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Cooperation dynamics in multi-issue repeated social dilemma games with correlated strategy
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In the real world, individuals are often involved in collaboration on multiple issues, and these issues may
interact with each other. Given the complexity of the interaction, we establish a multi-issue repeated game model,
in which individuals participate in multiple social dilemma games simultaneously and repeatedly, and strategies
in different issue games are correlated and reactive. We explore the cooperation dynamics of strategies in the
population from a multiobjective perspective, in which an individual’s preference for each issue is described by
a weight vector, and heterogeneous preferences of individuals in the population are also considered. Through
simulations on two-issue games, we find that compared to the uncorrelated case, the correlated strategy can
significantly promote cooperation in both games regardless of which issue players prefer. Under the condition of
homogeneous preference, an increase in the payoff weight of a given issue decreases the level of cooperation in
that issue, and the optimal condition to sustain cooperation to the maximum extent is when the payoff weights
of all issues are equal. Moreover, under the condition of heterogeneous preference, there exists an optimal
proportion of players with different preferences under which the cooperation rate can reach its highest level in
the population. This work highlights individual trade-offs on different issues when engaging in multiple games
simultaneously and further enriches the research of evolutionary games from a multiobjective and correlated
strategy perspective.
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I. INTRODUCTION

Cooperation plays a very important role in microbial pop-
ulations and human societies [1–3]. For example, bacteria
can resist external invasions by cooperating [4], and the co-
operation of humans can significantly improve the quality
and efficiency of task completion [5]. However, according
to classical Darwinian evolutionary theory, rational individ-
uals are more inclined to maximize their benefits, leading to
the breakdown of cooperation and tragedy of the commons
[6]. This results in a social dilemma. A common theoretical
framework for studying social dilemmas is evolutionary game
theory, with a particular focus on the prisoner’s dilemma game
[7–13]. Understanding the emergence and sustainability of
cooperation has therefore been ranked as one of the major
scientific challenges of this century [14]. During the past
decades, a great deal of research has been devoted to iden-
tifying mechanisms by which cooperation can be maintained
[15–19]. Nowak [20] summarized these mechanisms into five
categories: kin selection, direct and indirect reciprocity, group
selection, and spatial reciprocity.

Previous works in the literature typically assume a single-
game scenario. However, players may engage in multiple
game scenarios in the real-world system, and these game
scenarios may interact with each other. There are two lines
of research in this area. One line is from the perspective
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of players sequentially playing multiple correlated games
[21,22]. Among them, the most important is stochastic games
which provide the possibility of combining repeated games
with dynamic game scenarios. The framework of stochastic
games was first proposed by Shapley [23], who described
the dynamics of game scenarios by introducing the concept
of game states. Then a further summary and related appli-
cation of the stochastic game model was provided by Solan
and Vieille [24]. Evolutionary game theory was introduced
into the framework of stochastic games by Hilbe et al. [25].
They found that the interaction between players’ behaviors
and scenarios enhances the propensity to cooperate. Szolnoki
and Chen [26] introduced the coupling of environmental status
and interactions among players. They found that this coupling
can provide a significantly higher cooperation level. Su et al.
[27] considered game transitions in structured populations,
where interactions between any two neighboring players can
cause changes in the game environment. They found that envi-
ronmental reciprocity can promote cooperation in structured
populations even if the interactions are not repeated. Given
the widespread existence of information uncertainty in reality,
Kleshnina et al. [28] investigated the effect of state uncertainty
on the dynamics of cooperation in stochastic games. The
results of the study show that information consistently gives
an advantage to cooperation in timeout games.

The literature on multigames presented above is investi-
gated from the perspective of players sequentially playing
multiple games, and there is also a line of research from the
perspective of players playing multiple concurrent games. For
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example, we may face multiple concurrent projects at work,
and companies or countries may be involved in cooperation
and competition in multiple areas at the same time [29,30].
With the deepening of research, scholars began to be inter-
ested in the impact of multigame scenarios on the evolution of
cooperative behaviors [31–41]. Cressman et al. [37] initially
studied the coupling of two two-person, two-strategy games,
and they found that the dynamics of this coupled game can
be characterized by the dynamics of a single game. Later
research expanded to the coupling of multiple multiplayer
games, and results showed that the dynamics of a single game
is usually undetermined without considering the information
of other games [38–40].

