
PHYSICAL REVIEW E 110, 024310 (2024)

Moment neural network and an efficient numerical method for modeling
irregular spiking activity
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Continuous rate-based neural networks have been widely applied to modeling the dynamics of cortical circuits.
However, cortical neurons in the brain exhibit irregular spiking activity with complex correlation structures that
cannot be captured by mean firing rate alone. To close this gap, we consider a framework for modeling irregular
spiking activity, called the moment neural network, which naturally generalizes rate models to second-order
moments and can accurately capture the firing statistics of spiking neural networks. We propose an efficient
numerical method that allows for rapid evaluation of moment mappings for neuronal activations without solving
the underlying Fokker-Planck equation. This allows simulation of coupled interactions of mean firing rate
and firing variability of large-scale neural circuits while retaining the advantage of analytical tractability of
continuous rate models. We demonstrate how the moment neural network can explain a range of phenomena
including diverse Fano factor in networks with quenched disorder and the emergence of irregular oscillatory
dynamics in excitation-inhibition networks with delay.
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I. INTRODUCTION

The cortex in the brain forms a complex network of
neurons that communicate via spike trains. Being both high-
dimensional and nonlinear, these spiking neural networks are
hard to analyze. This has motivated the development of con-
tinuous firing rate models that can be thought of as describing
the coarse-grained activity of some underlying spiking neural
network. These phenomenological models, being more ana-
lytically tractable than their spiking counterpart, are widely
used for the theoretical modeling of cortical networks and
brain functioning [1–3]. However, the spiking activity of cor-
tical neurons in the brain is highly irregular and cannot be
captured by the mean firing rate alone. Such fluctuating neural
activity often exhibits diverse spike count Fano factors close
to one [4,5] and noise correlations with complex spatiotem-
poral structures [6,7]. Recordings of cortical neurons in vitro
have further revealed that neural pairwise correlations are
nonlinearly coupled to the mean firing rate [8]. Correlated
variability has been suggested to have a significant impact on
the coding properties of neural populations, which depend-
ing on the structure of the correlation can be both beneficial
or adverse [9,10]. Understanding how neurons in the brain
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process noisy spikes with correlated fluctuations is a key step
to unveiling the inner working of the brain [6,11].

To analyze the nonlinear noise coupling of spiking neu-
rons, a number of mathematical techniques have been
developed. One of them is the master equation approach
considering a network of binary neurons given a transition
probability. This results in a closed, self-consistent system
of equations involving the second-order moments of the sys-
tem [12,13]. For more biologically realistic spiking neuron
models with continuous membrane dynamics, an analytical
technique known as the diffusion approximation has been
developed [14], in which the synaptic current generated by
presynaptic spikes is replaced by a Gaussian white noise with
the same mean and variance. By solving the first passage
time problem associated with the firing threshold, the mean
and variance of the postsynaptic spike train can then be de-
rived [15–19]. Another technique is linear response theory
used to obtain the temporal and pairwise covariance of spik-
ing neurons [8,20–22]. These analytical techniques have been
applied to studying asynchronous and correlated states in bal-
anced networks [23–25], firing statistics in spiking networks
with heterogeneous connectivity [26], and the emergence of
spatiotemporal patterns in neural circuits [27,28].

While mean-field approaches based on the diffusion
approximation are typically used to model the statistical prop-
erties of neural populations, Feng and Lu have proposed a
closed, self-consistent system of equations describing the non-
linear coupling of mean firing rate and firing covariability in
a neural network with generic synaptic weights [16,21]. This
type of model, known as the moment neural network, can be
thought of as a natural generalization of Wilson-Cowan firing
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rate neural network model to second-order moments. Unlike
the standard Wilson-Cowan formalism, which typically con-
siders phenomenological neural activation (such as sigmoidal
activation), neuronal activation in the moment neural network,
referred to as the moment activation (MA), is derived from
the underlying spiking neural network with noisy inputs on a
mathematically rigorous ground. Meanwhile, the MNN also
retains the analytical tractability of continuous rate models,
enabling analysis otherwise infeasible with spiking neural
networks.

Despite the availability of closed-form analytical expres-
sions for the MNN, numerical evaluation of the moment
mappings faces a multitude of challenges. Foremostly, the
MA contains a group of ill-conditioned Dawson-like func-
tions that make it numerically intractable [21]. Specifically,
these Dawson-like functions involve products of exploding
and vanishing terms, causing their direct numerical evaluation
to be prone to errors. Moreover, these ill-conditioned func-
tions occur in nested integrals, which are slow to evaluate
even for input range where they are well behaved. Although
methods such as threshold-integration schemes can be used
to evaluate the MA by numerically solving the associated
Fokker-Planck equation [18,29], these methods are compu-
tationally cumbersome and unsuitable for large population
sizes. These challenges have limited the practical usage of the
MNN for analyzing and simulating the dynamics of correlated
neural variability in spiking neural circuits.

In this study, we develop an efficient numerical scheme
for evaluating the MA ensuring both reliability and speed
through a combination of techniques including asymptotic
expansion and Chebyshev polynomial approximation. The
proposed method leads to an accurate and reliable evalua-
tion of the MA orders of magnitude faster than brute-force
methods. Powered by this efficient numerical method, we
demonstrate how the moment neural network can be used to
model a range of phenomena including diverse Fano factor
in networks with quenched disorder and the emergence of ir-
regular oscillatory dynamics in excitation-inhibition networks
with delay. The MNN can thus serve as a powerful tool for
investigating the firing statistics and correlated variability in
large-scale spiking neural circuits and their impact on neural
coding.

The remaining parts of the paper are outlined as follows.
We first present the theoretical framework of the moment
neural network and an efficient numerical method for eval-
uating the moment activation for arbitrary input statistics, in
particular, by deriving asymptotic expansions for the Dawson-
like functions. Detailed benchmark results about the accuracy
and efficiency of the moment activation are provided in Ap-
pendixes C and D. Next, we use the MA to investigate the
extent to which the linear response theory holds for approx-
imating the correlation map. Lastly, we apply the MA for
modeling the coupled interaction of mean firing rate and
firing variability in large-scale neural circuits and reveal the
emergence of diverse Fano factors due to quenched disorder
and delay-induced irregular oscillatory dynamics, and further
show how the MA can be used to investigate the coding
property of neural populations driven by correlated noisy
inputs.

II. SPIKING NEURAL NETWORK MODEL

Consider the leaky integrate-and-fire (LIF) neuron [30]
whose membrane potential dynamics is described by

dVi

dt
= −LVi(t ) + Ii(t ), (1)

where the subthreshold membrane potential Vi(t ) of a neuron i
is driven by the total synaptic current Ii(t ) and L = 0.05 ms−1

is the conductance. When the membrane potential Vi(t ) ex-
ceeds a threshold Vth = 20 mV a spike is emitted, represented
by a Dirac delta function. Afterwards, the membrane potential
Vi(t ) is reset to the resting potential Vres = 0 mV, followed by
a refractory period Tref = 5 ms. The synaptic current takes the
form

Ii(t ) =
∑

i j

wi jS j (t ) + Iext
i (t ), (2)

where Sj (t ) = ∑
k δ(t − t k

j ) represents the spike train gener-
ated by presynaptic neurons.

The mean firing rate μi and firing covariability Ci j of the
SNN are defined as [16,21]

μi = lim
�t→∞

E[Ni(�t )]

�t
(3)

and

Ci j = lim
�t→∞

Cov[Ni(�t ), Nj (�t )]

�t
, (4)

where Ni(�t ) is the spike count of neuron i over a time win-
dow �t . The type of correlation described by Eq. (4) should
be considered as noise correlation, which measures the corre-
lation between the temporal fluctuations of pairs of neurons,
and should be distinguished from other types of correlations
reported in the literature [9].

III. THE MOMENT NEURAL NETWORK

To capture coupled interactions between mean firing rate
and correlated neural variability, we consider a mathematical
formalism called the moment neural network (MNN) pro-
posed by Feng and Lu [16,21], which naturally generalizes the
rate-based Wilson-Cowan model to the second order. Specif-
ically, the moment neural network summarizes neural spike
trains into second-order moments of the spike count, μi and
Ci j , which are referred to as the mean firing rate and the
firing covariability, respectively. The moments of the synaptic
current in Eq. (2) are calculated as

μ̄i =
∑

k

wikμk + μ̄ext
i , (5)

C̄i j =
∑

kl

wikCklw jl + C̄ext
i j , (6)

where wik are synaptic weights, and μ̄ext
i and C̄ext

i j are the mean
and covariance of an external input current. The dynamics
of the statistical moments of neural activity in this recurrent
circuit can then be described by the following closed system
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of equations:

τ
μi

dt
= −μi + φμ(μ̄i, σ̄i ), (7)

τ
σi

dt
= −σi + φσ (μ̄i, σ̄i ), (8)

τ
ρi j

dt
= −ρi j + χ (μ̄i, σ̄i )χ (μ̄ j, σ̄ j )ρ̄i j, i �= j, (9)

where τ is a time constant and the correlation coefficient ρi j is
related to the covariance by Ci j = σiσ jρi j . This model known
as the moment neural network (MNN) naturally generalizes
rate-based Wilson-Cowan models to second-order statistical
moments and can be considered as the minimalistic model
capable of describing the dynamics of fluctuating neural ac-
tivity with nontrivial (e.g., noiseless or independent Poisson)
probability distributions [16,21]. The functions φμ and φσ

together map the mean and variance of the input current to that
of the output spikes, whose specific functional form depends
on the type of underlying spiking neuron model. The function
χ , which we refer to as the linear perturbation coefficient, is
derived using a linear perturbation analysis around ρ̄i j = 0
[8,21]. This approximation is justified because pairwise corre-
lations between neurons in the brain are typically weak. The
mappings φμ, φσ , χ together form what we refer to as the
moment activation (MA), which is described in detail below.

