node. More precisely, the mean degree k̄ becomes 2(1 − 1/N ),
so that k̄ → 2 for N � 1. For the WS network generation,
k̄ = 2 and the rewiring probability pre = 0.1 are chosen.
When pre = 0, the WS network is equal to a cycle network.
When pre = 1, all links are randomly rewired to others. Our
choice of the parameter pre = 0.1 is small enough for one to
consider that the WS network is more close to a lattice-like
network.

The reason why we use k̄ = 2 for those network cases is
rather simple. If k̄ is very small, a random network generates
many isolated nodes. Since the TvL model corresponds to
capital dynamics of all isolated nodes and has no TC effect,
the smaller k̄ gives the TvL-like capital dynamics and the
less TC effect. Meanwhile, if k̄ is very large, the interaction
term of Eq. (5) becomes close to Eq. (6). Since the mean-field
interaction corresponds to an all-to-all connection and has no
TC effect, the more k̄ gives the mean-field TLS-like capital
dynamics and the less TC effect. Therefore, to avoid the gen-
eration of isolated nodes and to have a lower network density
as possible for both BA and WS networks, we set k̄ = 2.

As the estimators of the TC effect, we focus on three
economic indices: the growth rate (nrate ), the Gini coefficient
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TABLE I. Main results of wealth dynamics models. Here αi = α(Ti ), β = β(Ti ), and the talent T satisfies the normal distribution as

p(T ) = 1
σ
√

2π
e− (T −μ)2

2σ2 . An adjusting factor δ satisfies 0 � δ � 〈 2J
β2 〉, depending on p(T ).

Model Growth ρeq(c) γ

GBM: Exponential:
∼c−1 1dCi = αCidt + βCidWt,i 〈C〉 = C0eαt

TvL model: Nonexponential:
∼c−1 1dCi = αiCidt + βiCidWt,i 〈C〉 = ∫ ∞

−∞ p(T )C0eα(T )t dT

Mean-field BM model:
dCi = αCidt + βCidWt,i Exponential: f

(
c; 1 + 2J

β2 , 2J
β2

)
a 2 + 2J

β2

−Jdt (Ci − C̄) 〈C〉 = C0eαt

Mean-field TLS model: Exponential:
dCi = αiCidt + βiCidWt,i 〈C〉 = C0eα̃t ,

∫ ∞
−∞ p(T ) f

(
c; 1 + 2K (T )

β(T )2 , 2J
β(T )2

)
dT 2 + 〈

2J
β2

〉 − δ

−Jdt (Ci − C̄) [α(0) < α̃ < α(1)]

a f (c; A, B) ≡ BA


(A) c−(1+A)e−B/c denotes the inverse-Gamma distribution.

(nGini ), and the meritocratic fairness (nLT ), with the following
definitions:

nrate ≡ 〈C〉
C0

, (7)

which is the index for the growth rate that represents how
many times the system has grown, nrate ∈ [0,∞], and

nGini ≡ 1

2〈C〉
∫ ∞

−∞

∫ ∞

−∞
p(C)p(C′)|C − C′| dC dC′, (8)

which is the index for the inequality (Gini coefficient) that
represents the inequality depicted by a Lorenz curve, nGini ∈
[0, 1]. As a result, nGini = 0 means that the system is perfectly
equal, and nGini = 1 means that the system is perfectly un-
equal,

nLT ≡ Cov(L, T )√
Var(L)Var(T )

, (9)

which is the index for the meritocratic fairness that represents
how much talent and following reward are related to each
other, defined as the Pearson correlation coefficient between
the capital level L = logr (C/C0) and talent T , nLT ∈ [−1, 1].
So nLT = −1 means that L and T are perfectly anticorrelated
(meritocratically unfair), nLT = 0 means that there are no
correlations between L and T (meritocratically neutral), and
nLT = 1 means that L and T are perfectly correlated (merito-
cratically fair).