The coupling of multiple games based on complex network
structures has also received a great deal of attention. Within
the framework of multilayer networks, players play differ-
ent games simultaneously with coplayers at different layers
[42–57] and these networks are coupled by a utility function.
Wang et al. [42] studied the public goods game based on a
two-layer network. The utility function consists of the contri-
butions of the player and the coplayer in the two-layer lattice.
They found that network interdependence can promote coop-
eration when coordination between networks is not disturbed.
Further, Su et al. [45] studied multigames within the frame-
work of multilayer networks and these layers are coupled by
averaging multiple payoffs. Their work showed that coupling
between layers can promote cooperation even if the level of
cooperation at each level is not high. The correlation between
multiple games is not only reflected in the interdependence
between networks but also in the edge diversity within the
network. Su et al. [58] investigated multiplayer games on
networks with edge diversity, where different types of edges
denote various social ties. A player may play different games
concurrently with different neighbors, based on the variety of
social ties between players and their neighbors.

Recently, Donahue et al. [41] proposed the concept of mul-
tichannel games based on the framework of repeated games.
Each channel corresponds to an infinitely repeated game and
multiple channels are conducted in parallel. Correlation be-
tween these channels is established through linked strategies.
They found that the correlation between games can boost
players’ flexibility and foster cooperation across all concur-
rent games. However, they assumed that the importance of
multiple games was consistent and did not consider how dif-
ferences in players’ potential preferences for multiple games
might affect the cooperation of populations. If each issue in
the repeated games is considered as an objective, the payoffs
of players in multiple-issue games can be represented by a
payoff vector and the multiple-issue games can be defined
as a multiobjective game. Inspired by this motivation, we ex-
plore the cooperation dynamics of strategies in the population
from a multiobjective perspective, in which an individual’s
preference for each issue is described by a weight vector.
Besides, we consider population heterogeneity by assigning
different payoff weights to represent players who may have
different preferences on the same issues. We attempted to
explore the effect of players’ preferences and the proportion
of players with different preferences for the same issues on
the evolution of cooperation. As an extension of the model,
we also discuss the effects of exploration rates of seeking new

strategies and stochastic strategies on the cooperative behavior
of the population.

The remainder of this paper is arranged as follows. In
Sec. II, we describe the multi-issue games model with strategy
correlations and individual preferences in detail. In Sec. III,
we show the main simulation results and the correspond-
ing analyses. Finally, we summarize the main conclusions in
Sec. IV.

II. MODEL

A. Multi-issue games between two players

In multi-issue games, each issue corresponds to an in-
finitely repeated prisoner’s dilemma game. The players
interact simultaneously on m different issues. In each round
of a given game, players can choose from cooperative (C) and
defective (D) actions. The payoffs in each game depend only
on the player’s actions in that game and are independent of
the actions in the other games. The payoff matrix in issue
k(1 � k � m) game can be represented as

⎛
⎝

C D

C Rk Sk

D Tk Pk

⎞
⎠.

Here, Rk denotes the reward they receive when both players
cooperate, Sk denotes the sucker’s payoff received by a co-
operator from a defector, Tk represents the temptation payoff
that a defector receives from a cooperator, and Pk is the pun-
ishment they receive when both players defect. The different
orderings of Tk , Rk , Pk , and Sk characterize different social
dilemma structures. The prisoner’s dilemma we consider sat-
isfies Tk > Rk and Pk > Sk .

If π k
i (t ) represents the payoff obtained by player i in round

t of game k, then the payoff of player i in issue k is the
expected payoff of the infinitely repeated game:

π k
i = lim

T →∞
1

T

T∑
t=1

π k
i (t ). (1)

For each player, the payoff in any given round is a vec-
tor composed of multiple issues. Thus, the payoff vector for
player i in round t across all issues can be represented as
[π1

i (t ), π2
i (t ), . . . , πm

i (t )], and the payoff vector for player i
across all issues is denoted as (π1

i , π2
i , . . . , πm

i ).