IV. THE MOMENT ACTIVATION

In this work, we consider the MA for the leaky integrate-
and-fire (LIF) spiking neuron model [Eq. (1)] [30], though the
general principle applies to other spiking neuron models. The
first two components of the MA describe the statistical input-
output relation of a single neuron [16], in which case we drop
the neuronal index for clarity,

μ = φμ(μ̄, σ̄ ) = 1

Tref + E[T ]
, (10)

σ 2 = φσ (μ̄, σ̄ ) = μ3Var[T ]. (11)

The mean and variance of the interspike interval T are given
by

E[T ] = 2

L

∫ Iub

Ilb

g(u) du = 2

L
[G(Iub) − G(Ilb)], (12)

Var[T ] = 8

L2

∫ Iub

Ilb

h(u) du = 8

L2
[H (Iub) − H (Ilb )], (13)

with upper and lower integration bounds Iub(μ̄, σ̄ ) = VthL−μ̄√
Lσ̄

and Ilb(μ̄, σ̄ ) = VresL−μ̄√
Lσ̄

, respectively. The four Dawson-like
functions that appear in Eqs. (12) and (13) are

g(x) = ex2
∫ x

−∞
e−u2

du, (14)

h(x) = ex2
∫ x

−∞
e−u2

[g(u)]2 du, (15)

G(x) =
∫ x

0
g(u) du, (16)

H (x) =
∫ x

−∞
h(u) du. (17)

The last component of the MA is linear response coefficients

χ (μ̄, σ̄ ) = σ̄

σ

∂μ

∂μ̄
, (18)

from which the correlation map between a pair of neurons can
be calculated [8,21]:

ρi j = χ (μ̄i, σ̄i )χ (μ̄ j, σ̄ j )ρ̄i j, i �= j. (19)

Here ρi j and ρ̄i j correspond to spike count correlation and
input current correlation, respectively. The three components
of the MA, namely, the mean firing rate μ [Eq. (10)], the firing
variability σ [Eq. (11)], and the linear response coefficient
χ [Eq. (18)], are shown in Figs. 1(a)–1(c). The family of
Dawson-like functions are illustrated in Fig. 1(d).

The evaluation of the MA based on these integral repre-
sentations becomes problematic in both reliability and speed.
First, the Dawson-like functions [Eqs. (14)–(17)] are ill-
conditioned so that direct evaluation of these integrals may
fail catastrophically. To illustrate this point, consider g(x) in
Eq. (14). When x becomes increasingly negative, the expo-
nential function outside the integral explodes, whereas the
exponential function inside the integral vanishes, resulting
in a numeric instability of type “∞ · 0” even for moderately
negative values of x. This scenario is frequently encountered
in practice as negative values of x, corresponding to when
μ̄ > VresL, happen to be in the biological range. The same
kind of issue is further amplified in h(x) as the integrand
itself depends on g(x). Second, even for the input range over
which the functions are well behaved, direct evaluation of
the MA is slow as it involves double or triple integrals. In
the following, we present an efficient numerical scheme that
overcomes these difficulties.

V. EFFICIENT NUMERICAL METHOD
FOR THE MOMENT ACTIVATION

To achieve a reliable and fast numerical evaluation of
the MA for arbitrary input values, our overall strategy is to
look for direct numerical approximations to the Dawson-like
functions g(x), h(x), G(x), and H (x). This allows us to effi-
ciently evaluate the interspike interval in Eqs. (12) and (13)
by computing G(x) and H (x) only at the integration bounds,
thereby significantly reducing the computational complex-
ity compared to explicit evaluation of the nested integrals.
These approximations also enable efficient evaluation of the
linear response coefficient χ [Eq. (18)] and the derivatives
of the MA. The next step of our strategy is to divide the
entire input domain of the MA into five regimes, namely,
the mean-dominant regime, the extended balanced regime,
the weak fluctuation regime, the subthreshold regime, and the
fluctuation-dominant regime. Figure 1(e) shows a schematic
diagram of different regimes over the input domain. Different
regimes are indicated by color patches, except for the weak
fluctuation limit, which is indicated by the thick solid line
corresponding to σ̄ → 0. The dashed lines signify that the
division into these regimes cover the entire upper half-plane.
These regimes intercept at μ̄ = VαL and σ̄ = 0 where Vα

corresponds to either the firing threshold Vth or the reset poten-
tial Vres. They correspond to two sets of divisions depending
on whether the Dawson-like functions are evaluated at the
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FIG. 1. The moment activation (MA). The MA maps the statistical moments of the input synaptic current to those of the output spikes.
The three components of MA are (a) the mean firing rate μ, (b) the firing variability σ , and (c) the linear response coefficient χ used for
the correlation map. Dotted lines represent contours. (d) The family of Dawson-like functions appearing in the MA exhibiting faster-than-
exponential growth. (e) Schematic diagram showing a decomposition of the entire input domain of the MA into five regimes. The regimes
intercept at μ̄ = VαL and σ̄ = 0 where L is the leak conductance and Vα corresponds to either the firing threshold Vth or the reset potential Vres.
The slopes of the boundaries depend on which one of the Dawson-like functions is being evaluated.

lower or upper integration bounds [Eqs. (12) and (13)]. The
exact slopes of the boundaries separating the regimes also
depend on which one of the Dawson-like functions is being
evaluated. The above classification of input regimes serves
two purposes: first, it provides a conceptual framework for
interpreting neural response properties under different types
of noisy inputs and, second, it provides practical guidance for
designing efficient numerical strategies that suit the best to
each input regime.

The mean-dominant, extended balanced, and subthresh-
old regimes correspond to when the magnitude of the input
current mean is much larger than the input current standard
deviation, that is, when |μ̄−VαL|√

Lσ̄
� 1. In these regimes, the

Dawson-like functions [Eqs. (14)–(17)] vanish or explode,
as shown in Fig. 1(d), rendering direct numerical integration
intractable. To overcome this, we construct asymptotic expan-
sions for each of the Dawson-like functions g(x), h(x), G(x),
and H (x) with a suitable truncation. The weak fluctuation
regime corresponds to when σ̄ is close to zero regardless of
the value of μ̄, in which case we derive explicit analytical
expressions for the MA. The fluctuation-dominant regime
corresponds to the input range outside the aforementioned
three regimes. For this regime, Chebyshev polynomial ap-
proximations with look-up tables for the coefficients are used.

In the following, we present details of these approximations
for the MA under each of these regimes and their physical
significance is also discussed. The derivatives of the MA are
presented in Appendix A.

A. Mean-dominant regime

We first consider the mean-dominant regime when neural
firing is largely driven by positive input current mean, that is,
when μ̄−VαL√

Lσ̄
� 1, resulting in regular activity with high firing

rates. Here we present asymptotic expansions of the Dawson-
like functions [Eqs. (14)–(17)] as x → −∞, allowing us to
efficiently and reliably evaluate the MA. To our knowledge,
only the asymptotic expansion of g(x) has been previously
reported in the literature.

The asymptotic expansion for g(x) as x → −∞ is [31]

g(x) ∼
∞∑

n=0

(−1)n+1 (2n − 1)!!

2n+1x2n+1
. (20)

In fact, the function g(x) is related to the scaled complemen-
tary error function as g(x) =

√
π

2 erfcx(−x), which has been
implemented previously using a different approach based on
continued fraction expansions [32].
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The asymptotic expansion for G(x) is found by rewriting
the integral form in Eq. (16) to an equivalent differential
equation whose solution can be expressed as a generalized
hypergeometric function. This in turn allows us to find its
asymptotic expansion as x → −∞,

G(x) ∼ −1

4
γe − 1

2
log(−2x)

+
∞∑

n=1

(
−1

2

)n+2 (2n − 1)!!

n

1

x2n
, (21)

where γe is Euler’s constant. It is worth noting that G(x) is
well behaved for x < 0 as the leading term in the asymptotic
expansion is logarithmic.

To find the asymptotic expansion for h(x), we substitute
the asymptotic expansion [Eq. (20)] for g(x) into Eq. (15) and
formally expand the series. Then, by applying integration by
parts to each term, we obtain the asymptotic expansion for
h(x) as x → −∞,

h(x) ∼
∞∑

n=0

an

x2n+3
, (22)

with coefficients found to be

an =
n∑

k=0

k∑
l=0

(
−1

2

)n+3 (2l − 1)!!(2k − 2l − 1)!!(2n + 1)!!

(2k + 1)!!
.