A. Heterogeneous talent effects on networks: Growth
rate and inequality

For the analysis of capital dynamics between different
talent configurations, in this subsection we investigate how
talent heterogeneity affect capital dynamics in the TLS model
for two cases: fixed talent (Ti = μ) and Gaussian talent, Ti ∼
N (μ, σ 2). We estimate such effects against talent heterogene-
ity under the control of the environment, network topology,
and talent configurations.

In Fig. 3 we plot the time evolution of nrate and nGini as
a function of time for the very sparse random network case
(k = 2) of the BA network and the WS network (pre = 0.1),

which are guided by two limiting cases: the non-network
case (k̄ = 0, no interaction among agents) and the complete
network case (k̄ = N − 1, all-to-all). It is noted that all talent

(a) (b)

(c) (d)

FIG. 3. Heterogeneous talent effect on growth rate and Gini
coefficient: nrate for (a) and (b), and nGini for (c) and (d) against
time t , where k̄ = {0, 2(BA), 2(WS), N − 1}. Numerical results for
a fixed talent Ti = 0.6 [(a) and (c), left] are compared with those
for Gaussian talent Ti ∼ N (0.6, 0.12) [(b) and (d), right]. All solid
lines (colored regions) show the average (the standard deviation) of
210 realizations, except for red solid lines (colored regions) with 215

realizations. Black and gray dashed lines are the analytical baselines
for k̄ = 0 and k̄ = N − 1 cases, respectively. For (a) and (b), two
insets show the time evolution of αex denoted in Eq. (D13). It is
noted that for all cases, rTA = 0, rTD = 0, or they are not defined;
see more details in Eq. (12) and Eq. (13) of Sec. III B. All simu-
lation results are obtained for the same parameters (N, r, g, b, J ) =
(104, 2, 0.1, 0.1, 0.1) unless described.
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(a) (b)

FIG. 4. Conceptual visualization for two talent configuration properties: (a) TA (rTA) and (b) TD (rTD). The sample network is the BA
network with the number of agents N = 100 and the number of links M = 99. Nodal colors indicate high (red) or low (blue) talents, and talent
samples follow the normal distribution T ∼ N (μ, σ 2). It is noted that Tmax (Tmin) is the maximum (minimum) value for given talent samples.
(a) An example for the high TA case, where nodes with similar talents are clustered; (b) an example for high TD case, where highly talented
nodes are allocated to hubs for a given network.

samples are randomly allocated for those cases, so that there
are no correlations between talent configuration and network
structure (i.e., rTA = 0 and rTD = 0; see Sec. III B).

In the TLS model, the k̄ = 0 case with fixed talent corre-
sponds to the GBM, and that with Gaussian talent corresponds
to the TvL model. Similarly, the k̄ = N − 1 case with fixed
talent corresponds to the mean-field BM model, and that with
Gaussian talent corresponds to the mean-field TLS model.

In the top panel of Fig. 3, Figs. 3(a) and 3(b) show the time
evolution of nrate, where all curves are the same for the cases
with fixed talent but different only for those with Gaussian
talent. It implies that the system growth does not depend on
the network structure with fixed talent, whereas on that with
Gaussian talent, it does. This result becomes a key difference
between the BM model and the TLS model. We also argue the
growth effective network structure or talent configuration in
the TLS model, unlike the BM model. Insets show the time
evolution of αex, defined in Eq. (D13). For fixed talent, all αex

values converge to the same value and grow exponentially,
whereas for Gaussian talent, they become different and grow
super-exponentially in the short-time regime.