B. Correlated strategies in multi-issue games

In repeated games, strategies are mappings from historical
information (including environmental changes and the actions
of coplayers) to actions [59]. Here, the correlation between
different issue games is described by strategy linkage. Player
i′s action ak

i (t ) in issue k in round t affects not only coplayer
j′s action ak

j (t + 1) in this issue in the next round, but also the

coplayer j′s action ak′
j (t + 1) in another issue k′(k′ �= k, 1 �

k′ � m) in the next round. We focus only on reactive strategies
due to the complexity of strategies, where a player’s action in
any round depends only on the actions of the coplayer in the
previous round.
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To simplify the study, we consider multi-issue games with
m = 2 and the subsequent studies are based on the two-issue
games. The reactive strategy in two-issue games can be rep-
resented by an eight-dimensional vector of the form p =
(p1

CC, p1
CD, p1

DC, p1
DD; p2

CC, p2
CD, p2

DC, p2
DD), where pk

a1a2
is the

probability that a player cooperates in an issue k game when
the coplayer’s actions in the previous round in the two games
are a1 ∈ {C, D}, a2 ∈ {C, D}, respectively. In particular, the
two issues are uncorrelated when p1

CC = p1
CD, p1

DC = p1
DD,

p2
CC = p2

DC , and p2
CD = p2

DD. A reactive strategy p can be
considered deterministic (also known as pure strategy) if all
entries take the value 0 or 1. It can be defined as a stochastic
strategy if there exists an entry in the interval (0,1). We define
a strategy as cooperative if it induces two players with that
strategy to mutually cooperate when both players cooperate in
the initial phase and if their actions are not affected by errors.
We consider the following cooperative correlated strategies,
p = (1, 0, 0, 0; 1, 0, 0, 0) (denoted as TF2T) to denote the
player defects in both games in the next round if the coplayer
defects in either game. p = (1, 1, 1, 0; 1, 1, 1, 0) (denoted as
2TFT) denotes that the player using this strategy cooperates in
both games in the next round if the coplayer cooperates in one
of the two games; the player defects in the next round only
if the coplayer defects in both games at the same time. p =
(1, 0, 1, 0; 1, 1, 0, 0) (denoted as oTFT) indicates that if the
coplayer defects in game 1, the player will defect in the next
round in game 2, and vice versa. p = (1, 0, 0, 1; 1, 0, 0, 1)
(denoted as oWSLS) indicates that a player cooperates in the
next round only if the coplayer’s actions in both games are the
same.

C. Calculation of expected payoffs and cooperation rate

The payoffs can be explicitly calculated when
players adopt reactive strategies. Assuming the reactive
strategies adopted by the two interacting players
are p = (p1

CC, p1
CD, p1

DC, p1
DD; p2

CC, p2
CD, p2

DC, p2
DD) and

p̃ = ( p̃1
CC, p̃1

CD, p̃1
DC, p̃1

DD; p̃2
CC, p̃2

CD, p̃2
DC, p̃2

DD), respectively
we formulate the two-issue game as a Markov chain to
calculate the players’ payoffs, and the states of this chain are
the joint action profiles of two players in a single round. Let
a = (a1, a2) ∈ {C, D}2 be the action profile of one player, and
the action profile of the coplayer is ã = (ã1, ã2) ∈ {C, D}2.
Then the current state of the Markov chain can be written as
ω = (a, ã). Based on the current state of the Markov chain,
we can infer that the probability of its next state w′ = (a′, ã′)
is

wω,ω′ =
2∏

k=1

qk
ω,ω′ q̃k

ω,ω′ , (2)

where qk
ω,ω′ and q̃k

ω,ω′ denote the probability of a player and
coplayer moving from the current state ω to the next state ω′
in game k (1 � k � 2), respectively.

qk
ω,ω′ =

{
pk

ã a′
k = C

1 − pk
ã a′

k = D
q̃k

ω,ω′ =
{

p̃k
a ã′

k = C

1 − p̃k
a ã′

k = D
.

