
PHYSICAL REVIEW E 110, 024309 (2024)
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We extend a recent model of temporal random hyperbolic graphs by allowing connections and disconnections
to persist across network snapshots with different probabilities ω1 and ω2. This extension, while conceptually
simple, poses analytical challenges involving the Appell F1 series. Despite these challenges, we are able to
analyze key properties of the model, which include the distributions of contact and intercontact durations, as
well as the expected time-aggregated degree. The incorporation of ω1 and ω2 enables more flexible tuning of the
average contact and intercontact durations, and of the average time-aggregated degree, providing a finer control
for exploring the effect of temporal network dynamics on dynamical processes. Overall, our results provide new
insights into the analysis of temporal networks and contribute to a more general representation of real-world
scenarios.
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I. INTRODUCTION

Originally motivated by the parsimonious modeling of
human contact networks [1–3], a simple model of temporal
random hyperbolic graphs has been recently introduced and
analyzed, called dynamic-S1 [4]. The model has demonstrated
the ability to qualitatively and sometimes quantitatively repro-
duce various dynamical properties observed in real temporal
networks. These properties include broad distributions of con-
tact and intercontact durations, broad weight and strength
distributions, narrow distributions of shortest time-respecting
paths, and the formation of recurrent components [4]. In the
model, each node is endowed with an expected degree or pop-
ularity variable κ and a similarity coordinate θ . Each network
snapshot is then independently generated according to the S1

model, or equivalently, the hyperbolic H2 model [5], where
nodes connect with probability p(χ ) = 1/(1 + χ1/T ). Here,
χ ∝ �θ/(κκ ′) represents the effective distance between the
nodes, �θ is the nodes’ angular similarity distance, κ and
κ ′ are the nodes’ expected degrees, and parameter T ∈ (0, 1)
is called network temperature. We note that the dynamic-S1

yields realistic dynamical properties only for T ∈ (0, 1), but
not for T > 1 [6].

While the snapshots are independently generated in the
dynamic-S1, they are not independent as there are correla-
tions among them induced by the nodes’ effective distances.
For instance, nodes at smaller effective distances have higher
chances of being connected in consecutive snapshots. Given
the ability of the model to adequately reproduce various
dynamical properties of real systems, it has been demon-
strated that spreading processes perform remarkably similar
in some real networks and their modeled counterparts [4].
Furthermore, the model has already demonstrated its util-
ity in real-world epidemiological studies [7], and has been

*Contact author: f.papadopoulos@cut.ac.cy

employed to justify the meaningful mapping of human prox-
imity networks into hyperbolic spaces [8].

To better capture the average contact and intercontact
durations observed in some real systems, the dynamic-S1

has been recently extended to account for link persis-
tence, where connections and disconnections can persist,
i.e., propagate, from one snapshot to the next, irrespective
of their effective distance [9–12]. This extension, called ω-
dynamic-S1 [13], introduces the probability parameter ω ∈
[0, 1) dictating the persistence of both connections and
disconnections.

However, the assumption that links and nonlinks persist
with the same probability may not generally hold in reality.
For instance, consider collaboration networks. Here, if two
nodes (e.g., authors) collaborate at least once, then a link
between them will always exist in the network. However,
this does not imply that two existing nodes that have never
collaborated will never do so in the future. As another ex-
ample, consider connected Internet service providers (ISPs)
separated by large geographic distances. Such connections
are expected to persist because they are generally expen-
sive to establish. On the other hand, disconnected ISPs at
small geographic distances may not remain disconnected with
equally high probability, as the costs and logistical barriers
of such connections can be significantly lower. In general,
different factors can affect the persistence of connections and
disconnections depending on the context. Moreover, by using
a common persistence probability for links and nonlinks, the
ω-dynamic-S1 does not allow individual tuning of the average
contact and intercontact durations, as both are dictated by the
same parameter ω.

To address these limitations, here we generalize the model
by allowing connections and disconnections to persist with
different probabilities, denoted ω1 and ω2. We refer to
the generalized model as (ω1, ω2)-dynamic-S1. Even though
this generalization is conceptually simple, it poses signifi-
cant analytical challenges involving the Appell F1 series—a

2470-0045/2024/110(2)/024309(14) 024309-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1095-0590
https://orcid.org/0000-0002-4072-5781
https://ror.org/05qt8tf94
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024309&domain=pdf&date_stamp=2024-08-19
https://doi.org/10.1103/PhysRevE.110.024309


ZAMBIRINIS AND PAPADOPOULOS PHYSICAL REVIEW E 110, 024309 (2024)

FIG. 1. Exploring epidemic spreading dynamics on temporal networks generated by the (ω1, ω2)-dynamic-S1 model. Plots (a)–(c) depict
the number of infected nodes over time averaged over 100 simulations of the susceptible-infected-susceptible (SIS) model [15]. There are
N = 500 nodes with a low expected degree κ = k̄ = 0.3, yielding network snapshots in the disconnected regime, as in human proximity
networks [3,4]. Moving from left to right, the network temperature is 0.2, 0.5, and 0.7. Results are presented for different levels of the link
persistence probability ω1, while in all cases ω2 = 0. The total number of time slots is τ = 1000. The SIS model simulations start with 5% of
the nodes randomly infected, and the infection and recovery probabilities per slot are 0.5 and 0.005, respectively. Plots (d)–(f) show similar
dynamics for the susceptible-infected-recovered (SIR) model [15], with all parameters the same as in panels (a)–(c). See Appendix A for
further details and results illustrating the effect of nonlink persistence.

two-variable generalization of the Gauss hypergeometric
function [14]. In our case, these variables involve the per-
sistence probabilities ω1 and ω2. In contrast, the analysis
simplifies if ω1 = ω2, requiring only manipulations with the
Gauss hypergeometric function [13].

In addition to advancing modeling, incorporating distinct
persistence probabilities for connections and disconnections,
and understanding their effects on temporal network prop-
erties, is important for better understanding the behavior of
dynamical processes running on temporal networks. This
point is illustrated in Fig. 1 in the context of epidemic spread-
ing. The figure shows that stronger link persistence can slow
down spreading, depending on the setting. This occurs be-
cause pairs of nodes remain connected for longer durations,
effectively reducing their opportunities to connect with and
infect other nodes. Nonlink persistence has a lesser effect
unless it is very strong, see Appendix A. At the same time,
Fig. 1 shows that spreading is also affected by the network
temperature T , with lower values of T suppressing spreading.
This is because lower values of T favor the localization of con-
nections in the snapshots, as explained in Sec. II. We note that
temporality has major implications not only within the context
of epidemic spreading but also in many other contexts, such as
wireless communications [16], synchronization and diffusion
[17], the evolution of cooperation [18], the emergence of
chaos [19], and the controllability of temporal networks [20].
The (ω1, ω2)-dynamic-S1 is versatile and can be utilized in
any context.