In the bottom panel of Fig. 3, Figs. 3(c) and 3(d) show the
time evolution of the inequality nGini, where they mainly de-
pend on network structure, but there are only slight differences
between the fixed talent and Gaussian talent cases. The fixed
talent cases with k̄ = 0 and k̄ = N − 1 are given as

nGini(t ) = erf (β
√

t/2) for k̄ = 0, (10)

lim
t→∞ nGini(t ) = 
(1/2 + 2J/β2)


(1 + 2J/β2)
√

π
for k̄ = N − 1, (11)

which are the smallest and the largest mean degree. Both
cases become the solvable baselines of nGini. However, for
k̄ = 2 in the intermediate region, nGini depends on the network
structure. In the short-time regime, the BA network has larger
nGini than that of the WS network for any case, either fixed or
Gaussian talent.

B. TC properties: Talent assortativity (TA)
and talent-degree (TD) correlation

In this subsection we quantify talent configuration
properties on capital dynamics as two measures: “talent
assortativity” (TA), rTA, and “talent-degree correlation” (TD),
rTD, as illustrated in Fig. 4.

By the link-based analysis, the TA property is denoted as

rTA ≡ Cov(T, T ′)√
Var(T )Var(T ′)

=
∑

T

∑
T ′ T T ′(eT T ′ − qT qT ′ )∑

T T 2qT − (
∑

T T qT )2
.

(12)

The rTA value is Pearson correlation coefficient for all links’
talents T and T ′ for a given network, where eT T ′ is the prob-
ability that talent T and T ′ are connected in the network, and
qT is the probability that the nodes of randomly selected link
have talent as T . By the node-based analysis, the TD property
is denoted as

rTD ≡ Cov(T, k)√
Var(T )Var(k)

. (13)

The rTD value is Pearson correlation coefficient for all nodes’
talent T and degree k.

A conceptual visualization for TA and TD properties are
shown in Fig 4, where both rTA and rTD are increased as is
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possible by pair-swapping algorithms; see SM, pseudo-codes
in Table S1 [14]. While rTA reflects how many similar talents
are connected for a given network, rTD reflects how much
higher talents tend to have higher degrees for a given network.
If the elements of the talent vector T are randomly permutated,
these two talent configuration properties become almost 0.

For a given network and talent samples, we use a pair
swapping algorithm to find a talent configuration T′ that has a
specific value of rTA (or rTD) as we wish. The pair swapping
algorithm for rTA control consists of five steps:

(1) Start with a graph G and a talent vector T.
(2) Select a random pair of nodes for the graph G.
(3) Let T̃ be a talent vector, where selected two nodes

are switched. For a target value r′, if |rTA(G, T̃) − r′| <

|rTA(G, T) − r′|, accept T̃ as a new T.
(4) Repeat 2 to 3 unless |rTA − r′| < ε.
(5) If |rTA − r′| < ε, stop and print T.
By the same algorithm, we also control rTD. However, this

algorithm may not guarantee a target value r′. Although both
rTA and rTD are defined as Pearson correlation coefficients
and they lie in the interval [−1, 1], they do not mean that
the minimum and maximum of rTA and rTD are −1 and 1,
respectively.

Actual bounds for rTA and rTD depend on the detail of
network structures. If we set a target value r′ to out of the real
bound and set a error range ε to sufficiently a small value, the
while loop in step 4 never ends. It is noted that the TA bounds
were studied in [15]. Unlike TA bounds, TD bounds are easier
to be controlled because they depend on the node-based analy-
sis that does not influenced by the complex network topology.
If all nodes have different degrees for a network, the minimum
and maximum values of rTD are exactly equal to −1 and 1,
respectively, which are characterized by degree heterogeneity
and were studied in [16].

For a given network, both rTA and rTD are measured. To
test the pure rTA (rTD) effect, one prefers to fix rTD (rTA)
as 0. However, both rTA and rTD are correlated under the
single pair swapping. Therefore, we need to control two talent
configuration properties at once in the random pair swapping
algorithm. The pseudo-codes of algorithms for the dual value
control are also summarized in SM as Table S1 [14] with
some illustrations. The core argument of estimating a single
talent configuration property is that the other one is in the
sufficiently small error range of ε, and we consider that this
pair of (rTA, rTD) gives the quasi-pure effect of rTA (or rTD).
Throughout this procedure, we estimate the quasi-pure effect
of rTA (or rTD) on capital dynamics in the TLS model (see
Fig. 5).