(23)
Next, by integrating the asymptotic expansion of h(x) term

by term, we obtain the asymptotic expansion for H (x) as

H (x) ∼
∞∑

n=0

−an

2n + 2

1

x2n+2
, (24)

where an is the same coefficients in Eq. (23).
Note that for numerical implementation, an appropriate

level of truncation is applied to the asymptotic expansion
to achieve a balance between accuracy and applicable input
range. The mean firing rate μ and the firing variability σ 2

of the MA can then be evaluated by combining the approx-
imations for G(x) and H (x) with Eqs. (10)–(13). For the
correlation mapping, we evaluate the linear response coeffi-
cient χ [Eq. (18)] using the derivative of the mean firing rate
[see Eq. (A1) in Appendix A].

B. Extended balanced regime

Next, we consider the extended balanced regime when the
input current mean and std compete with each other, i.e., when

¯μ−VαL√
Lσ̄

� −1, to produce spiking activity at a low rate (only a
few spikes per second). Here we present exact transformation
formulas for the Dawson functions [Eqs. (14)–(17)] from the
input domain of x < 0 to that of x > 0, and also derive the
leading terms as x → +∞.

The following identity is used to evaluate g(x) for x > 0

g(x) = √
πex2 − g(−x). (25)

It is evident that the leading term is g(x)∼√
πex2

as x → +∞.

For G(x) we derive the following identity found by inte-
grating both sides of Eq. (25):

G(x) = π

2
erfi(x) + G(−x), (26)

where erfi(x) is the imaginary error function, a well-known
special function with existing numerical implementations.

The leading term of Eq. (26) is found to be G(x) ∼
√

π

2
ex2

x ,
which has been previously reported in [33].

For h(x) we derive the following identity:

h(x) = √
πex2[ 1

2 log 2 + G(x) + G(−x)
] − h(−x), (27)

with the leading term found to be h(x) ∼ π
2

e2x2

x .
For H (x) the following identity holds for x > 0:

H (x) = π log 2

4
erfi(x) + √

π

∫ x

0
eu2

[G(u) + G(−u)] du

+ H (−x). (28)

No practically useful simplification is found for Eq. (28).
Therefore, we approximate H (x) with its leading term

H (x) ∼ π2

8 [erfi(x)]2 ∼ π
8

e2x2

x2 , as x → +∞.

C. Weak fluctuation regime

The weak fluctuation regime corresponds to when the input
current variability σ̄ is close to zero, regardless of the value
of the input current mean μ̄. In this scenario, the integration
bounds in Eqs. (12) and (13) contain singularities as the input
current variability σ̄ → 0, making it unsuitable for numerical
implementation. However, these singularities are removable
as the moment activation is well behaved when σ̄ → 0. By
considering the leading terms of g(x), G(x), h(x), and H (x)
as x → +∞, we find that the corresponding limits exist and
have simple analytical expressions as presented below.

The limit for the mean firing rate μ is

lim
σ̄→0

μ(μ̄, σ̄ ) =
⎧⎨
⎩

0, for μ̄ � VthL,
1

Tref − 1
L log

(
1− VthL

μ̄

) , for μ̄ > VthL. (29)

This limit is consistent with the solution of the leaky integrate-
and-fire neuron model receiving a constant input current [30],
as can be obtained by integrating Eq. (1) directly.

For the variance mapping, we note that the limit of the Fano
factor as σ̄ → 0 is simply the Heaviside step function

lim
σ̄→0

σ 2

μ
=

{
1, for μ̄ � VthL,

0, for μ̄ > VthL.
(30)

Combining this result and Eq. (29), we conclude that

lim
σ̄→0

σ (μ̄, σ̄ ) = 0.

For the linear response coefficient χ in Eq. (18), the limit
as σ̄ → 0 is

lim
σ̄→0

χ (μ̄, σ̄ )

=

⎧⎪⎨
⎪⎩

0, for μ̄ � VthL,√
2
L

1√
Tref− 1

L log
(

1− VthL
μ̄

)√
2μ̄

VthL −1
, for μ̄ > VthL. (31)

These limits can then be used to approximate the moment
activation when σ̄ is very close to zero, in which case
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Eqs. (12) and (13) become numerically intractable. Similar
limits can be derived for the gradient of the moment activation
(see Appendix A).

D. Subthreshold regime

The subthreshold regime corresponds to when both the
input current mean μ̄ as well as the variability σ̄ are weak so
that the neuron receiving the input ceases firing. Concretely,
this corresponds to when Iub(μ̄, σ̄ ) = VthL−μ̄√

Lσ̄
> θ for some

sufficiently large positive number θ . In this scenario, the inte-
grals in Eqs. (12) and (13) explode and all components of the
moment activation including μ, σ , and χ vanish. The quantity
θ can thus be viewed as a form of generalized firing threshold,
below which the output is simply set to μ = σ = χ = 0.

E. Fluctuation-dominant regime

The fluctuation-dominant regime is when neural firing
is largely driven by fluctuations in the input current. This
corresponds to the input range outside the aforementioned
regimes. In this regime, direct numerical integration for the
Dawson-like functions is possible but slow. To overcome this,
we follow the strategy previously used for implementing the
scaled complementary error function by using Chebyshev
polynomial approximations with lookup tables for the coef-
ficients [32].

For x � 0, we first apply the transformation x′ = 4
4−x ,

which maps the input x ∈ (−∞, 0] to the unit interval x′ ∈
(0, 1]. We then divide the unit interval into N subintervals of
equal length and fit (in the least-square sense) the function
over each subinterval with a Chebyshev polynomial of an
appropriate degree. The coefficients of the polynomial ex-
pansion are then saved to a look-up table which can then be
used for fast evaluation of each Dawson-like function. Special
identities [Eqs. (25)–(27)] can then be used to evaluate the
functions for x > 0. This general strategy is applied to all of
g(x), G(x), h(x), H (x) but with a couple of exceptions. First,
for G(x) the subdivision is applied directly over the interval
x ∈ [−c, 0] for some constant c without the transformation
because G(x) does not vanish as x → −∞ and grows logarith-
mically to negative infinity. Second, since there is no special
identity relating H (x) with H (−x), we apply the Chebyshev
polynomial approximation to x > 0 as well, which is done by
fitting H̃ (x) = H (x)e−2x2

to a Chebyshev polynomial for each
subintervals over x ∈ (0, c].

As mentioned earlier, the MA [Eqs. (10)–(18)] is derived
directly from the LIF neuron model [Eq. (1)] through a se-
ries of mathematically rigorous approximations. There are
three potential sources of error due to these approximations,
namely, the diffusion approximation for the synaptic current,
the assumption for stationary process, and the linear response
approximation for correlation mapping. We benchmark the
accuracy of the MA for approximating the LIF neuron model
[Eq. (1)] for a single neuron in Appendix C and investigate the
conditions under which the linear response theory is valid for
calculating the correlation map in Sec. VI. Benchmark results
for the computational efficiency of the MA are presented in
Appendix D.

VI. NONLINEAR RESPONSE PROPERTIES
IN THE EXTENDED BALANCED REGIME

As mentioned earlier, one of the approximations used for
deriving the MA is the linear response theory for obtaining the
pairwise correlation map of LIF neurons [21]. Conceptually,
the linear response theory provides a first-order approximation
to the correlation map near ρ̄i j = 0, and is thus the most
accurate for weakly correlated neural activity. However, at a
quantitative level, there is currently a lack of understanding
about the conditions under which this approximation is valid.
The numerical method developed in this work enables us to
systematically investigate this problem, particularly for those
ill-conditioned input regimes where the MA could not be
reliably evaluated using previous methods. As we show below
through numerical simulations, the linear response approxi-
mation is accurate for the vast majority of input regimes but
breaks down around the extended balanced regime. Since we
are concerned only with pairwise correlations, it is sufficient
to consider two neurons without loss of generality. We treat
the aggregated postsynaptic currents as correlated Gaussian
random variables without explicitly modeling the input spike
trains. This treatment allows us to separate the effect due to the
linear response approximation from that due to the diffusion
approximation. Concretely, the input currents received by the
pair of neurons are

Ii(t ) = μ̄i + σ̄iξi(t ),

where μ̄i and σ̄i are the mean and standard deviation of the
input current for neuron i ∈ {1, 2}, and ξi(t ) are Gaussian
white noise with a correlation coefficient equal to ρ̄.

Our goal is to perform a parameter sweep through the full
space spanned by the input current mean/std of pairs of neu-
rons, plus the correlation between them, and to compare the
theoretical correlation map with empirical sample estimates
from simulated spiking neurons. Although sweeping through
this five-dimensional space is computationally prohibitive for
spiking neurons, we show that by avoiding redundancy one
only needs to sweep through a 3D space. See Appendix B for
details.

To establish some basic intuition about the correlation
maps, we first show the correlation maps along specific slices
through the mean/std parameter space. First, we fix μ̄2 = 0
and σ̄2 = 2.5 while varying μ̄1 and σ̄1 [Fig. 2(a)], and sec-
ond, we vary both inputs at the same time with μ̄1 = μ̄2

and σ̄1 = σ̄2 [Fig. 2(b)]. For most input values, the linear
response theory provides accurate predictions (solid lines) to
LIF neurons (dashed lines) even for correlation coefficients
away from zero. For some input values, the predictions based
on linear response theory (solid lines) deviate away from
the LIF neurons (dashed lines) for |ρ̄| > 0. This deviation
becomes more apparent for inputs closer to ρ̄ = 1. Based on
these observations, it is evident that the MA based on linear
response theory provides reasonably accurate predictions of
the correlation mapping for most regions of the input space,
but the quality of approximation degrades for other regions.