(3)

Then we can obtain a state transition matrix W = (wω,ω′ )
of size 16 × 16. The mean value of each state in the state

transition matrix converges to a unique invariant distribution
V = (vω ), where each entry vω gives the expected frequency
of ω = (a, ã). Based on this invariant distribution, we can
calculate the marginal distribution in game k:

vk
(a′

k ,ã′
k )

=
∑

ω

vωek
ω(a′

k, ã′
k ). (4)

Here, ek
ω(a′

k, ã′
k ) is an indicator function. When

ω = [(a1, a2), (ã1, ã2)] satisfies ak = a′
k and ãk = ã′

k ,
ek
ω(a′

k, ã′
k ) = 1. Otherwise ek

ω(a′
k, ã′

k ) = 0. The marginal
distribution in game k can be represented as the vector
V k = (vk

CC, vk
CD, vk

DC, vk
DD).

Then the player’s expected payoff in issue k game can be
calculated as

π k = vk
CCRk + vk

CDSk + vk
DCTk + vk

DDPk,

π̃ k = vk
CCRk + vk

CDTk + vk
DCSk + vk

DDPk, (5)

where π k is the expected payoff of the player adopting strat-
egy p, and π̃ k is the expected payoff of the player interacting
with him who adopts strategy p̃.

Similarly, the player’s expected cooperation rate in issue k
game can be calculated as

γ k = vk
CC + vk

CD,

γ̃ k = vk
CC + vk

DC, (6)

where γ k is the expected cooperation rate in issue k game
of the player adopting strategy p, and γ̃ k is the expected
cooperation rate in issue k game of the player interacting with
him who adopts strategy p̃.

D. Evolutionary dynamics of strategies

In a well-mixed population of size N , each player inter-
acts with every other N−1 population member in multi-issue
games to obtain the corresponding payoff vectors. To get each
player’s overall payoff in issue k in the population, we average
all these payoffs in that issue. Suppose π k

(i, j) is player i′s
payoff when player i and player j(i �= j) interact in issue k.
Player i′s overall payoff π̄ k

i in issue k can be calculated as

π̄ k
i = 1

N − 1

N∑
j=1, j �=i

π k
(i, j). (7)

Then the overall payoff vector for player i across all issues
is (π̄1

i , π̄2
i ). We assume that players have different preferences

towards the two games and let the weight vector θi = (θ1
i , θ2

i )
denote player i′s preferences for different issues. We first con-
sider the homogeneous weight vector (θ1

i = θ and θ2
i = 1−θ );

i.e., all players in the population have the same preferences.
Players prefer game 1 when θ > 0.5, players prefer game 2
when θ < 0.5, and players’ preferences for both games are
consistent when θ = 0.5. Based on the weight of a player in
different issues, the player i′s fitness function can be estab-
lished as

fi(θ, π ) =
2∑

k=1

θi
kπ̄ k

i . (8)
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We consider a synchronous updating (SU) scheme to the
evolutionary dynamics of the strategy. In this process, indi-
viduals only need to learn strategy but not preferences. The
overall strategies update is performed after all players have
played a round of the game based on the payoff information
from the previous step. Players have two ways to update their
strategies. One is strategy random exploration with probability
μ; they can randomly select a strategy from the set of strate-
gies and discard the previous strategy. The other is strategy
imitation with probability 1−μ. Two players are randomly
selected from the population as learner x and model y. Learner
x imitates model y′s strategy with probability ρ based on the
fitness difference between the two of them. The imitation rule
adopts Fermi’s rule, with the functional form of

ρ = 1

1 + exp (−s[ fy(θ, π ) − fx(θ, π )])
, (9)

where fx(θ, π ) and fy(θ, π ) are the fitness of the learner x and
the model y, respectively. Here, the imitation process of strate-
gies is characterized by introducing the Pareto nondominated
solutions in multiobjective decision making. If the learner
x′s payoff Pareto dominates the model y′s, which means the
payoff of learner x in any issue 1 � k � 2 is not less than
the payoff of model y (π k

x � π k
y ) and there exists at least

one issue 1 � l � 2 where the inequality is strictly satisfied
(π l

x > π l
y), then fx(θ, π ) � fy(θ, π ) for any form of fitness

function. According to the strategy imitation rule, imitation
probability simplifies to 1

2 in the limit s → 0, resulting in
entirely random imitation. Otherwise, learner x will imitate
model y with probability if the payoff of model y is not an
inferior solution with respect to learner x.