Despite the increased complexity introduced by (ω1, ω2)-
dynamic-S1, we can still analyze key properties of the model,
including its connection probability function, the distributions
of contact and intercontact durations, as well as the expected
time-aggregated degree, elucidating their dependence on ω1,
ω2, and the network temperature T . We focus on the (in-
ter)contact distributions as they constitute perhaps the most
fundamental characteristics affecting the performance of pro-
cesses running on temporal networks [16,21–25]. We show
that the persistence probabilities ω1 and ω2 affect only the
averages of these distributions but not their tails. Their tails
follow power laws with exponents that depend only on the
network temperature T , and these exponents are the same
as in the case of ω1 = ω2 [13]. Our results are proven for
sufficiently large networks.

The expected time-aggregated degree represents the av-
erage number of distinct nodes that a node connects to
during an observation period and is another important char-
acteristic of a temporal network [2,3]. We show that as
ω1 or ω2 increases, or as T decreases, the expected time-
aggregated degree decreases, which can slow down dynamical
processes such as spreading (Fig. 1). Having three inde-
pendent parameters—ω1, ω2, and T —we can more flexibly
adjust the average contact and intercontact durations, as
well as the expected time-aggregated degree in the model.
This finer control allows for a more nuanced exploration of
temporal network dynamics and their impact on dynamical
processes.
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The rest of the paper is structured as follows: In the next
section, we provide a brief overview of the S1 model. In
Sec. III, we present the (ω1, ω2)-dynamic-S1 model and ana-
lyze its connection probability function. In Secs. IV and V, we
analyze the contact and intercontact distributions in the model,
show their duality, and prove their power-law tails. In Sec. VI,
we analyze the expected time-aggregated degree. In Sec. VII,
we discuss the model in the context of other related work.
Finally, in Sec. VIII, we outline open problems and interesting
directions for future work and conclude the paper.

II. PRELIMINARIES

In the S1 model [5], each node is associated with a pair
of hidden (or latent) variables (κ, θ ). The hidden variable
κ represents the popularity of the node, and is proportional
to the node’s expected degree in the network. The hidden
variable θ represents the angular similarity coordinate of the
node on a circle of radius R = N/2π , where N is the total
number of nodes [26].

To generate a network that has size N , average node de-
gree k̄, and temperature T ∈ (0, 1), we perform the following
steps:

(i) For each node i ∈ {1, 2, . . . , N}, we sample its de-
gree variable κi from a probability density function (PDF)
ρ(κ ), and its angular coordinate θi uniformly at random from
[0, 2π ].

(ii) We connect every pair of nodes i and j according to
the Fermi-Dirac connection probability

pi j = 1

1 + χ
1/T
i j

, (1)

where χi j is the effective distance between nodes i and j,

χi j = R�θi j

μκiκ j
. (2)

In the above relation, �θi j = π − |π − |θi − θ j || represents
the similarity distance between nodes i and j. �θ follows a
uniform distribution on [0, π ], i.e., its PDF is f (�θ ) = 1/π .

We are interested in sparse networks, where N � k̄. In
such cases, the resulting degree distribution in the network
has a similar form as ρ(κ ) [27]. We also note that smaller
values of the temperature T favor connections at smaller effec-
tive distances, i.e., the localization of connections, increasing
clustering in the network. Finally, parameter μ in Eq. (2) is
derived from the requirement that the expected degree in the
network is k̄, yielding

μ = k̄ sin (T π )

2κ̄2T π
, (3)

where κ̄ = ∫
κρ(κ )dκ .

The S1 model is isomorphic to random hyperbolic graphs
(RHGs) after a transformation of the degree variables κ to
radial coordinates r on the hyperbolic disk (see Ref. [5] for
more details).

III. (ω1, ω2 )-DYNAMIC-S1

The (ω1, ω2)-dynamic-S1 model generates a series of net-
work snapshots, Gt , t = 1, . . . , τ , where τ represents the total

number of time slots. In the model, there are N nodes that are
assigned hidden variables (κ, θ ) as in the S1 model, which
remain fixed throughout the snapshots. The temperature T ∈
(0, 1) and the persistence probabilities ω1 ∈ [0, 1) and ω2 ∈
[0, 1) are also fixed. While each snapshot Gt can potentially
have a different average degree k̄t , to facilitate the analysis,
we assume here a uniform average degree, i.e., k̄t = k̄, ∀ t .
Therefore, the model parameters are N , τ , ρ(κ ), k̄, T , ω1, ω2.

Let

e(t )
i j =

{
1 if nodes i and j are connected at time t
0 otherwise.

The snapshots in the model are generated according to the
following rules:

(1) Snapshot G1 is generated according to the S1 model.
(2) At each time step t = 2, . . . , τ , snapshot Gt starts with

N disconnected nodes.
(3) Each pair of nodes i, j in snapshot Gt connects accord-

ing to the following conditional connection probabilities:

P
[
e(t )

i j = 1
∣∣e(t−1)

i j = 1
] = ω1 + (1 − ω1) p̃i j, (4)

P
[
e(t )

i j = 1
∣∣e(t−1)

i j = 0
] = (1 − ω2) p̃i j, (5)

where

p̃i j = 1

1 +
(

1−ω2
1−ω1

)
χ

1/T
i j

. (6)

(4) At time t + 1, the process is repeated to generate snap-
shot Gt+1.

Equation (4) represents the scenario in which the pair i, j
is connected in the previous time slot t − 1. In this case,
the pair remains connected in slot t either because the con-
nection persists from t − 1 (with probability ω1) or because
the connection is established according to the probability p̃i j .
Equation (5) represents the situation where the pair i, j is
disconnected in t − 1. In this case, the pair can establish
a connection in slot t if the disconnection does not persist
from t − 1 (with probability 1 − ω2) and the connection is
established according to p̃i j .

We note that ω1 has a greater influence on the stability of
connections at larger effective distances, which would oth-
erwise be of short duration. On the other hand, ω2 has a
greater influence on the stability of disconnections at smaller
effective distances that would otherwise be of short duration.
Furthermore, we note that a time slot in the model represents
a discrete time step, which can correspond to any real-time
duration depending on the scenario being modeled. For exam-
ple, it can represent seconds or minutes in the case of human
contact networks [4], or days, weeks, or other durations in the
case of other types of evolving networks [28].

As we show below, the choice of the connection probability
function in Eq. (6) ensures that the unconditional connection
probability in the model is given by Eq. (1). Consequently,
snapshots generated by the model are equivalent to RHGs,
despite the dependencies introduced among them by the per-
sistence probabilities ω1 and ω2.

024309-3



ZAMBIRINIS AND PAPADOPOULOS PHYSICAL REVIEW E 110, 024309 (2024)

Unconditional connection probability.

We can express the unconditional connection probability
for any node pair i, j at time t = 2, 3, . . . as follows:

P
[
e(t )

i j = 1
]

= P
[
e(t )

i j = 1
∣∣e(t−1)

i j = 1
] × P

[
e(t−1)

i j = 1
]

+ P
[
e(t )

i j = 1
∣∣e(t−1)

i j = 0
] × (

1 − P
[
e(t−1)

i j = 1
])

= [ω1 + (ω2 − ω1) p̃i j] × P
[
e(t−1)

i j = 1
] + (1 − ω2) p̃i j .