To effectively visualize the high-dimensional results, we
calculate the L2 distance between the theoretical and empiri-
cal correlation maps for each pair of input mean/std to obtain
a 4D heat map. We visualize this 4D heat map as a 2D array
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(a) (b)

(c)

(d)

FIG. 2. Correlation map of the moment activation (MA). (a), (b) Correlation map between a pair of LIF neurons receiving correlated input
currents with varying statistics. In each panel, horizontal and vertical axes correspond to input and output correlation, respectively. In (a) we
fix μ̄2 = 0 mV/ms and σ̄2 = 2.5 mV/ms1/2 (extended balanced regime) while varying μ̄1 and σ̄1. In (d) we vary both inputs with μ̄1 = μ̄2

and σ̄1 = σ̄2. In both cases the linear response theory (solid line) is largely consistent with simulations of LIF neurons (dashed line), but shows
deviation for |ρ̄| > 0 particularly in the extended balanced regime. The color code indicates different input regimes. (c) A 4D heatmap showing
the L2 distance between the empirical and theoretical correlation maps. The inner dimensions (axes in each tile) correspond to the input std
σ̄ of two neurons, whereas the outer dimensions (axes across tiles) correspond to the input mean μ̄ of two neurons. (d) The maximum of
L2 distance given the input mean and std of one neuron, over all input mean and std of the other neuron in the range shown in (c). Dashed
line indicates the boundaries between the subthreshold and extended balanced regime, and between the fluctuation-dominant and extended
balanced regime. Color scale is as in (c).

of 2D heat maps, as shown in Fig. 2(c). The inner dimen-
sions (the axes of each panel) correspond to the input std of
two neurons, whereas the outer dimensions (the axes across
panels) correspond to the input mean of two neurons. Let us
first focus on the outer dimensions. It can be seen that for the

vast majority of the input space, i.e., input mean μ̄ � VthL =
1.0 mV/ms for any one of the input neurons, the MA based
on linear response theory accurately predicts the correlation
mapping. Inaccuracies in the correlation map due to the linear
approximation are concentrated in the range where the input
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mean μ̄ < 1 mV/ms. Next, let us turn our attention to individ-
ual panels within this range. Within each panel, inaccuracies
due to linear approximation only begin to appear beyond a
minimum threshold in the input std σ̄ , and this threshold
decreases with the input mean μ̄. In terms of the taxonomy
presented in Fig. 1(e), the region below this threshold cor-
responds to the subthreshold regime, in which neurons do
not fire and the correlation is zero. As it turns out, the in-
put regime in which the linear response theory breaks down
largely overlaps with the extended balanced regime, in which
input fluctuations and negative input mean compete to pro-
duce spiking activity with low firing rates. This can be seen by
marginalizing the 4D heat map to the 2D plane spanned by the
input mean/std of one of the neurons, as shown in Fig. 2(d).
Moreover, we find that the amount of deviation of the theo-
retical correlation map from the empirical result is primarily
determined by the effective input drive γ =

√
Lσ̄

VthL−μ̄
. As shown

in Fig. 2(d), the L2 distance along the line defined by the
effective drive γ is at a maximum around γ = 0.5 and then
quickly decreases as γ increases. We find that for γ > 1.25
the correlation map derived from the linear response theory
agrees with the empirical ground truth. The large deviation
occurring in the range of 0.25 < γ < 1.25 suggests that non-
linear effects dominate in these regimes. It is worth noting that
even in this regime, the linear response theory still provides
a reasonably accurate approximation to the correlation map
for weakly correlated inputs, as can be seen from Figs. 2(a)
and 2(b), but care must be taken when the input correlation
becomes strong.

It has been theorized that cortical neurons in the brain
operate in a balanced regime, in which the average excitation
and inhibition roughly cancel out, and that neural activity is
primarily driven by fluctuations in the input. Our analysis
shows that part of this balanced regime overlaps with the
input regime where the linear response theory breaks down,
indicating the necessity of developing higher-order approx-
imations of the correlation map. The strong dependence of
nonlinear effects in the correlation map on effective drive γ

also suggests that γ could be a more appropriate quantifier for
dynamical regimes of fluctuation-driven spiking activity than
simple E-I balance, and that correlated variability could play
an important role in the computational properties of balanced
state in neural circuits [25].

VII. MOMENT INTERACTIONS IN LARGE-SCALE
NEURAL CIRCUIT

Having established the efficient numerical scheme for the
MA, we now demonstrate how the MNN can be used for
modeling the coupled interactions of mean firing rate and
firing variability in large-scale neural circuits. For this pur-
pose, the usage of the MNN as presented in this work has
a number of advantages. First, the MNN enables a closed
and self-consistent description of fluctuating neural dynamics
up to the second order. This is a significant improvement
over mean field analysis which commonly imposes additional
constraints such as Poisson firing statistics (i.e., Fano fac-
tor equals one) [15,27]. As a result, the MNN is capable
of expressing a wide range of Fano factors as is consistent
with experimental observations of cortical neurons. Second,

mean-field analysis often performs ensemble averaging over
independent realizations of randomly connected neural net-
works, erasing potential contributions from synaptic in-degree
heterogeneity, i.e., quenched disorder. The efficiency of the
numerical scheme developed in this work enables full simu-
lation of large-scale neural circuits at the level of individual
neurons, allowing for the investigation of dynamical effects
associated with quenched disorder.

A. Diverse Fano factor and irregular oscillatory activity

We consider a large, sparsely connected network of exci-
tatory and inhibitory neurons with settings similar to those
of [15]. We find from numerical simulations that the spiking
activity in this model is uncorrelated, likely due to the spar-
sity of the network; therefore we restrict this section to the
uncorrelated MNN, that is, ρi j = 0 for i �= j. The omission
of correlation also greatly reduces the computational cost,
allowing us to simulate the interaction of second-order mo-
ments of a very large network at single-neuron resolution. To
incorporate synaptic delay, we replace Eqs. (5) and (6) for the
postsynaptic current with

μ̄α
i (t ) =

∑
β, j

wαβaαβ
i j μ

β
j (t − D) + wα,extμext, (32)

(
σ̄ α

i

)2
(t ) =

∑
β, j

w2
αβaαβ

i j

(
σ

β
j

)2
(t − D) + w2

α,extμext, (33)

where α, β ∈ {E, I} are indices for excitatory and inhibitory
populations and D is the synaptic delay. We consider a re-
current network consisting of NE = 10 000 excitatory neurons
and NI = 2500 inhibitory neurons and the connectivity matrix
aαβ

i j = 1 with probability p = 0.1 and zero otherwise. The
excitatory synaptic weights are fixed at wEE = wIE = 0.1 mV
and the inhibitory synaptic weights are wEI = wII = −gwEE ,
where g is the inhibition-to-excitation synaptic weight ratio
(IE ratio). Self-connections are excluded. For this section, the
neuronal parameters for the MA are changed to Vres = 10 mV
and Tref = 2 ms to be consistent with [15]. We model external
inputs as Poisson spike trains with a mean firing rate μext

that is homogeneous across all neurons and set the weights to
wα,ext = wEE = 0.1 mV. We fix the time constant in Eqs. (7)–
(9) to be τ = 1 a.u. and the delay to be D = 0.5 a.u., but we
will show how they can be calibrated with respect to physical
time unit in Appendix E. All other parameters for the MA
remain unchanged.

To investigate the dynamics of this recurrent moment neu-
ral network with delay, we systematically vary the external
input rate μext and the IE ratio g and construct phase di-
agrams using the population-averaged mean firing rate and
Fano factor, which are calculated by evolving the model for
a sufficiently long period of time to obtain the stable fixed
points and then average them across all neurons, and over a
large time window in the case of oscillations. As shown in
Fig. 3(a), three distinct phases are visible: a mean-dominant
phase with high firing rate and vanishing Fano factor when
inhibition is weak, a fluctuation-dominant phase with lower
firing rate and large Fano factor when inhibition is stronger,
and an irregular oscillatory phase with low mean firing rate
and low but nonvanishing Fano factor. To better understand
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(a) (b) (c) (d)

(e)

g = 3

g = 5

g = 7

I II III

FIG. 3. Dynamics of recurrent moment neural network with delay. (a). Phase diagrams with varying excitation-to-inhibition weight ratio g
and external input rate μext . Three distinct phases correspond to mean-dominant, fluctuation-dominant, and irregular oscillatory activity. Here
we fix delay D = 0.5 a.u. (b). A slice of the phase diagram along μext = 20 sp/ms. The solid line and shades indicate population averages
±0.5 std. The dashed lines mark the critical points at g = 3.4 and g = 6.4 between three phases: (I) mean-dominant, (II) fluctuation-dominant,
(III) irregular oscillatory. (c). Oscillation amplitude and frequency of population averaged firing rate along the same slice. (d) Typical examples
of temporal trajectories of neural activity projected onto the mean-var plane. Top, middle, and bottom panels correspond to mean-dominant
(g = 3), fluctuation-dominant (g = 5), and irregular oscillatory (g = 7) activity; each curve corresponds to a representative neuron in the
network; dots represent stable fixed points. For g = 7, the stable limit cycles are shown. Color is for visual contrast only. (e) Spatiotemporal
activity patterns at g = 3 (homogeneous activity), g = 5 (heterogeneous activity), and g = 7 (oscillations). Neurons are ranked based on their
mean firing rates.

these phases, we show in Fig. 3(b) a slice of the phase dia-
gram along μext = 20 sp/ms. For the mean-dominant phase,
the population-averaged mean firing rate decreases with in-
creasing IE ratio, whereas the Fano factor remains at zero,
indicating highly regular spiking activity. A critical phase
transition occurs at g = 3.4 beyond which the system enters
fluctuation-dominant phase. Near the phase transition, the
mean firing rate appears to decrease smoothly with g, but
a sharp boundary separating the two phases is revealed by
the Fano factor which starts to increase beyond the critical
point. This sudden change in the behavior of the system is
not limited to the population-averaged Fano factor but also a
sudden surge in its variability across neurons as indicated by
the shades in Fig. 3(b).