C. Short-term behaviors of TC effects

In this subsection we present how to investigate effect
of talent configuration (TC) properties, (rTA, rTD) on capital
dynamics of the TLS model in BA and WS networks for the
short-time scales t ∈ [0, 100].

Figure 5 shows TC effects on BA and WS networks as a
function of rTA and rTD, respectively. The data are obtained
in short-term regime, and we collect TC for the quasi-pure
rTA and rTD cases within the error range of ε = 10−2. The
collected pairs of (rTA, rTD) are presented in SM, Sec. IV, and

(a)

(c)

(d)

(e)

(f)

(b)

FIG. 5. TC effects on three economic indices in BA and WS
networks: nrate, nGini, and nLT against rTA for (a)–(c) and rTD for
(d)–(f). Dots (bars) show the average values (standard deviation)
of numerical results at time t = 100 with 210 realizations. The BA
network is generated by one additional link attachment per node,
and the WS network is generated with the rewiring probability
pre = 0.1. Both networks have the same mean degree k̄ = 2. All
simulations are performed for (N, r, g, b, J ) = (104, 2, 0.1, 0.1, 0.1)
and Ti ∼ N (0.6, 0.12).

Fig. S5 [14]. All numerical data for three economic indices
of our interests: nrate, nGini, and nLT are measured at t = 100.
All time evolution for those in BA and WS networks with the
quasi-pure samples of rTA and rT D are also shown in Figs. S6
and S7 of SM [14].

Based on the results in Fig. 5, we address three remarks:
(i) Almost all indices have a positive correlation with rTA

and rTD, except for (d), rTD vs nGini in the WS network. (ii)
nLT cannot be negative for the quasi-pure rTA case (rTD ∼ 0),
while it can for the quasi-pure rTD case (rTA ∼ 0). (iii) For
the BA network, nrate explosively increases as rTD increases.
In particular, the realization error only depends on rTD for
nrate. The first remark shows that both rTA and rTD are valid
as an criterion for improving three economic indices nrate,
nGini, and nLT . Meanwhile, it can be considered as the trade-
off relation between “growth or meritocracy” and “equality,”
which matches the common sense of economy. The second
remark shows that the less talent cannot get the more average
capital by the rTA effect in the TLS model if there is no
correlation between talent and degree for the given network.
The third remark shows that rTD effect is critical to the degree-
heterogeneous network, such as the BA network with the
scale-free property.
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(a)

(b)

FIG. 6. Impact of TC properties on three economic indices. Dots show the ordered pairs of (rTA, rTD), and colored regions show the
expected average values of indices at t = 100 with 27 realizations. For (a), the BA network is generated by one additional link attachment per
node, and for (b), the WS network is generated with the rewiring probability pre = 0.1. Both networks have the same mean degree k̄ = 2. All
simulations are performed for (N, r, g, b, J ) = (104, 2, 0.1, 0.1, 0.1) and Ti ∼ N (0.6, 0.12).

The “high degree advantage” combined with high rTD

makes the choice and concentration of the highly talented
agent, which yields an explosive growth in the system. As a re-
sult, nrate of the system strongly depends on performances of a
few hub agents and the system volatility increases (even more,
higher talent gives higher percentage volatility β). Therefore,
in the TLS model, socioeconomic homophily (high rTA) cre-
ates a social dilemma between growth and equality, and the
hub monopolization by a few highly talented agents (high
rTD) in a scale-free network makes economic growth highly
dependent on their performances. One can also consider the
simultaneous effects of both rTA and rTD.