(7)

Solving the above recurrence relation for P [e(t )
i j = 1], with the

initial condition P [e(1)
i j = 1] = pi j , yields

P
[
e(t )

i j = 1
] = B

1 − A
− At−1

(
B

1 − A
− pi j

)
, (8)

where A = ω1 + (ω2 − ω1) p̃i j , and B = (1 − ω2) p̃i j .
We observe that

B

1 − A
= 1

1 + χ
1/T
i j

= pi j . (9)

Therefore, Eq. (8) yields

P
[
e(t )

i j = 1
] = pi j ∀ t . (10)

Thus, the unconditional connection probability is indeed as
in Eq. (1). In the next section, we analyze the distribution of
contact durations in the model.

IV. DISTRIBUTION OF CONTACT DURATIONS

Let τ be the total number of time slots during which we
observe the system. To derive the contact distribution, we need
to consider the probability of observing a sequence of exactly
t consecutive time slots where two nodes i and j with hidden
degrees κi and κ j and angular distance �θi j are connected.
Any such sequence should be enclosed within two slots where
the two nodes are not connected. That is, we ignore for now
the boundary cases where the first or last of the t slots starts
or ends at the beginning or end of the observation period τ .
Therefore, t ranges from 1 to τ − 2. We denote this probabil-
ity by rc(t ; κi, κ j,�θi j ).

We note that, given a sequence of length t , there exist
τ − t − 1 possible starting positions for this sequence. For
example, if t = 3, the nodes can be disconnected in slot s − 1,
connected in slots s, s + 1, s + 2, and disconnected in slot
s + 3, where s ranges from 2 to τ − 3. Consequently, the
probability of observing a slot where a sequence of length t
can start is

gτ (t ) = τ − t − 1

τ
. (11)

Furthermore, we observe the following:
(i) The unconditional probability that two nodes i and j

are disconnected in a slot s is 1 − pi j , where pi j is given by
Eq. (1).

(ii) Given that they are disconnected in slot s, the proba-
bility that i and j are connected in slot s + 1 is (1 − ω2) p̃i j ,
where p̃i j is given by Eq. (6).

(iii) Given that they are connected in slot s + 1, the prob-
ability that i and j remain connected in slots s + 2, . . . , s + t
is [ω1 + (1 − ω1) p̃i j]t−1.

(iv) Finally, given that they are connected in slot s + t , the
probability that i and j are disconnected in slot s + t + 1 is
(1 − ω1)(1 − p̃i j ).

The probability rc(t ; κi, κ j,�θi j ) is obtained by multiply-
ing gτ (t ) with the probabilities described in points (i) to (iv)
above:

rc(t ; κi, κ j,�θi j ) = gτ (t )(1 − ω1)(1 − ω2)(1 − pi j )

× p̃i j (1 − p̃i j )[ω1 + (1 − ω1) p̃i j]
t−1.

(12)

The contact distribution, denoted Pc(t ) and defined for
t � 1, is given by

Pc(t ) = rc(t )∑
j rc( j)

∝ rc(t ). (13)

In the last expression, rc(t ) is determined by removing the
conditions on κi, κ j , and �θi j from Eq. (12),

rc(t ) =
∫∫∫

rc(t ; κ, κ ′,�θ )ρ(κ )ρ(κ ′) f (�θ )

× dκdκ ′d�θ. (14)

We note that, in practice, given a set of nonzero contact dura-
tions, the empirical Pc(t ) is determined by the ratio nt/

∑
j n j ,

where nt represents the number of contact durations in the set
with length t .

Removing the condition on �θi j from Eq. (12) yields

rc(t ; κi, κ j ) = 1

π

∫ π

0
rc(t ; κi, κ j,�θ )d�θ

= gτ (t )
2μκiκ jT

N
(1 − ω1)1+T (1 − ω2)1−T ωt−1

1

×
∫ 1

ui j
0

u−T (1 − u)1+T

(
1 − ω1 − 1

ω1
u

)t−1

×
(

1 − ω2 − ω1

1 − ω1
u

)−1

du,

where ui j
0 = 1

1 +
(

1−ω2
1−ω1

)(
N

2μκiκ j

)1/T . (15)

To obtain the above relation, we performed the change of
integration variable u = 1/[1 + ( 1−ω2

1−ω1
)( N�θ

2πμκiκ j
)1/T ].

Now, for sufficiently large network sizes N , ui j
0 tends to

zero. This allows us to remove the condition on κi and κ j from
Eq. (15), and write, irrespective of the form of ρ(κ ),

rc(t ) ≈ gτ (t )
2μκ̄2T

N
(1 − ω1)1+T (1 − ω2)1−T ωt−1

1

×
∫ 1

0
u−T (1 − u)1+T

(
1 − ω1 − 1

ω1
u

)t−1

×
(

1 − ω2 − ω1

1 − ω1
u

)−1

du. (16)

024309-4



(ω1, ω2)-TEMPORAL RANDOM … PHYSICAL REVIEW E 110, 024309 (2024)

The integral in Eq. (16) can be evaluated numerically.
However, we observe that it is in a form suitable for represen-
tation using the Appell F1 series [29]. This representation will
be employed below to deduce the behavior of the tail of rc(t ).
In particular, Émile Picard discovered in 1881 that the Appell
F1 series, whose definition is provided in Appendix B, has the
following Euler-type integral representation (cf. Sec. 5.8.2 of
Ref. [29]):

F1[a, b1, b2, c; x, y] = 
(c)


(a)
(c − a)

∫ 1

0
ua−1(1 − u)c−a−1

× (1 − xu)−b1 (1 − yu)−b2 du. (17)

The above relation is valid for c > a > 0, and 
 is the
gamma function. Utilizing this representation with α = 1 −
T , b1 = 1 − t , b2 = 1, c = 3, x = (ω1 − 1)/ω1, and y =
(ω2 − ω1)/(1 − ω1), substituting μ with its expression in
Eq. (3), and employing the identity π

sin (T π ) = 
(1 − T )
(T ),
we can rewrite Eq. (16) as

rc(t ) ≈ gτ (t )
k̄T (1 + T )

2N
(1 − ω1)1+T (1 − ω2)1−T ωt−1

1

× F1

[
1 − T, 1 − t, 1, 3;

ω1 − 1

ω1
,
ω2 − ω1

1 − ω1

]

= gτ (t )
k̄T (1 + T )

2N
(1 − ω1)2+T (1 − ω2)−T

× F1

[
2 + T, 1 − t, 1, 3; 1 − ω1,

ω1 − ω2

1 − ω2

]
. (18)

The last equality is obtained by performing the change of
variable v = 1 − u in the integral of Eq. (17), or equivalently,
by applying the transformation given by Eq. (1) in Sec. 5.11
of Ref. [29]. For ω1 = ω2 = ω the last F1 function in Eq. (18)
degenerates to the Gauss hypergeometric function 2F1[2 +
T, 1 − t, 3; 1 − ω] (see Appendix B for its definition), and we
recover the relation for rc(t ) found in Ref. [13].