As the IE ratio increases further, the population-
averaged mean firing rate continues to decrease while the
population-averaged Fano factor and the strength of its het-

erogeneity increase until reaching a peak at g = 6.4. This
is the critical point at which the system transitions into
irregular oscillatory phase, as characterized by low firing
rate and nonvanishing Fano factor that oscillate over time.
This transition to oscillatory activity is more clearly sum-
marized in Fig. 3(c) showing the oscillation amplitude of
the population-averaged instantaneous firing rate μ(t ), cal-
culated as A = 1

2 [maxt μ(t ) − mint μ(t )], and the oscillation
frequency, which does not vary significantly with the IE ratio.
In spiking neural networks, this kind of activity corresponds
to global oscillations in the population-averaged firing rate
but irregular spiking activity at the level of individual neu-
rons [34–36]. Such irregular spiking activity and collective
oscillations are ubiquitous features of cortical neurons in
the brain and may appear paradoxical at first glance. The
moment neural network presented here provides an elegant
mathematical formalism for describing the coexistence of
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irregular firing (diverse instantaneous Fano factor) and collec-
tive oscillation (instantaneous mean firing rate and firing vari-
ability together vary over time), and for explaining how col-
lective oscillatory dynamics can emerge in a network driven
by noisy inputs even when individual neurons fire irregularly.

To provide further intuition to the coupled interactions of
the mean firing rate and firing variability, we show typical
examples of neural activity state for each of the three phases.
As shown in Fig. 3(d), temporal trajectories of neural activity
are projected onto the mean-var plane of the neural activity
state. We find that for the mean-dominant phase (g = 3), the
transient trajectories for different neurons start from the initial
value at the origin and evolve toward closely packed stable
fixed points in an ordered, laminar fashion. In contrast, for the
fluctuation-dominant phase (g = 5), the transient trajectories
for different neurons appear to be irregular and turbulent,
crossing each other consistently in this 2D projection. The
resulting stable fixed points are scattered over a large region
of the mean-var plane, forming a smoothly shaped manifold,
which reflects the broad distribution of the Fano factor. For the
irregular oscillatory phase (g = 7), we show the trajectories of
the neural activity state after they have converged, revealing
limit cycles forming the shape of a figure “8.” Additional plots
of the spatiotemporal activity patterns corresponding to these
examples are shown in Fig. 3(e) where neurons are ranked
based on their mean firing rates. It can be seen that the neural
activity in the mean-dominant phase is largely homogeneous
across all neurons, but in the fluctuation-dominant phase it is
heterogeneous, as indicated by the diverse Fano factor ranging
from 0 to 1. For the irregular oscillatory phase, the instanta-
neous mean firing rate and Fano factor of different neurons
oscillate synchronously over time. Curiously, there appears to
be some sort of phase splitting in the Fano factor of different
neurons: oscillations in neurons with the highest and the low-
est mean firing rates exhibit opposite phases, whereas for all
other neurons in between the oscillations are superposition of
these two phases with a continuous shift.

For the type of homogeneous random network (Erdős-
Rényi network) considered here, the synaptic in-degrees are
Poisson distributed, so it is commonly assumed that as the
population size grows the distribution of the in-degree should
become increasingly concentrated around its mean. This mo-
tivates the idea that for this type of homogeneous random
network, the dynamics of the system should be self-averaging
in the limit of large system size such that the resulting neural
activity is also homogeneous. This is the assumption un-
derlying many mean field analyses aimed at describing the
population-averaged neural activity, as if all neurons inside a
population have identical firing properties. So the emergence
of strong heterogeneity in the fluctuation-dominant phase
comes at quite a surprise. This raises the question of what the
mechanism is for the emergence of diverse neural variabil-
ity (i.e., Fano factor) in the fluctuation-dominant phase. To
address this problem, we fix the average synaptic in-degree
while decreasing its variance and find that the strength of het-
erogeneity in the Fano factor decreases. When the in-degrees
are equal to a constant, the resulting neural activity becomes
completely homogeneous. This suggests that the heteroge-
neous activity is due to quenched disorder and a potential
explanation for the emergence of diverse Fano factor is sym-

metry breaking associated with quenched disorder, causing
the self-averaging assumption to no longer apply. The detailed
mechanism warrants further investigation but is beyond the
scope of the present paper.

To enable meaningful interpretations of these results, we
must resolve the issue of the undetermined time constant τ

in the MNN. The aim is to estimate τ so that the oscillation
frequency in the MNN matches that in the SNN. The main
difficulty is that the oscillation frequency is influenced by
both the time constant and the delay so that they must be
determined simultaneously. Here we propose a calibration
procedure based on a scaling argument about the frequency-
delay curve, allowing us to uniquely determine the calibration
factor that works for all delay values, given that other param-
eters are fixed (see Appendix E for details). For the model
considered here, we find that the calibration factor is equal to
β = 1.168 ms/a.u. which gives a calibrated time constant of
τ ′ = 1.168 ms, significantly shorter than the membrane time
constant τm = 20 ms of an isolated spiking neuron. As shown
in Fig. 7(c), the frequency-delay curves for the SNN and the
calibrated MNN are in agreement for all delay values, and
the MNN predicts a critical delay value around D∗ = 0.5 ms
above which oscillations emerge, as consistent with the SNN
model.

B. Correlated variability in neural circuits

In this section we consider a recurrent network consisting
of Ne = 0.8N excitatory neurons and Ni = 0.2N inhibitory
neurons. Synaptic weights w

αβ
i j are drawn randomly from a

normal distribution with mean Jαβ/Nα and standard devia-
tion K/Nα . For this model, self-connection is excluded. The
synaptic weight parameters are set to JEE = 120, JEI = −190,
J IE = 108, J II = −178, and K = 40; the connection probabil-
ity is set to p = 0.2.

The external input is characterized by its mean μ̄ext (s) and
covariance C̄ext (s), which in general can depend on a latent
feature s of the stimulus. For illustrative purposes, here we
set the external input mean to be μ̄ext (s) = κs where s is a
scalar parameter and κ = 1 mVms−1. We then compare the
neural response and coding properties under two different
types of input covariance. One of these input covariances
is a spatially unstructured, uniform covariance defined as
(C̄ext )i j = σ̄ 2

ext[(1 − c)δi j + c], where σ̄ 2
ext is the noise strength

and 0 � c � 1 controls the relative strength of independent
and shared noise sources. The other type of input covariance
is spatially structured cosine-shaped covariance defined as
(C̄ext )i j = σ̄ 2

ext[(1 − c)δi j + c cos(θi − θ j )]. Here we have as-
signed the inputs received by excitatory neurons with spatial
coordinates evenly spaced on the unit circle θi ∈ [0, 2π ). For
inputs to inhibitory neurons, uniform covariance is used. In
this paper, we fix the stimulus value to be s = 1.825 and
the external noise strength to be σ̄ 2

ext = 32.6 mV2 ms−1. The
steady state of the model is obtained by evolving Eqs. (7)–(9)
for a duration of T = 20 a.u. with a time step δt = 0.1 a.u.

The neural response properties of the MNN model that re-
ceives these two types of input are shown in Fig. 4(a). Both the
case with uniform input covariance (upper panel) and the case
with cosine-shaped input covariance (lower panel) show a
mean firing rate within the biologically realistic range (around

024310-10



MOMENT NEURAL NETWORK AND AN EFFICIENT … PHYSICAL REVIEW E 110, 024310 (2024)

(a) (b) (c)

FIG. 4. Neural response and coding properties of large-scale neural circuits modeled with the MA. (a) Scatter plot showing the mean firing
rate μ and firing variability σ 2 of neurons in a recurrent network receiving spatially uniform input covariance (upper panel) and cosine-shaped
covariance (lower panel); in both cases the strength of input correlation is set to be c = 0.4. Both cases exhibit biologically plausible firing rate
and diverse fluctuations with Fano factors ranging from 0.3 to 1. (b) The correlation coefficient of excitatory neurons in the recurrent network.
(c) The scaling behavior of the linear Fisher information rate as the population size grows. For uniform input covariance, information quickly
saturates as population size grows except for uncorrelated inputs (c = 0); for cosine-shaped covariance, the information does not saturate with
population size regardless of the strength of input correlation.

50 sp/s) and fluctuations with diverse Fano factor ranging
from 0.3 to 1.0, similar to that found in cortical neurons in
the brain [4]. The correlation coefficients ρi j of the neural
response in the MNN are shown in Fig. 4(b).