As shown in Fig. 6, the contour plots represent both rTA and
rTD effects on [Fig. 6(a)] BA and [Fig. 6(b)] WS networks.
Most indices have positive correlation between rTA and rTD.
In the BA network, nrate is more sensitive to rTD than rTA

since contour lines almost lie horizontally (along the rTA axis),
and nGini is more sensitive to rTA than rTD since contour lines
almost lie vertically (along the rTD axis). In the WS network
with small rewiring probability, pre = 0.1 [17], all three in-
dices nrate, nGini, and nLT are more sensitive to rTA than rTD.
Based on these results, one can imply which one, either rTA or
rTD, is dominant to economic indices and mainly depends on
network structure.

IV. SUMMARY AND DISCUSSION

We proposed an agent-based model for capital dynam-
ics with talent, luck, and social interaction (TLS), named
the TLS model, where we explored the model by analytical
and numerical means. In particular, we showed that the TLS
model can be considered as the generalized framework since

it covers both the “talent versus luck” (TvL) model and the
Bouchaud-Mezárd (BM) model in the context of the stochas-
tic differential equation form. Inserting talent heterogeneity
and interaction in agent-based networks to our model simul-
taneously, talent configuration (TC) plays a key role in capital
dynamics, which was not considered in the BM model. To
estimate TC effects systematically, we employed three eco-
nomic indices: nrate (growth rate), nGini (inequality), and nLT

(meritocratic fairness) to extract TC properties as talent assor-
tativity (TA, rTA), and talent-degree correlation (TD, rTD).

Our study reveals that TA and TD are positively corre-
lated in three economic indices. In addition, the dominant
TC property depends on the network structure. The existing
TvL model study suggests that talent requires a supportive
environment for full utilization. The environment refers to
the total opportunity shared by all agents. We also introduced
another environmental factor: the influence of neighboring
agents. Unlike the aggregate opportunity, which is a global
factor, network interactions are local. An agent’s success is
significantly influenced by its position within the network and
the composition of its neighbors. Network locality restricts the
benefits of interaction, and rTA and rTD determine who benefits
most. More precisely, high rTA ensures that qualitative ben-
efits (high-talent neighbors) are monopolized by high-talent
clusters, and high rTD ensures that quantitative benefits (many
neighbors and high-degree advantages) are monopolized by
high-talent agents. While growth rates, inequality, and meri-
tocratic fairness increase, high rTA and high rTD can initiate
a kind of cartel and centralization effects, respectively. In
particular, selective interaction by high-talent clusters under
the limited opportunity aggregate condition with even a not so
large probability for lucky events can promote the formation
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of a meritocratic society; see Fig. S8 in SM [14]. Our findings
provide some insights into socioeconomic homophily (clus-
tering by similar socioeconomic characteristics) and resource
concentration among elites. Conversely, socioeconomic inte-
gration might appear crucial for reducing inequality.

For future studies, it would be interesting to quantify the
long-term impact of TC on the Gini coefficient (beyond the
short-term analysis, t ∈ [0, 100] [18]). In addition, the TC
effect is generalized onto scale-free networks with various de-
gree decay exponents and explored for the interplay with the
shortcut effect in WS networks for different pre and k̄ values
are promising avenues. The limitations of our study lie in the
static nature of interactions. Future extensions could incorpo-
rate (1) synergetic interactions increasing the total capital and
(2) competitive ones favoring highly talented agents in capital
transfer. Alternatively, the consideration of time-dependent
talent changes could model agent productivity improvements.
For the zero-sum capital scenarios over time, an individual’s
capital growth only depends on interaction-based transfers.
The yard sale (YS) model [19,20] highlights the role of cap-
ital stock in such fixed-sum scenarios, further emphasized by
Boghosian et al. [21] for the discontinuous Gini coefficient
variation under “wealth attained advantage.” Finally, the most
recent paper by Lee and Lee [22] generalized the YS model on
networks and suggested exploring potential phase transitions
and scaling behaviors in capital dynamics. Investigating the
phase diagram of capital dynamics and condensation transi-
tions could be another fruitful direction.
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APPENDIX A: TALENT VERSUS LUCK (TVL) MODEL