A. Boundary cases

The preceding analysis does not consider the boundary
case where the first slot in the sequence of t slots, during
which two nodes are connected, starts at the beginning of
the observation period τ . In this case, gτ (t ) = 1/τ , and the
probability of observing this event for two nodes i and j is
given by

rb
c (t ; κi, κ j,�θi j ) = 1

τ
(1 − ω1)pi j (1 − p̃i j )

× [ω1 + (1 − ω1) p̃i j]
t−1, (19)

for t = 1, . . . , τ − 1. Similarly, the analysis did not con-
sider the case where the last slot in the sequence of
t slots, during which two nodes are connected, finishes
at the end of the observation period. It is easy to see
that the probability of observing this event is also given
by Eq. (19).

Following the same procedure to remove the conditions on
κi, κ j , and �θi j , and employing the same transformations as
before, we can write that the total probability for these two

cases is given by

rb
c (t ) ≈ 2

τ

2μκ̄2T

N
(1 − ω1)T (1 − ω2)1−T ωt−1

1

×
∫ 1

0
u−T (1 − u)T

(
1 − ω1 − 1

ω1
u

)t−1

×
(

1 − ω2 − ω1

1 − ω1
u

)−1

du

= 2

τ

k̄T

N
(1 − ω1)1+T (1 − ω2)−T

× F1

[
1 + T, 1 − t, 1, 2; 1 − ω1,

ω1 − ω2

1 − ω2

]
. (20)

We note that, for any finite t , rb
c (t ) tends to zero as τ →

∞. However, as t approaches τ , the contribution of these
boundary cases becomes significant. Accounting for these
cases, the combined probability of observing a sequence of
t consecutive slots in which two nodes are connected is
given by

r̃c(t ) = rc(t ) + rb
c (t ), (21)

for t = 1, . . . , τ − 1.
The final boundary case occurs when two nodes i and j

remain connected for the entire observation period τ . The
probability of observing this case is

rb
c (τ ; κi, κ j,�θi j ) = 1

τ
pi j[ω1 + (1 − ω1) p̃i j]

τ−1. (22)

Removing the conditions on κi, κ j , and �θi j and employing
the same transformations as before gives

rb
c (τ ) ≈ 1

τ

2μκ̄2T

N

(
1 − ω2

1 − ω1

)1−T

ωτ−1
1

×
∫ 1

0
u−T (1 − u)T −1

(
1 − ω1 − 1

ω1
u

)τ−1

×
(

1 − ω2 − ω1

1 − ω1
u

)−1

du

= 1

τ

k̄

N

(
1 − ω1

1 − ω2

)T

× F1

[
T, 1 − τ, 1, 1; 1 − ω1,

ω1 − ω2

1 − ω2

]
. (23)

We note that previous studies related to the dynamic-S1 model
[4,13] have not considered the above boundary cases. In
Fig. 2, we validate the above analysis with simulations, while
also taking into account the boundary cases. In all cases, we
calculate rc(t ) and rb

c (t ) using their integral representations
because we found it more efficient than utilizing the corre-
sponding Appell F1 series.

Average contact duration. It is evident from our analysis
and Fig. 2 that all three parameters–ω1, ω2, and T affect
the contact distribution. In Fig. 3, we investigate how these
parameters affect the average contact duration.

We see from Fig. 3 that the average contact duration in-
creases as either ω1 or ω2 increases, with the rate of increase
becoming more pronounced as these parameters approach 1.
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FIG. 2. Distribution of contact durations in simulated networks with the (ω1, ω2)-dynamic-S1 model vs theoretical predictions. The latter
are given by Pc(t ) = r̃c(t )/

∑τ

j=1 r̃c( j), where r̃c(t ) is given by Eq. (21) for t = 1, . . . , τ − 1, and by Eq. (23) for t = τ (yielding the rightmost
point on the plots). The number of nodes is N = 500, the average node degree is k̄ = 5, all nodes have the same expected degree κ = k̄, and
the total number of time slots is τ = 1000. The network temperature in panel (a) is T = 0.2, and in panel (b) T = 0.8. Results are presented
for two combinations of the persistence probabilities ω1 and ω2. The simulations are averaged over 10 runs, and empirical distributions are
logarithmically binned, excluding the rightmost point. Theoretical predictions are represented by dashed lines. Solid black lines show the
power-law scaling Pc(t ) ∝ 1/t2+T , deduced by Eq. (31). All axes use a logarithmic scale.

Moreover, we observe that the average contact duration is
more sensitive to and increases more rapidly with ω1 than
with ω2. This is expected, as ω1 directly impacts the proba-
bility that two nodes remain connected, given by Eq. (4). In
particular, as ω1 → 1, the probability in Eq. (4) approaches
one, irrespective of the value of ω2. On the other hand, ω2

indirectly affects this probability via p̃i j [Eq. (6)]. Indeed, as
ω2 → 1, p̃i j → 1, and Eq. (4) tends to one, irrespective of
the value of ω1. In other words, as ω1 → 1 or ω2 → 1, the
contact distribution degenerates to Pc(t ) → 1 for t = τ , and
Pc(t ) → 0, for t < τ , while the average contact duration tends
to the value of the observation interval τ . This convergence
occurs faster with ω1 → 1 than with ω2 → 1.

Lastly, Fig. 3 shows that the average contact duration also
increases as T decreases. A lower T favors connections at
smaller effective distances, thereby increasing the probability
that connected pairs remain connected. For T → 0, we obtain
the same result as in the case of ω1 → 1 or ω2 → 1.

B. Tail of the contact distribution

We conclude our analysis in this section by deducing the
behavior of Pc(t ) at large t . To this end, we utilize an asymp-
totic result given by Eq. (20) in Sec. 3.5.1 of Ref. [30]. This
result states that for x < 0 and |y| < 1, we can express the
Appell function F1[a, b + λ, b′, c; x, y] as a sum of Gauss
hypergeometric functions,

F1[a, b + λ, b′, c; x, y]

=
m−1∑
n=0

(−b′

n

)
(a)n(−y)n

(c)n
2F1[b + λ, a + n, c + n; x]

+ O(λ−m−a), (24)

where (q)n denotes the Pochhammer symbol, defined as
(q)n = 1 for n = 0 and (q)n = q(q + 1) · · · (q + n − 1) for
n > 0. Furthermore, we utilize the transformation given by

FIG. 3. Average contact duration vs ω1, ω2, and T . Plot (a) shows the average contact duration in time slots as a function of the persistence
probability of connections ω1. The persistence probability of disconnections, ω2, is set to zero. Results are shown for different values of the
network temperature T . In each case the three rightmost points correspond respectively to ω1 = 0.99, 0.999, and 0.9999. All other parameters
are the same as in Fig. 2. The dashed lines depict theoretical predictions given by t̄c = ∑τ

t=1 tPc(t ), where Pc(t ) is computed as in Fig. 2. Plot
(b) is similar to plot (a), except that ω1 is set to zero, and we vary ω2. The y axes use a logarithmic scale. Deviations of analytical predictions
from simulation results are due to finite network size effects and are more pronounced for values of T or ω2 closer to one.