The variable of interest here is the amount of information
encoded by the neural activity in the recurrent network about
the latent feature s in the stimulus. This can be quantified
by the linear Fisher information rate I = ( dμ

ds )T C−1 dμ

ds , where
μ and C are the mean and covariance of neural activity.
The linear Fisher information rate describes the amount of
information per unit time about the latent feature s, which can
potentially be extracted by a linear decoder. Previously, it has
been suggested that information could saturate as population
size increases due to a type of correlation called differential
correlation [37,38]. Here we use the MNN model to inves-
tigate whether information saturates with population size N
under different input covariance structures.

We find that these two types of correlation structures lead
to distinct scaling behaviors in the linear Fisher informa-
tion [Fig. 4(c)]. For uniform correlation, the linear Fisher
information quickly saturates as the population size grows,
except when the input noise is independent (i.e., the strength
of shared noise is zero). The linear Fisher information also
decreases as the strength of shared noise increases. This result
is consistent with previous findings based on direct numerical
simulations of the spiking neural network model [37] and

analysis based on recordings of large neural ensembles in the
rodent brain [39]. In contrast, for spatially structured corre-
lation, the linear Fisher information does not saturate with
population size regardless of the relative strengths of inde-
pendent and correlated noises in the stimulus. Moreover, the
information increases with the relative strength of the corre-
lated input noise (controlled by the parameter c). These results
show that neural correlation can potentially be exploited to
enhance neural coding rather than to limit it. Full details of
the role of correlation in neural coding are beyond the scope
of this paper and are discussed elsewhere [40].

VIII. DISCUSSION

In this study, we have developed an efficient numerical
method for the moment activation (MA) through a combi-
nation of strategies that provide both reliability and speed.
The proposed numerical scheme overcomes the numerical
instability caused by a group of ill-conditioned Dawson-like
integrals in the MA through asymptotic approximation, al-
lowing for a reliable evaluation of the MA for arbitrary
input range. Moreover, the proposed method circumvents
multiple nested integrals in the MA and reduces the com-
putation to finite series expansion, thus vastly reducing the
cost of evaluating the MA. The proposed method is thus more
effective than previous methods for evaluating neural firing

024310-11



YANG QI PHYSICAL REVIEW E 110, 024310 (2024)

statistics which require numerically solving the associated
Fokker-Planck equation [18,29]. We have also demonstrated
the effectiveness of the MA for modeling large-scale neural
circuits and for investigating the role of correlation in neural
coding. The numerical method for evaluating the Dawson-like
functions may also find application in studying other physical
systems where these integrals naturally arise.

The method developed in this study provides a compre-
hensive numerical tool for evaluating the moment mapping
for spiking neuron models under the diffusion formalism and
has a number of key advantages. First, the MA deals with all
three components of the moment mapping of a spiking neuron
as well as their derivatives, whereas previous methods often
focus only on the mean firing rate mapping while omitting
variance and correlation mappings [17,29]. The latter two are
crucial for enabling a closed, self-consistent system of equa-
tions that incorporates the first- and second-order moments of
neural activity [16,21]. Second, the MA is highly reliable for
the entirety of its input domain (the closed upper half-plane),
due to its efficient usage of asymptotic approximations to the
family of ill-conditioned Dawson-like integrals. Although the
idea of using asymptotic approximation for analyzing neural
spike statistics has been explored previously [33,41], it has
considered only the large firing threshold limit (equivalent
to the subthreshold regime in this paper). Here we have
completed the missing pieces by including new results for
the mean-dominant regime and exact transformation formulas
linking it to the subthreshold regime. Third, the computational
time for evaluating the MA is not only low but also highly
consistent across different input regimes.

The MA powered by the proposed numerical scheme has
potential applications in a number of areas of computational
neuroscience. Derived from spiking neuron models on a
mathematically rigorous ground, the MA faithfully captures
correlated fluctuations of neural spikes and provides an ideal
tool for modeling correlated neural variability. Specifically,
the computational efficiency and scalability of the proposed
numerical method can enable simulations of correlation prop-
agation through large-scale cortical circuits and provide new
insights about cortical computation previously unobtainable
with direct simulation of spiking neurons or simplified firing
rate models. The efficient implementation of the derivatives
of the MA also provides a tool for a semianalytical approach
to investigating the dynamical properties of correlated neural
fluctuations in neural circuits.

The observations of strongly irregular firing activity of
cortical neurons have also led to the idea that neural computa-
tion is fundamentally probabilistic. A number of theories for
probabilistic neural computation have been proposed, such as
probabilistic population code and neural sampling [42–46].
However, theoretical investigation of probabilistic neural
computation involving correlated neural activity faces sig-
nificant challenges in that high-dimensional joint probability
distribution of neural activity in a large network is analytically
and computationally intractable. As a result, it is common
to assume independent Poisson spikes in the asynchronous
regime to facilitate theoretical analysis. The proposed numer-
ical method for evaluating the MA provides an alternative
approach to model probabilistic neural computation through a

moment-space representation, without requiring explicit cal-
culation of the joint probability density or random sampling.

The approach developed in this study can potentially be
extended in two directions. First, the MA considered here is
based on a particular type of spiking neuron model, that is, the
current-based leaky integrate-and-fire neuron model. In the
future, the proposed method may be extended to other types
of neuron models to incorporate biological features such as
synaptic conductance [17–19] and multiple types of synapses
with slow/fast timescales [22]. Moreover, the present numeri-
cal method for the MA considers pairwise covariance without
temporal lag and future works may extend this to incorporat-
ing cross-covariance to fully capture the rich spatiotemporal
covariance structure of cortical networks [22].

The code for the proposed numerical method is available
at [47].
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APPENDIX A: DERIVATIVES OF THE
MOMENT ACTIVATION

In the following, we supply formulas for the derivatives of
the MA. First, for the mean firing rate μ, by differentiating
Eq. (10) with respect to μ̄ and σ̄ we obtain the corresponding
partial derivatives

∂μ

∂μ̄
= 2

L
√

L

μ2

σ̄
[g(Iub) − g(Ilb)] (A1)

and
∂μ

∂σ̄
= 2

L

μ2

σ̄
[g(Iub)Iub − g(Ilb)Ilb], (A2)

respectively. Second, for the firing variability σ , by differenti-
ating Eq. (11) with respect to μ̄ and σ̄ we obtain
∂σ

∂μ̄
= 3

L
√

L

σ

σ̄
μ[g(Iub) − g(Ilb)] − 1

2
√

L

σ

σ̄

h(Iub) − h(Ilb)

H (Iub) − H (Ilb )

(A3)

and
∂σ

∂σ̄
= 3

L

σ

σ̄
μ[g(Iub)Iub − g(Ilb)Ilb] − 1

2

σ

σ̄

h(Iub)Iub − h(Ilb)Ilb

H (Iub) − H (Ilb)
,

(A4)

respectively. Third, for the linear response coefficient, the
derivatives are

∂χ

∂μ̄
= 1

2

χ

μ

∂μ

∂μ̄
−

√
2

L

√
μ

�H
[Iubg(Iub) − Ilbg(Ilb)]

1

σ̄

+ 1

2
√

L
χ

�h

�H

1

σ̄
(A5)

and

∂χ

∂σ̄
= 1

2

χ

μ

∂μ

∂σ̄
− χ

σ̄

2(Iub)2g(Iub) − 2(Ilb)2g(Ilb) + Iub − Ilb

�g

+ 1

2

χ

σ̄

Iubh(Iub) − Ilbh(Ilb)

�H
, (A6)
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where the short-hand notation � denotes the difference be-
tween a function evaluated at Iub and Ilb.

We also find analytical expressions of these derivatives in
the weak fluctuation regime as σ̄ → 0. First, for the mean
firing rate μ, by differentiating Eq. (29) we obtain

lim
σ̄→0

∂μ

∂μ̄
=

{
0, for μ̄ � VthL,

V μ2

μ̄(μ̄−V L) , for μ̄ > VthL.
(A7)

For the derivative of μ with respect to σ̄ , the limit is found to
be zero everywhere except for an isolated singularity at μ̄ =
VthL. For practical purposes we simply set it to zero. Second,
for the firing variability σ , the gradient with respect to μ̄ is
zero at σ̄ = 0 except that it is not well defined at μ̄ = VthL.
For numerical purposes we set it to zero,

∂σ

∂μ̄

∣∣∣∣
σ̄=0

= 0, (A8)

for all μ̄. The analytical limit for the derivative of σ with
respect to σ̄ is

lim
σ̄→0

∂σ

∂σ̄
= 1√

2L
μ

3
2

√
1

(VthL − μ̄)2
− 1

μ̄2
. (A9)

Third, for the linear response coefficient χ , the limits of its
derivatives are found to be

lim
σ̄→0

∂χ

∂μ̄
= 1√

2L

1√
μ

(
2

VthL μ̄ − 1
) ∂μ

∂μ̄

−
√

2

L

1

VthL
μ

1
2

(
2

VthL
μ̄ − 1

)− 3
2

, (A10)

for μ̄ > VthL and zero otherwise, and

lim
σ̄→0

∂χ

∂σ̄
= 0. (A11)

Note that in all cases, the derivatives vanish for sufficiently
large Iub.