We here briefly review how to study the TvL model. As the
discrete time t elapses, the probability that an agent with talent
T has a capital level L = m − n obeys the trinomial series as
follows:

Pt (m, n) = ambn[1 − a − b]t−m−n t!

m!n!(t − m − n)!
, (A1)

where a = gpg(T ). For this case, let us consider four basic
statistical quantities of Pt (L = m − n) as a function of time
t , mean (μL), standard deviation (σL), skewness (SL), and
kurtosis (KL):

μL(t ) = t (a − b), (A2)

σL(t ) = √
t
√

(a + b) − (a − b)2, (A3)

SL(t ) = (a − b)[2(a − b)2 − 3(a + b) + 1]√
t[(a + b) − (a − b)2]3/2 , (A4)

KL(t ) = 3 + 1

t

[
−6 + 12ab + (a + b) − (a − b)2

[(a + b) − (a − b)2]2

]
. (A5)

As t → ∞, skewness SL ∼ t−1/2 → 0 and kurtosis KL ∼ 3 +
t−1 → 3, just as the same values for the normal distribution,
because the sum of �L = {−1, 0,+1} independently drawn
from the same probability mass function follows the central
limit theorem.

APPENDIX B: STOCHASTIC DIFFERENTIAL EQUATION
(SDE) FOR THE TVL MODEL

For the TvL model as the trinomial series Pt (L), μL ∼
t, σL ∼ t1/2, SL → 0, andKL → 3 as t → ∞. Thus, the mo-
tion of the capital level L can be approximated by the
Brownian motion with drift vL and volatility θL, as vL ≡
μL/tandθL ≡ σL/

√
t . As a function of T ,

vL(T ) = gpg(T ) − b, (B1)

θL(T ) =
√

[gpg(T ) + b] − [gpg(T ) − b]2. (B2)

Then we can rewrite the model to the SDE for the capital level
L per agent with talent T as follows:

dL = vL(T )dt + θL(T )dWt , (B3)

where dt is the time interval, Wt is the Wiener process, vL is
drift, and θL is volatility. To represent this SDE for capital C,
we assume that

dC = αCdt + βCdWt , (B4)

where the percentage drift α and the percentage volatility β

can be written by the drift vL and volatility θL. In addition, we
use the identity of C and L as well as Itô calculus, such that

β = ln r θL, (B5)

α = ln r vL + 1
2β2. (B6)

Hence, the SDE of the TvL model can be written with four
parameters (r, g, b, T ) as follows:

dC(t ) = α(T )C(t )dt + β(T )C(t )dWt , (B7)

which is the well-known geometric Brownian motion (GBM).
If the talent distribution follows the normal distribution, Ti ∼
N (μ, σ 2), Eq. (B7) becomes

dCi(t ) = α(Ti )Ci(t )dt + β(Ti )Ci(t )dWt,i, (B8)

where Ci is the capital of an agent i, Ti is the talent of an agent
i, and Wt,i is the Wiener process of i at time t . It is noted that
Wiener processes for all agents are independent and follow
the Itô interpretation.

To determine if this continuous SDE is a good approxima-
tion for the TvL model, the numerical results of the discrete
version should be compared with those of the continuous one.
It can be said that the SDE is in a good approximation if the L
distributions are identical in both versions; see SM, Sec. I and
Fig. S1 [14].

APPENDIX C: POWER-LAW DECAY OF CAPITAL
DISTRIBUTION IN THE TVL MODEL

We here discuss the capital distribution ρ and its power-law
behavior in the TvL model. It is noted that the capital distribu-
tion of the GBM is not power law but log-normal. Therefore,
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the capital distribution in the TvL model also follows the
Gaussian sum of the log-normal distribution.