024309-6



(ω1, ω2)-TEMPORAL RANDOM … PHYSICAL REVIEW E 110, 024309 (2024)

Eq. (2) in section 5.11 of Ref. [29], which states that

F1[a, b, b′, c; x, y]

= (1 − x)−aF1

[
a, c − b − b′, b′, c;

x

x − 1
,

y − x

1 − x

]
. (25)

Using the above transformation, we can rewrite the F1 func-
tion in Eq. (18), which we refer to as h1, as

h1 := F1

[
2 + T, 1 − t, 1, 3; 1 − ω1,

ω1 − ω2

1 − ω2

]

= ω
−(2+T )
1 F1

[
2 + T, 1 + t, 1, 3; 1 − 1

ω1
, 1

− 1 − ω1

ω1(1 − ω2)

]
. (26)

Now, using Eq. (24) with a = 2 + T , b = 1, λ = t , b′ = 1,
c = 3, x = 1 − 1

ω1
, and y = 1 − (1 − ω1)/[ω1(1 − ω2)], we

can write

h1 = ω
−(2+T )
1

m−1∑
n=0

(2 + T )n

(3)n

(
1 − 1 − ω1

ω1(1 − ω2)

)n

× 2F1

[
1 + t, 2 + T + n, 3 + n; 1 − 1

ω1

]

+ O

(
1

t2+T +m

)
. (27)

To write the above relation, we also used
(−1

n

) = (−1)n for
n ∈ N.

As shown in Appendix C, the 2F1 function inside the sum
in Eq. (27) can be approximated for large t as

2F1

[
1 + t, 2 + T + n, 3 + n; 1 − 1

ω1

]

≈ 
(3 + n)(1/ω1 − 1)−(2+T +n)


(1 − T )

1

t2+T +n
. (28)

Consequently, at large t , the term corresponding to n = 0 in
Eq. (27) dominates, and we can approximate h1 as

h1 ≈ 2(1 − ω1)−(2+T )


(1 − T )

1

t2+T
. (29)

This approximation is validated in Fig. 4.
We note that Eq. (27) holds for x = 1 − 1/ω1 < 0 and

|y| = |1 − (1 − ω1)/[ω1(1 − ω2)]| < 1. The first inequality
always holds (as ω1 < 1), while the second imposes the
constraint ω2 < (3ω1 − 1)/2ω1. Additionally, the approx-
imation in Eq. (28) requires |1 − 1/ω1| < 1, which im-
poses the constraint ω1 > 1/2. Combined, these constraints
define the region R1 of ω1 and ω2 depicted in Fig. 5, for which
the preceding analysis leading to Eq. (29) holds. However, in
Appendix C, we prove that Eq. (29), which is established here
for the region R1, holds in fact true for any combination of
ω1, ω2 ∈ [0, 1).

The above analysis (and the corresponding analysis in Ap-
pendix C) can be repeated for the function F1 in Eq. (20),
which corresponds to the boundary cases. This yields, for

FIG. 4. Function h1 in Eq. (26) (dotted lines) vs the approxima-
tion for large t in Eq. (29) (solid line). Results are shown for different
values of ω2, while ω1 = 0.8 and T = 0.5. All axes use a logarithmic
scale.

large t ,

F1

[
1 + T, 1 − t, 1, 2; 1 − ω1,

ω1 − ω2

1 − ω2

]

≈ (1 − ω1)−(1+T )


(1 − T )

1

t1+T
. (30)

Utilizing the approximations given by Eqs. (29) and (30),
we can approximate r̃c(t ) in Eq. (21) for large t as

r̃c(t ) ≈ k̄T

N

(1 − ω2)−T


(1 − T )

[
gτ (t )

(1 + T )

t2+T
+ 2

τ

1

t1+T

]

∝ 1 + T + (1 − T )t/τ

t2+T
. (31)

The numerator in Eq. (31) is a sum of a constant (1 + T )
and the linearly increasing term (1 − T )t/τ , which is upper-
bounded by 1 − T . For t 
 τ , such that t/τ ≈ 0, this term

FIG. 5. Region R1 := {(ω1, ω2) ∈ R2 | 1/2 < ω1 < 1, 0 �
ω2 < (3ω1 − 1)/2ω1}, shown as the blue-shaded area in the figure.
In this region, Eqs. (27) and (28) both hold, leading to Eq. (29).
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FIG. 6. Distribution of intercontact durations in simulated networks with the (ω1, ω2)-dynamic-S1 model vs theoretical predictions. The
latter are given by Pic(t ) = ric(t )/

∑τ−2
j=1 ric( j), where ric(t ) is given by Eq. (35). Results are presented for two combinations of the persistence

probabilities ω1 and ω2. All other simulation parameters are the same as in Fig. 2.

is insignificant. Therefore, r̃c(t ) and consequently the contact
distribution Pc(t ) decay according to the power law 1/t2+T .
However, as t approaches the value of the observation interval
τ , the decay deviates from the pure power law 1/t2+T , as the
numerator in Eq. (31) can no longer be approximated by a
constant. This deviation is solely a consequence of the finite-
ness of the observation interval. The scaling Pc(t ) ∝ 1/t2+T

is illustrated in Fig. 2. Next, we analyze the intercontact
distribution.

V. DISTRIBUTION OF INTERCONTACT DURATIONS

The intercontact distribution is dual to the contact dis-
tribution, and to derive it, we follow a similar procedure.
Specifically, here we need to consider the probability of ob-
serving a sequence of exactly t consecutive time slots where
two nodes i and j with hidden degrees κi and κ j and angular
distance �θi j are disconnected. Any such sequence should be
enclosed within two slots where the two nodes are connected.
Here we do not consider boundary cases, where the first or
last of the t slots starts or ends at the beginning or end of
the observation period τ , since by definition an intercontact
duration should be enclosed within two contacts. Therefore, t
ranges from 1 to τ − 2. We denote the above probability by
ric(t ; κi, κ j,�θi j ).

We observe the following:
(i) The unconditional probability that two nodes i and j

are connected in a slot s is pi j , where pi j is given by Eq. (1).
(ii) Given that they are connected in slot s, the probability

that i and j are disconnected in slot s + 1 is (1 − ω1)(1 − p̃i j ),
where p̃i j is given by Eq. (6).

(iii) Given that they are disconnected in slot s + 1, the
probability that i and j remain disconnected in slots s +
2, . . . , s + t is [1 − (1 − ω2) p̃i j]t−1.

(iv) Finally, given that they are disconnected in slot s + t ,
the probability that i and j are connected in slot s + t + 1 is
(1 − ω2) p̃i j .