APPENDIX B: CALCULATING EMPIRICAL
CORRELATION MAP FROM SPIKING NEURON

SIMULATIONS

The calculation of empirical correlation map from spik-
ing neuron simulations becomes computationally prohibitive
considering that its input space is 5D. Here we show that by
avoiding redundancy one only needs to sweep through a 3D
space. This is done by simulating a population of neurons
whose input statistics cover the 2D space spanned by (μ̄, σ̄ )
while setting the correlation coefficient between these inputs
all to the same value of ρ̄. Output correlation under different
combinations of input mean/std pairs can then be obtained for
free. An additional step is required to make this method work
for ρ̄ < 0, since the correlation matrix would not be positive
definite. This is done by duplicating the neural population
with the same input mean/std, such that the input correlations
within each population remain positive whereas the input
correlations between these two populations are negative. This
duplication trick is also used to obtain the correlation of two
neurons that receive input with the same mean/std for all

−1 < ρ̄ < 1. We simulate spiking neurons for 10 s (with the
first 100 ms discarded) over 104 independent trials in order to
obtain accurate estimates of sample correlation. GPU accel-
eration is used for efficient parallelization and for generating
correlated Gaussian inputs. Note that for very high input mean
and low input std, the output std becomes too small, resulting
in highly inaccurate sample estimates of correlation. These
cases have been excluded from the above analysis.

APPENDIX C: BENCHMARKING ACCURACY OF THE MA

One of the assumptions for deriving the MA is the dif-
fusion approximation which replaces the synaptic current
Ii(t ) in [Eq. (1)] representing input spikes with a Gaussian
white noise with the same mean and variance. The mean
and variance of the output spike train can then be derived
by solving the first passage time problem associated with
the firing threshold [16]. Theoretically, this input-output re-
lationship predicted by the diffusion approximation should
converge to the exact result of the LIF neuron model when
the neuron receives a sufficient number of spikes and when
the contributions from individual spikes are small.

We validate the mean-variance mapping of the MA with a
single LIF neuron receiving a controlled synaptic current of
the form

I (t ) = weSe(t ) − wiSi(t ),

where Se,i(t ) = ∑
k δ(t − t k

e,i ) represents the excitatory and
inhibitory input spike trains and we,i are the corresponding
synaptic weights. The mean and variance of the input current
are μ̄ = weμe − wiμi and σ̄ 2 = w2

eσ
2
e + w2

i σ
2
i , respectively.

The goal here is to determine the statistics of the input spike
trains for any given input current statistics. It is tempting to
assume Poisson spike trains and solve the linear system for
the Poisson rate (assuming we and wi are known), but this
can easily result in unrealistic firing rates. Moreover, spiking
activity of cortical neurons exhibits diverse variability beyond
Poisson statistics, with Fano factors both below and above
one. Therefore, we generate input spike trains by drawing
independently interspike intervals from a gamma distribu-
tion with mean E[Te,i] and variance Var[Te,i]. To simplify,
we assume we = wi = w and σe = σi, and fix the strength
of inhibitory current to a constant wiμi = c. The interspike
interval statistics are then calculated as E[Te] = w/(μ̄ + c),
E[Ti] = w/c, and Var[Te,i] = E[Te,i]3σ̄ 2/(2w2). In the fol-
lowing, we fix c = 1.2 and vary the synaptic weight w and the
input current statistics μ̄, σ̄ 2. We then simulate the LIF spiking
neuron model [Eq. (1)] under these settings and calculate the
trial-averaged mean firing rate μ and firing variability σ using
a finite but large time window �t [see Eqs. (3) and (4)].
According to the diffusion approximation, the output spike
statistics of the MA should approach to that of the LIF neuron
model when we,i is sufficiently small and when Se,i(t ) contains
a sufficiently large number of spikes for a given period of time.

We first show the mean firing rate μ and the firing vari-
ability σ against the input current mean μ̄ for different values
of input current variability σ̄ , by setting the synaptic weight
at w = 0.1. As shown in Fig. 5(a), predictions of the MA
(solid curves) as implemented using our numerical scheme
agree largely with the simulation results of the LIF neuron

024310-13



YANG QI PHYSICAL REVIEW E 110, 024310 (2024)

(a)

(b)

(c)

FIG. 5. Moment activation (MA) for approximating the firing statistics of spiking neuron model. (a) The mean firing rate μ and firing
variability σ as a function of the input current mean μ̄ for different input current variability σ̄ . The MA (solid line) agrees with simulation
results of the spiking neuron model (dots) driven by synthetic spike trains (w = 0.1). (b) MA (left panels) and the difference between simulation
results of the spiking neuron model and theoretical predictions for different synaptic weight strength. (c) Empirical Fano factor (solid curves)
decreases with the spike count time window and agrees with the analytical predictions of MA (horizontal bars) for time windows larger than
200 ms. Each curve corresponds to a representative neuron in the network.

model (dots) for both μ and σ . Next, we perform a parameter
sweep over different input statistics and synaptic weight val-
ues and compare the difference between the simulation results
of the spiking neuron model and the theoretical prediction
by the MA. As shown in Fig. 5(b), the MA accurately captures
the statistics of the spiking neuron model for most of the input
space, but errors may occur under certain conditions, which
are summarized as follows: First, the diffusion approximation
fails when the synaptic weight is too large (e.g., w = 10,
which is half as much as the firing threshold). Second, the
MA apparently overestimates the firing rate and variability
when the input current std is large. We find that this is due
to unrealistically high variability in the interspike interval of
the input spike train as required to produce the desired input
current variability. Third, the MA appears to underestimate the
firing variability when the input current std is close to zero,
which turns out to be inaccuracies for estimating spike count
variance from spiking neuron simulations over finite time win-
dow. Lastly, some of these errors appear to be amplified when
w is very small, due to the unrealistically high input firing

rate and variability required to produce these input current
statistics. Note that these errors do not occur if we replace
the spiking input with Gaussian noise. In conclusion, the MA
accurately captures the statistical response properties of the
spiking neuron model for the vast majority of the biologically
realistic input space. This is further validated in a recurrent
neural circuit under realistic settings, as presented in the main
text.

Another note of caution is that the Fano factor σ 2/μ as
computed by the MA corresponds to the infinite-time Fano
factor, as reflected by the limit in the spike count time win-
dow �t in Eqs. (3) and (4). In practice, the Fano factor of
event count in a renewal process depends on the time win-
dow �t such that the Fano factor is always one at �t =
0 and converges to a finite value after a sufficiently large
time window [48]. To quantify how large is sufficient, we
simulate a homogeneous recurrent network using the LIF
neuron model with random synaptic weights and investigate
the dependence of the Fano factor on the size of spike count
time window �t . Specifically, the neural network consists of
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(b) (c)

(a)

FIG. 6. Benchmarking the computational efficiency of the moment activation (MA). (a) The CPU time for calculating the MA for different
input current statistics. Highly consistent performance are obtained across different regimes of input domain. (b) The CPU time for evaluating
the moment mappings using different methods, over the input domain shown in (a); box plot indicates quartiles with whiskers indicating
1.5 interquartile range. MA: moment activation using our method; DI: direction integration; FPE: mean firing rate obtained by solving the
time-independent Fokker Planck equation using a backward integration scheme; Look-up: look-up table with interpolation. (c) Performance
comparison of different approaches for large-scale neural network simulation. SNN: direct simulation using spiking neuron models; MNN:
moment neural network; MNN (no corr): same as MNN but with correlation assumed to be zero. Solid lines indicate quadratic growth for SNN
and MNN (no corr) and cubic growth for MNN. All experiments were run on a desktop CPU with code implemented in Python.

Ne = 100 excitatory neurons and Ni = 100 inhibitory neurons
with a synaptic connection probability of p = 0.3. The synap-
tic weights are drawn randomly from normal distributions
such that we ∼ N (0.2, 0.1) and wi ∼ N (0.4, 0.2). In addition
to recurrent connections, each neuron in the network receives
external feedforward currents in the form of Gaussian white
noise with mean μ̄ext and standard deviation σ̄ext which are
drawn randomly for each neuron as μ̄ext ∼ N (1, 0.2) and
σ̄ext ∼ N (1, 0.2).

As shown in Fig. 5(c), the Fano factor (solid curve, each
for a different neuron) computed from the spiking neu-
ron simulation is equal to one for �t = 0 and gradually
decreases as �t increases. After a sufficiently large time
window, the Fano factor eventually converges to the theo-
retical limit (solid bars) predicted by the MA. We find that
reasonably accurate approximations are achieved for time
windows larger than �t = 200 ms. This result also implies
that the assumption for stationary process can be relaxed to
weakly nonstationary processes [49], that is, processes with
statistics that slowly change over a time scale much larger
than �t = 200 ms.

APPENDIX D: BENCHMARKING EFFICIENCY
OF THE MA

In the following, we provide detailed benchmark results
for the MA and compare its performance with a number
of representative methods in the literature [18,50]. We first
individually benchmark the three components of the MA,
namely, the mappings for mean firing rate μ, firing variabil-
ity σ , and linear response coefficient χ . For this purpose,
we evaluate these mappings using our numerical method
for different inputs and record the CPU time averaged over
100 independent trials. All experiments in this section are
run on a desktop CPU with code implemented in Python.
The results of the MA benchmark are shown in Fig. 6(a).
For the particular hardware used, each component of the
MA can be evaluated within tens of microseconds. Im-
portantly, performance is highly consistent across different
regimes of the input domain, indicating the reliability and
robustness of our method. The apparent color patches re-
flect the division of the input domain into different regimes
[Fig. 1(e)].
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We further benchmark the efficiency of the proposed nu-
merical method for the MA in comparison to other methods.
One of them is the brute force method that involves direct
integrations of Eqs. (12) and (13) defining the MA. Since it
involves ill-conditioned Dawson-like integrals, this method
fails for some input regimes (such as the mean-dominant
and weak-fluctuation regimes). For input regimes that are
within the bound of numerical precision, direction integration
can be quite slow due to the nested integrals and the need
for finer integration increments for dealing with steep prob-
lems. Nonetheless, this method provides a useful baseline for
comparison. For numerical implementation, we use Numpy’s
“quad” function.