However, the normalized capital c ≡ C/C̄ distribution in
both the GBM and the TvL models show the power-law be-
havior. The Fokker-Planck equation of the GBM with talent T
can be written as

∂ρ(c, t )

∂t
= 1

2

∂2

∂c2
[β2c2ρ(c, t )], (C1)

where the equilibrium condition is ∂ρ(c, t )/∂t = 0, so that
Eq. (C1) becomes the well-known Cauchy-Euler equation.
Thus, the equilibrium solution of c distribution for the
GBM is

ρeq(c) = Ac−1 + Bc−2,

where we check two constants A and B by numerical means.
In the long-term regime, we observe that ρ(c,∞) → ρeq(c)
and B = 0; see SM, Sec. S2, and Fig. S2 [14]. Therefore, the
GBM follows a power law as ρ(c) ∼ c−γ with its power-law
exponent γ = 1.

Based on Eq. (C1), the capital distribution converges to
c−1, which is no longer a function of T . Therefore, for all
agents with the talent distribution Ti ∼ N (μ, σ 2) also follows
ρeq(c) ∼ c−1 in the limit of t → ∞. Since the Pareto distri-
bution with 1 < γ < 2 gives the Gini coefficient (the index
of the inequality) as 1, and both two models always converge
to a global condensation state. It implies that a single agent
monopolizes almost the entire capital of the system as t → ∞.

APPENDIX D: MEAN-FIELD RESULTS
OF THE TLS MODEL

We here discuss the analytic result of the mean-field TLS
model. To do so, we need to revisit the GBM and the mean-
field BM model, in the context of the SDE as follows:

dCi = αCidt + βCidWt,i, (D1)

dCi = αCidt + βCidWt,i − Jdt (Ci − C̄), (D2)

where α and β are constants. The mean capital in both models
is the same as 〈C〉 = C0eαt . Summing up all equations in
Eq. (D2) over the agent index i, the interaction term is can-
celed out, and the ensemble average of dC just follows the
sum of the same GBM. In other words, the mean-field inter-
action does not change the mean capital, which is also the
same as the GBM so far. This property also remains when the
interaction term takes the general form as∑

j( �=i)

Ji jCj −
∑
j( �=i)

JjiCi. (D3)

Using Eq. (D2) and dc = dC/C̄ − (C/C̄2)dC̄, we construct
the SDE of the normalized capital in the mean-field BM
model, so that

dc = J (1 − c)dt + βcdWt . (D4)

The corresponding Fokker-Planck equation becomes

∂ρ

∂t
= − ∂

∂c
[J (1 − c)ρ] + 1

2

∂2

∂c2
[(βc)2ρ]. (D5)

(a)

(b)

FIG. 7. Equilibrium normalized capital distribution in mean-field
TLS model. (a) The colored area shows the result of the normalized
capital histogram as t → ∞. Gray and black solid lines are the ana-
lytic solutions of the mean-field BM model (D2) and the mean-field
TLS model (D8) for Ti = 0.6 and Ti ∼ N (0.6, 0.32), respectively.
The inset shows the double-logarithmic scaled plots of the main
plots. (b) For a variety of the standard deviation σ values with
the same μ, the decaying behavior of ρeq is double logarithmically
plotted against c, and the different portion near c = 101 is shown
in the inset. All simulations are performed for (N, r, g, b, J ) = (2 ×
106, 2, 0.1, 0.1, 0.1).

Then the equilibrium distribution of normalized capital c that
satisfies the condition of ∂ρ/∂t = 0 is known as

ρeq(c) =
(

2J
β2

)1+ 2J
β2



(
1 + 2J

β2

) c
−(2+ 2J

β2 )
e
− 2J

β2c , (D6)
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where 
(x) is a Gamma function and ρeq(c) ∼ c−γ with the
power-law tail exponent of γ = 2 + 2J/β2. It is noted that
this result comes from 〈C〉 = C0eαt .