The probability ric(t ; κi, κ j,�θi j ) is obtained by multiply-
ing gτ (t ) in Eq. (11) with the probabilities described in points
(i) to (iv) above,

ric(t ; κi, κ j,�θi j ) = gτ (t )(1 − ω1)(1 − ω2)pi j p̃i j (1 − p̃i j )

× [1 − (1 − ω2) p̃i j]
t−1. (32)

The intercontact distribution, denoted Pic(t ) and defined for
t � 1, is given by

Pic(t ) = ric(t )∑
j ric( j)

∝ ric(t ), (33)

where ric(t ) is determined by removing the conditions on κi,
κ j , and �θi j from Eq. (32),

ric(t ) =
∫∫∫

ric(t ; κ, κ ′,�θ )ρ(κ )ρ(κ ′)

× f (�θ )dκdκ ′d�θ. (34)

Following the same procedure as before to remove the
conditions on κi, κ j , and �θi j , and employing the same trans-
formations, we can write that for sufficiently large networks

ric(t ) ≈ gτ (t )
2μκ̄2T

N
(1 − ω1)T (1 − ω2)2−T

∫ 1

0
u1−T (1 − u)T [1 − (1 − ω2)u]t−1

(
1 − ω2 − ω1

1 − ω1
u

)−1

du

= gτ (t )
k̄T (1 − T )

2N
(1 − ω1)T (1 − ω2)2−T F1

[
2 − T, 1 − t, 1, 3; 1 − ω2,

ω2 − ω1

1 − ω1

]
. (35)

We can observe the perfect duality between ric(t ) and rc(t ),
in the sense that Eq. (35) becomes Eq. (18), if we exchange

ω2 with ω1, T with −T , and multiply the resulting relation by
−1. The above analysis is validated in Fig. 6.
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FIG. 7. Same as in Fig. 3, but for the average intercontact duration. The theoretical predictions (dashed lines) are given by t̄ic =∑τ−2
t=1 tPic(t ), where Pic(t ) is computed as in Fig. 6.

Average intercontact duration.

In Fig. 7, we investigate how parameters ω1, ω2, and T
affect the average intercontact duration. As with the case of
the average contact duration, we see that the average inter-
contact duration also increases with ω1 or ω2, with the rate
of increase becoming more pronounced as these parameters
approach one. Furthermore, the increase occurs faster with ω2

than with ω1, especially as these parameters approach one.
This is expected, as ω2 directly impacts the probability that
two nodes remain disconnected via Eq. (5). It can be shown
that, as ω2 approaches one, Pic(t ) becomes proportional to
gτ (t ), and the average intercontact duration tends to τ/3.
On the other hand, as ω1 approaches one, Pic(t ) becomes
proportional to gτ (t )2F1[1 − T, 1 − t, 2; 1 − ω2], while the
average intercontact duration is upper-bounded by τ/3. The
average intercontact duration also increases with T , while
remaining upper-bounded by τ/3. This is because higher
values of T increase randomness in the connections, thereby
reducing the probability of pairs reconnecting. We note that
intercontacts cannot be defined for ω1 or ω2 exactly equal
to one, or for T = 0, as in these cases there are no link
dynamics.

Tail of the intercontact distribution.

Finally, given the duality between Eqs. (35) and (18),
we can follow exactly the same procedure as in the
case of Eq. (18), to show that for large t , ric(t ) can be
approximated as

ric(t ) ≈ gτ (t )
k̄T (1 − T )(1 − ω1)T

N
(1 + T )

1

t2−T
∝ gτ (t )

t2−T
. (36)

The above result holds true for any combination of ω1, ω2 ∈
[0, 1). For t 
 τ , gτ (t ) ≈ 1, and thus ric(t ), and consequently,
the intercontact distribution Pic(t ), decay according to the
power law 1/t2−T . The scaling Pic(t ) ∝ 1/t2−T is illustrated
in Fig. 6. In the next section, we turn our attention to the
expected time-aggregated degree.

VI. TIME-AGGREGATED DEGREE

To analyze the expected time-aggregated degree, we need
to consider the probability that two nodes i and j with

hidden degrees κi and κ j and angular distance �θi j do not
connect during the observation period τ . This probability is
given by

r0(κi, κ j,�θi j ) = (1 − pi j )[1 − (1 − ω2) p̃i j]
τ−1, (37)

where pi j and p̃i j are given by Eqs. (1) and (6).
The expected time-aggregated degree, denoted k̄aggr, is

given by

k̄aggr = (N − 1)(1 − r0), (38)

where r0 is determined by removing the conditions on κi, κ j ,
and �θi j from Eq. (37),

r0 =
∫∫∫

r0(κ, κ ′,�θ )ρ(κ )ρ(κ ′) f (�θ )dκdκ ′d�θ. (39)

Following the same procedure as before to remove the
condition on �θi j , we can write

r0(κi, κ j ) = 2μκiκ jT

N

(
1 − ω1

1 − ω2

)T ∫ 1

ui j
0

u−(1+T )(1 − u)T

× [1 − (1 − ω2)u]τ−1

(
1 − ω2 − ω1

1 − ω1
u

)−1

du,

(40)

where ui j
0 is as in Eq. (15).

The integral in Eq. (40) diverges for N → ∞, i.e., for
ui j

0 → 0. Therefore, we cannot consider its “large-N approxi-
mation” by setting ui j

0 = 0 as its lower limit. In particular, as
shown for the case of ω1 = ω2, k̄aggr is sensitive to finite-size
effects, especially at larger network temperatures [4,13], and
to accurately compute it in general one needs to numerically
evaluate the integrals in Eqs. (39) and (40).

The above analysis is validated in Fig. 8. We see from the
figure that k̄aggr decreases as the link persistence probability
ω1 increases, or as the network temperature T decreases. In
particular, as ω1 approaches one or T approaches zero, k̄aggr

converges to the average snapshot degree k̄. Furthermore,
we see that k̄aggr remains virtually unaffected by the nonlink
persistence probability ω2, unless ω2 is very close to one. In
particular, at the limit ω2 → 1, k̄aggr tends again to k̄. This ex-
plains why the performance of epidemic spreading processes
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FIG. 8. Average time-aggregated degree vs ω1, ω2, and T . Plot (a) shows the average time-aggregated degree as a function of the persistence
probability of connections ω1. The persistence probability of disconnections, ω2, is set to zero. Results are shown for different values of the
network temperature T . In each case the three rightmost points correspond respectively to ω1 = 0.99, 0.999, and 0.9999. All other parameters
are the same as in Fig. 2. The dashed lines depict theoretical predictions given by Eqs. (38)–(40). Plot (b) is similar to plot (a), except that ω1

is set to zero, and we vary ω2. The y axes use a logarithmic scale.

may not be significantly affected by nonlink persistence, un-
less it is very strong, cf. Appendix A.

Table I provides a summary of how k̄aggr, as well as the
average contact and intercontact durations (t̄c and t̄ic) change
with parameters T , ω1, and ω2.

VII. OTHER RELATED WORK AND DISCUSSION

In this section, we discuss our model in the context of other
related work.