Another methods is the backward-integration method for
solving the time-independent Fokker-Planck equation [18]
associated with the membrane potential distribution from
which the firing statistics can be derived. One drawback of
this approach is that only the mean firing rate μ can be
evaluated and no formula is provided for the firing variabil-
ity σ . Moreover, as the high-dimensional joint probability
density is numerically intractable, it is only suitable for mod-
eling neural activity without correlations. We implement this
method in Python; an integration step of δV = 0.04 mV is
used.

In [50] the time-dependent Fokker-Planck equation is nu-
merically solved to obtain the time-varying instantaneous
firing rate. For the purpose of calculating the stationary mean
firing rate, however, this method is rather slow. Therefore, the
results are first calculated on a finite grid and then saved to a
lookup table, which can later be interpolated to quickly eval-
uate the mean firing rate given the input statistics [50]. The
main drawback of this method is that a lookup table cannot
be used to extrapolate values outside the predetermined input
range and a new table must be generated every time neuronal
parameters such as the leak conductance and firing threshold
are changed. Although the use of a look-up table is similar in
spirit to what MA uses in the fluctuation-dominant regime, the
MA stores the coefficients of Chebyshev polynomial rather
than the function values on a finite grid and thus does not
rely on interpolations. In fact, our method works for arbitrarily
large inputs μ̄ and σ̄ up to the limit of machine precision. For
numerical implementation, we use Scipy’s linear interpolation
over a regular grid.

Figure 6(b) summarizes the CPU time for evaluating the
moment mappings using different methods, over the entire
grid of the input domain shown in Fig. 6(a). There are a
number of observations worth mentioning. First, the direct
integration method (“DI μ,” “DI σ ,” and “DI χ”) not only
has the highest computational cost, but is also highly variable
across different inputs. In contrast, the method developed in
this study (“MA μ,” “MA σ ,” and “MA χ”) is both efficient
and highly reliable. For our testing, speed gains of 2.7, 6.6 ×
102, and 25 are obtained for each component of the MA rela-
tive to direct integration. Second, calculating the mean firing
rate mapping by solving the time-independent Fokker-Planck
equation using the backward integration method (“FPE”) is
slower on average than direct integration (“DI μ”), with a
relative speed gain of 0.082, but is more consistent. Moreover,

numerically solving the FPE only yields the mean firing rate
but not the firing variability, leaving the MA the only practical
method for calculating the complete moment mapping.

In addition to benchmarking the performance of single
calls of the MA, we also benchmark its performance for
modeling large-scale neural circuits and compare it to di-
rect simulation of the spiking neural network (SNN) model
[Eqs. (1) and (2)]. The main advantage of using the MNN
over the SNN is as follows. Since the MNN directly deals
with the statistical moments of spiking activity, it does not
need to track the fine temporal dynamics of the membrane
potential or spike timing as the SNN does. As a result, the
moments of steady state activity can be obtained by evolving
Eqs. (7)–(9) for a short period of time. In contrast, the SNN
needs to be simulated for a much longer period of time (or
alternatively over many trials) to obtain a sufficient number of
spike counts over small time windows. The situation for SNNs
is particularly worse for estimating second-order statistics,
such as the Fano factor and correlation coefficient, which
could be erroneous unless a large number of sample spikes
are collected [48]. The main trade-off for this reduction in
temporal complexity in the MNN is the increase in spatial
complexity for storing and propagating the covariance matrix.

To benchmark the performance, we consider recurrent
networks that receive noisy inputs with uniform covariance,
using the same model parameters as in the previous section.
For the SNN, the model is simulated for a total duration of
T = 100 s with a time step of δt = 0.1 ms (corresponding
to 106 integration steps); spike count is then calculated over
�T = 200 ms time windows, resulting in 500 samples of
spike count. For the MNN, the stationary statistics are ob-
tained by evolving Eqs. (7)–(9) for a total duration of T =
20 a.u. with a time step of δt = 0.1 a.u. (corresponding to
200 integration steps). The CPU time as a function of pop-
ulation size is shown in Fig. 6(c). We find that for smaller
population sizes (N < 1000), the MNN equipped with our
numerical method for the MA is orders of magnitude faster
than direct simulations of the SNN. Although the exact time
taken depends on the total simulation period and the size of
the time step, significant speed improvement can generally be
expected. We find that as the population size N grows, the
computation time starts to show polynomial growth, which is
found to be quadratic for the SNN and cubic for the MNN. The
quadratic and cubic complexity is due to matrix multiplication
that involves synaptic weights in Eqs. (2) and (6), respectively.
As a result, for very large population sizes N > 104, the
MNN gradually loses its advantage over the SNN. Nonethe-
less, for very large sparsely connected neural populations,
the correlations in neural activity are generally weak (as is
the case in the brain [51]), in which case we can set the
correlation coefficients in the MNN to be zero, if one is mainly
interested in the variance. Under this treatment, the covari-
ance mapping in Eq. (6) is simplified into a mapping for the
variance σ̄ 2

i = ∑
j w

2
i jσ

2
j + σ̄ 2

i,ext, which only has a quadratic
complexity [Fig. 6(c)]. In this scenario, the MNN equipped
with our efficient numerical method for the MA retains its
speed advantage and can be used to model the dynamics of
irregular spiking activity in very large neural populations.
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(a) (b)Uncalibrated MNN SNN (c)

FIG. 7. Time constant calibration for the moment neural network. Empirical frequency-delay curves for the uncalibrated moment neural
network with time constant τ = 1 a.u. and the spiking neural network are shown in (a) and (b), respectively. The calibration factor for the time
constant are determined from the fitted slopes. Dots: empirical oscillation frequency; solid line: linear fit. In the example shown, I-E weight
ratio is 6.0 and background input rate is 40 sp/ms. (c) Frequency-delay curves in the irregular oscillatory activity (IE ratio g = 6 and input
rate r = 40 sp/ms) for the calibrated moment neural network (solid line) and spiking neural network (dots). In both models, the oscillation
frequency is found to be inversely proportional to delay, and a critical delay is found around D = 0.5 ms.

APPENDIX E: TIME CONSTANT CALIBRATION

In this section we explain how the time constant in the
MNN can be calibrated to produce the oscillation frequency
observed in spiking neural networks. A naïve approach would
be treating the time constant τ and the delay D in the MNN
as independent free parameters and then fine-tuning them
to generate an oscillation frequency that matches the SNN
model. However, this approach cannot uniquely determine
a time constant that works for all delay values. Instead, we
propose an empirical calibration procedure for the time con-
stant based on a simple scaling argument, which works for
all delay values. Our method is based on the observation that
the oscillation frequency in MNN is inversely proportional to
both the time constant and the delay, such that a coordinate
transformation through a linear scaling in time by a factor β

would result in a change in oscillation frequency by 1/β2.
We first start with the uncalibrated MNN model whose

time constant is set, without loss of generality, to τ = 1 a.u.
We then simulate the model for different D with other param-
eters such as the I-E ratio and the background firing rate fixed,
and calculate the empirical frequency-delay curve

f (D) = A/D,

whose coefficient A can be fitted. Now, consider a coordinate
transformation to time t ′ = βt . Under this scaling, we must
also have D′ = βD and f ′ = f /β2. Applying this coordinate
transformation leads to

f ′ = β−2 f (D′/β ) = (A/β )/D′.

We can also simulate SNN with varying delay and establish
the empirical frequency-delay curve for the SNN,

f ′(D′) = B/D′,

whose coefficient B can also be fitted. Finally, matching the
transformed frequency-delay curve of the MNN with the
ground truth of the SNN, we conclude that β = A/B. The
calibrated time constant for the MNN can then be determined
as τ ′ = βτ .

To illustrate, we fix the I-E ratio to 6.0 and the background
input rate to 40 sp/ms and simulate the MNN model for τ = 1
a.u. and variable delay D, with a duration of T = 100 a.u.
and a time increment of δt = 0.02 a.u, using the first-order
Euler scheme. The oscillation frequencies are then calculated
as the peak frequency of the power spectral density of the
population-averaged mean firing rate. The same experiments
are repeated in the SNN model. The empirical frequency-
delay curves for the uncalibrated MNN and the SNN are
shown in Fig. 7. In both models, the frequency and inverse
delay can well be fitted by a straight line across the origin.
The coefficients for these curves are found to be A = 0.3197
and B = 0.2738 and the calibration factor is found to be
β = 1.168 ms/a.u. The time constant in the MNN is then
determined to be τ ′ = βτ = 1.168 ms. As can be seen, the
effective time constant for the MNN is much shorter than
the membrane time constant τm = 20 ms of the spiking neu-
ron model. Similarly, the same calibration factor also applies
to the delay and time variables in the MNN according to
D′ = βD and t ′ = βt .
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