Consider the relationship between the TvL model and the
mean-field TLS model as follows:

dCi = αiCidt + βiCidWt,i, (D7)

dCi = αiCidt + βiCidWt,i − Jdt (Ci − C̄), (D8)

where αi = α(Ti ) and βi = β(Ti ). For our case, the talent
distribution follows the normal distribution, and the mean
capital of the TvL model is the Gaussian sum of eα(T )t . In
the short-term regime, this mean capital does not show expo-
nential growth; see SM, Sec. S2 and Fig. S3 [14]. Summing
all second equations over agent index i, the interaction term is
still canceled out.

Nevertheless, the mean capital in the mean-field TLS
model is not equal to that in the TvL model because the
sum of dCi is the sum of different GBMs. Capital transfer
by the mean-field interaction −Jdt (Ci − C̄) makes relative
changes in agent capitals, but it does not change the total
capital at that time. However, these relative capital transfers
between talent-heterogeneous agents make a difference in
capital growth eventually. These are represented in Fig. 3(b).
This talent heterogeneity makes a system more complex.

In order to solve Eq. (D8), 〈C〉 = C0eα̃t is assumed, where
α̃ is constant. Then the SDE for the normalized capital ci with
talent Ti becomes

dci = (J − Kici )dt + βicidWt,i, (D9)

where Ki = J + α̃ − αi.
The Fokker-Planck equation of Eq. (D9) becomes

∂ρi

∂t
= − ∂

∂ci
[{J − Kici}ρi] + 1

2

∂2

∂c2
i

[(βici )
2ρi], (D10)

where ∂ρi/∂t = 0 is the equilibrium condition. The equilib-
rium solution of the normalized capital distribution ρeq,i for

the Ti talented group is

ρeq,i(ci ) =
(

2J
β2

i

)1+ 2Ki
β2

i



(
1 + 2Ki

β2
i

) c
−(2+ 2Ki

β2
i

)

i e
− 2J

β2
i ci . (D11)

If Ti ∼ N (μ, σ 2) is considered, Eq. (D11) can be integrated
over all agents’ Ti:

ρeq(c) =
∫ ∞

−∞

e− (T −μ)2

2σ2

σ
√

2π

(
2J
β2

)1+ 2K
β2



(
1 + 2K

β2

) c
−(2+ 2K

β2 )
e
− 2J

β2c dT . (D12)

By the numerical simulation of the SDE for the mean-field
TLS model, we check the assumption as well as and the
solution. To do so, we define αex as

αex = ln (〈C〉/C0)

t
. (D13)

If the mean capital of the system grows exponentially, αex

must be a constant. The time evolution of αex is tested in
SM; see Fig. S4 [14]. The exponent αex is deeply related with
the correlation between α and c because the sum of Eq. (D9)
ensures that α̃ = 〈αc〉, provided that the exponential growth is
true (even for general interaction matrix Ji j cases) as drawn in
Table I and Fig. 7.

As summarized in Table I, for the power-law behaviors on
ρeq(c) in mean-field models, the power-law tail exponent γ in
the mean-field BM model only depends on β(μ)2 for a given
parameter set (r, g, b, J ). This is because there is no talent
difference between agents. Thus,

γBM = 2 + 2J/β(μ)2, (D14)

where σ = 0 and T is a constant. However, in the mean-field
TLS model, it is complicated because σ �= 0, so that talent T
is not a constant but a variable of the normal distribution. Un-
der such a condition, not only average talent μ but also talent
heterogeneity σ can influence the power-law tail exponent γ .
We empirically find that

γTLS = 2 + 〈2J/β2〉 − δ(μ, σ ), (D15)

where 〈· · ·〉 means the ensemble average and δ is a adjusting
factor function of (μ, σ ). How the talent heterogeneity σ

influence the power-law tail exponent γ is shown in Fig. 7.
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