A popular model for temporal networks is the activity-
driven model (ADM), introduced in Ref. [31] and extended
to include node attractiveness in Ref. [32]. The ADM has
been regularly utilized due to its simplicity and adaptabil-
ity, cf. Refs. [18,33–36]. However, it is not a geometric
network model. In contrast, we generalize temporal net-
work modeling based on RHGs, which have been shown
to naturally reflect real-world networks [4,5,13,26,37]. Ad-
ditionally, while ADM analyses have primarily focused on
properties of the time-aggregated network, such as its degree
distribution [31,38], our work focuses on properties of the
resulting temporal network itself, such as its (inter)contact
distributions.

Other methodologies have extended popular static network
models, such as Erdős–Rényi (ER) random graphs, the con-
figuration model, the stochastic block model, and models
with hidden variables to temporal settings [9,12,39]. These
approaches account for link and nonlink persistence with

TABLE I. Summary of dependencies of k̄aggr, t̄c, and t̄ic, on pa-
rameters T , ω1, and ω2. Arrows indicate an increase (↗) or decrease
(↘) of the corresponding average as T , ω1, or ω2 increases. Stars
indicate the averages that generally change more rapidly with a
change in the corresponding parameter.

k̄aggr t̄c t̄ic

T ↗ ↘ ↗

ω1 ↘ ↗ ↗
ω2 ↘ ↗ ↗

different rates in a Markovian manner, similar to our work.
However, they do not consider geometric network models or
models where the node hidden variables represent their pop-
ularity and similarity coordinates in an underlying hyperbolic
space.

Non-Markovian link persistence has also been considered,
cf. [40]. Additionally, the work in Ref. [11] investigated
the interplay between hidden variable dynamics and link
dynamics in temporal network models. The ω-dynamic-S1

model [13] is a special case of the general class of models
discussed in Ref. [11], where there are no hidden variable
dynamics.

Moreover, a substantial body of work has studied the
effects of temporality on various dynamical processes, in-
cluding epidemic spreading [21–25,40,41], synchronization
and diffusion [17], the evolution of cooperation [18], and
the emergence of chaos [19]. Often, simple null models are
utilized in such studies, such as the ADM [18] or models
based on random graphs [40]. The (ω1, ω2)-dynamic-S1 con-
stitutes an important addition to the suite of such models. The
model is based on a principled geometric framework (RHGs),
yields realistic dynamical properties and allows simultaneous
control of (i) the expected degree distribution in the snap-
shots via ρ(κ ), (ii) the localization of connections and thereby
clustering via T , and (iii) the stability of connections and
disconnections via ω1 and ω2.

Fully investigating the effects and interplay of the model’s
parameters on different dynamical processes is beyond the
scope of this paper. However, we have considered some
illustrative examples (for certain settings of the model’s pa-
rameters) in the context of epidemic spreading (Figs. 1 and 9).
These examples demonstrate that link and nonlink persistence
can slow down spreading, depending on the setting and the
network temperature T . The work in Ref. [40] also observed
that link persistence can slow down spreading, utilizing a
model based on ER random graphs. However, ER random
graphs correspond to the limit T → ∞ in RHGs, where the
nodes’ popularity and similarity coordinates are completely
ignored [5]. Finally, the observation that increasing clustering
(by decreasing T ) can also suppress overall spreading is intu-
itive and in line with prior work [42,43].

024309-10



(ω1, ω2)-TEMPORAL RANDOM … PHYSICAL REVIEW E 110, 024309 (2024)

FIG. 9. Same as in Fig. 1, except that results are presented for different levels of the nonlink persistence probability ω2, while in all cases
ω1 = 0.

VIII. CONCLUSION

We have generalized temporal random hyperbolic graphs
by introducing distinct probabilities ω1 and ω2 for link and
nonlink persistence and elucidated the nontrivial dependence
of key temporal network properties on link and nonlink per-
sistence strength and on the network temperature T . The
generalized model can be used to study a wider range of
scenarios involving dynamical processes on temporal net-
works. This is because it allows more flexible tuning of the
average contact and intercontact durations and of the aver-
age time-aggregated degree. Specifically, these quantities are
now controlled by three parameters (ω1, ω2, T ) instead of
two (ω, T ).

We have also proven that the tails of the contact and in-
tercontact distributions decay as power laws with exponents
2 + T and 2 − T , respectively, as in the case of ω1 = ω2

[13]. An outstanding question is whether there exists a simple
model extension in which the tails of these distributions are
not coupled by the common parameter T , but can be tuned
more independently. Another question is whether there ex-
ist model extensions in which the (inter)contact distributions
deviate from pure power laws, as may be observed in real-
world systems. Furthermore, it may be worth investigating
whether incorporating link persistence affects the conclusions
about the nonrealism of temporal RHGs in the hot regime
(T > 1), which has been analyzed in the absence of link
persistence [6].

Other interesting directions for future work include the
inference of link and nonlink persistence probabilities in real
networks [4,28], the derivation and analysis of models of
temporal RHGs in higher dimensions [44], temporal RHG
models with non-Markovian link persistence [40], models
where different pairs of nodes can have different link and

nonlink persistence probabilities [9], as well as temporal RHG
models for bipartite networks [12,45].
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APPENDIX A: EPIDEMIC SPREADING SIMULATIONS

In Fig. 1, we consider the susceptible-infected-susceptible
(SIS) and the susceptible-infected-recovered (SIR) epidemic
spreading models [15]. In the SIS model, each node can be
in one of two states: susceptible (S) or infected (I). In each
time slot, an infected node can recover with probability β and
become susceptible again, whereas infected nodes can infect
the susceptible nodes they are connected to with probability
α. Thus, the transition of states is S → I → S. In the SIR
model, each node can be in one of three states: susceptible (S),
infected (I), or recovered (R). In each time slot, an infected
node can recover with probability β, whereas infected nodes
can infect the susceptible nodes they are connected to with
probability α. Thus, the transition of states is S → I → R. We
note that nodes that get infected in a time slot will not attempt
to infect susceptible neighbors until the next time slot. Also,
in the case of SIS, nodes that recover in a time slot are not
considered for infection until the next time slot.

As mentioned in the caption of Fig. 1, all simulations
start with 5% of the nodes randomly infected, i.e., in the I
state, while α = 0.5 and β = 0.005. In each time slot, the
network snapshots change according to the (ω1, ω2)-dynamic-
S1 model, i.e., according to Eqs. (4) and (5). Therefore, the
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simulated SIS and SIR processes evolve at the same timescale
as the simulated networks.

Effect of nonlink persistence. Figure 1 illustrates the effect
of link persistence in isolation from nonlink persistence by
setting ω2 = 0 and varying ω1. Conversely, Fig. 9 shows the
effect of nonlink persistence in isolation from link persis-
tence by setting ω1 = 0 and varying ω2. As seen in Sec. VI,
nonlink persistence has a much lesser effect on the expected
time-aggregated degree compared with link persistence. How-
ever, its effect can become significant as ω2 approaches one
[Fig. 8(b)]. This is reflected in the performance of epidemic
spreading in Fig. 9, where ω2 needs to be very close to one to
observe similarly notable differences as those seen in Fig. 1
with lower values of ω1.

APPENDIX B: APPELL F1 SERIES AND GAUSS
HYPERGEOMETRIC FUNCTION

In this section, we provide an overview of the Appell F1

series and the Gauss hypergeometric function [14].
The Appell F1 series is defined for |x| < 1 and |y| < 1 by

F1(a, b1, b2, c; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b1)m(b2)n

(c)m+nm!n!
xmyn, (B1)

where (q)n is the Pochhammer symbol. For values of x
and y outside the range |x| < 1 and |y| < 1, the function
F1 can be extended through analytic continuation [29]. Such
continuations can be achieved by manipulating integral repre-
sentations, similar to the one in Eq. (17), where changing the
integration variable can allow the expression of the original
F1 series through another F1 series, e.g., see Eq. (18). Such
transformations enable the definition of the F1 series for a
broader range of x and y.

The Gauss hypergeometric function is defined by the series

2F1[a, b, c; z] =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
(B2)

for |z| < 1 and by analytic continuation elsewhere.
The Appell F1 series F1(a, b1, b2, c; x, y) degenerates to the

Gauss hypergeometric function when x = y,

F1(a, b1, b2, c; x, x) = 2F1[a, b1 + b2, c; x]. (B3)

APPENDIX C: TAIL OF THE CONTACT DISTRIBUTION
FOR ANY ω1, ω2 ∈ [0, 1)

Here we establish that Eq. (29) in the main text holds true
for any combination of ω1, ω2 ∈ [0, 1). To this end, we utilize
the transformation given by Eq. (1) in Sec. 5.11 of Ref. [29],
which states that

F1[a, b, b′, c; x, y] = (1 − x)−b(1 − y)−b′

× F1

[
c − a, b, b′, c;

x

x − 1
,

y

y − 1

]
.

(C1)

FIG. 10. Function h1 in Eq. (C2) (dotted lines) vs the approx-
imation for large t in Eq. (C7) (solid lines). Results are shown
for different values of ω1 and ω2, while T = 0.5. All axes use a
logarithmic scale.

Applying this transformation to the F1 function on the left-
hand side of Eq. (26), allows us to rewrite h1 as

h1 = ωt−1
1

(
1 − ω2

1 − ω1

)

× F1

[
1 − T, 1 − t, 1, 3; 1 − 1

ω1
,
ω2 − ω1

1 − ω1

]
. (C2)

Now, using Eq. (24) with a = 1 − T , b = 1, λ = −t , b′ = 1,
c = 3, x = 1 − 1/ω1, and y = (ω2 − ω1)/(1 − ω1), we can
write

h1 = ωt−1
1

(
1 − ω2

1 − ω1

) m−1∑
n=0

(1 − T )n

(3)n

(
ω2 − ω1

1 − ω1

)n

× 2F1

[
1 − t, 1 − T + n, 3 + n; 1 − 1

ω1

]

+ O

(
1

(−t )1−T +m

)

=
(

1 − ω2

1 − ω1

) m−1∑
n=0

(1 − T )n

(3)n

(
ω2 − ω1

1 − ω1

)n

× 2F1[2 + T, 1 − t, 3 + n; 1 − ω1] + O

(
1

(−t )1−T +m

)
.

(C3)

The last equality follows from Pfaff’s transformation [Eq. (22)
in Sec. 2.1.4 of Ref. [29]], which states that

2F1[a, b, c; z] = (1 − z)−a
2F1

[
a, c − b, c;

z

z − 1

]
. (C4)

We also utilized that 2F1[a, b, c; z] = 2F1[b, a, c; z], which fol-
lows from Eq. (B2).

Utilizing the asymptotic expansion for the hypergeometric
function 2F1[a, b, c; z] for |b| → ∞, given by Eq. (15) in
Sec. 2.3.2 of Ref. [29], we can express the 2F1 function inside

024309-12
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FIG. 11. Region R2 := {(ω1, ω2) ∈ R2||(ω2 − ω1)/(1 − ω1)| <

1}, shown as the blue-shaded area in the figure. In this region,
Eq. (C7) holds.

the sum in Eq. (C3), as

2F1[2 + T, 1 − t, 3 + n; 1 − ω1]

=
{


(3 + n)


(1 − T + n)

(1 − ω1)−(2+T )

(t − 1)2+T
+ 
(3 + n)


(2 + T )

× e−(1−ω1 )(t−1)

[(1 − ω1)(1 − t )]1−T +n

}

×
[

1 + O

(
1

(1 − ω1)(t − 1)

)]
. (C5)

At large t the dominant term in Eq. (C5) is the first term inside
the brackets, and we can write

2F1[2 + T, 1 − t, 3 + n; 1 − ω1]

≈ 
(3 + n)


(1 − T + n)

(1 − ω1)−(2+T )

t2+T
. (C6)

Consequently, for large t we can approximate Eq. (C3) as

h1 ≈
(

1 − ω2

1 − ω1

)
(1 − ω1)−(2+T )

t2+T

∞∑
n=0

(1 − T )n

(3)n

(
ω2 − ω1

1 − ω1

)n

× 
(3 + n)


(1 − T + n)

=
(

1 − ω2

1 − ω1

)
(1 − ω1)−(2+T )

t2+T

2


(1 − T )

∞∑
n=0

(
ω2 − ω1

1 − ω1

)n

= 2(1 − ω1)−(2+T )


(1 − T )

1

t2+T
. (C7)

We see that the above analysis also leads to Eq. (29). We
validate the analysis in Fig. 10.

We note that in Eq. (C7), we let the summation
run to infinity, since there is no single dominant term.
The summation converges to (1 − ω1)/(1 − ω2) when
|(ω2 − ω1)/(1 − ω1)| < 1. This defines the region R2 of ω1

and ω2, depicted in Fig. 11, for which the above analy-
sis holds. The union of R2 with R1 in Fig. 5 covers the
full range of ω1, ω2 ∈ [0, 1). Therefore, Eq. (29), and hence
the scaling Pc(t ) ∝ 1/t2+T , hold for any combination of ω1

and ω2.
Proving Eq. (28). Equation (28) in the main text is obtained

by using the same asymptotic expansion for the hypergeo-
metric function 2F1[a, b, c; z] for |b| → ∞ as above [given by
Eq. (15) in Sec. 2.3.2 of Ref. [29]]. Specifically, utilizing this
expansion, we can write

2F1

[
2 + T + n, 1 + t, 3 + n; 1 − 1

ω1

]

=
{


(3 + n)


(1 − T )

(1/ω1 − 1)−(2+T +n)

(t + 1)2+T +n

+ 
(3 + n)


(2 + T + n)

e−(1/ω1−1)(t+1)

[(1 − 1/ω1)(t + 1)]1−T

}

×
[

1 + O

(
1

(1/ω1 − 1)(t + 1)

)]
. (C8)

At large t , the dominant term in the above relation is the first
term inside the brackets. Utilizing also that 2F1[a, b, c; z] =
2F1[b, a, c; z], we can write

2F1

[
1 + t, 2 + T + n, 3 + n; 1 − 1

ω1

]

≈ 
(3 + n)(1/ω1 − 1)−(2+T +n)


(1 − T )

1

t2+T +n
. (C9)
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