III. RESULTS AND DISCUSSION

Before the simulation begins, we first describe the defini-
tion of cooperation rate in the population. Player i′s average
cooperation rate γ̄ k

i in issue k in the population can be

calculated as

γ̄ k
i = 1

N − 1

N∑
j=1, j �=i

γ k
(i, j), (10)

where γ k
(i, j) is player i′s cooperation rate when player i and

player j(i �= j) interact in issue k.
Then the average cooperation rate of issue k in the popula-

tion is

ϒk = 1

N

N∑
i=1

γ̄ k
i . (11)

In our study, we use Monte Carlo simulation (MCS) to
simulate the process of player interaction and strategy up-
dating throughout a well-mixed population of size N = 100.
To simplify the study, each game takes the form of a dona-
tion game, which is a simplified prisoner’s dilemma. In the
donation game, cooperation means paying a cost c > 0 to
bring a benefit b > c to the coplayer. Defection pays no cost
and produces no benefit. The four payoffs are then given by
Rk = bk − ck , Sk = −ck , Tk = bk , and Pk = 0. In the initial
state, each player is randomly assigned a reactive strategy
in the strategy space. During the evolutionary process, the
population can be stabilized after about 20 000 MCSs for
most parameter combinations, and the values of the following
simulation results are computed by averaging the data of the
last 2000 MCSs after stabilization. To eliminate the impact of
accidental errors in experiments, each data result is obtained
by averaging at least 30 independent experiments.

A. Cooperation dynamics with correlated strategies

Firstly, we consider that correlated strategies in the strategy
space are 2TFT, oWSLS, and ALLD. We explore the dynam-
ics of cooperative evolution when the strategy space of the
initial population contains these three strategies. When these
strategies interact in the two issue games, the expected payoff
matrices can be calculated as

⎛
⎜⎜⎝

2TFT oWSLS ALLD

2TFT
( b1−c1

2 , b2−c2
2

)
(b1 − c1, b2 − c2) (0, 0)

oWSLS (b1 − c1, b2 − c2) (b1 − c1, b2 − c2) (−c1,−c2)

ALLD (0, 0) (b1, b2) (0, 0)

⎞
⎟⎟⎠.

Figure 1 illustrates the evolutionary results of the three strategies in the population. In Fig. 1(a), we can observe that the
average cooperation rate of the population in the two games at the initial state is about 0.5. The cooperation rate in the two
games is around 0.4 when the population evolves to stability, and the change in the value of benefit b1 has no significant effect
on the cooperation level of the population. In Fig. 1(b), an increase in the number of strategy ALLD decreases the number of
strategy oWSLS during the evolution of the time step from t = 0 to t = 10. Subsequently, strategy 2TFT inhibits the continued
growth of strategy ALLD during the evolution of the time step from t = 10 to t = 100. This suggests that only the strategy
2TFT can resist the defective strategy ALLD. As the value of benefit b1 increases from 1 to 5, the frequency of strategy 2TFT
decreases by about 0.2 and the frequency of strategy oWSLS and strategy ALLD increase by about 0.1. This is because some
players who take the strategy 2TFT are more willing to take the strategy oWSLS to pursue higher payoffs, while the strategy
oWSLS is unable to resist the strategy ALLD, so it also leads to an increase in the number of strategy ALLD.

In the study above, correlated strategies in the strategy space assume that players behave consistently in both games based
on the same historical behavioral information. Now we allow players to have different behaviors in different games based
on the same historical behavioral information. Here we introduce game k semicooperative strategies. We define a strategy
game k semicooperative if it induces two players adopting that strategy to cooperate in game k. For example, the strategy
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FIG. 1. The average cooperation rate in the two games of the population and frequencies of the three strategies 2TFT, oWSLS, and ALLD.
In panel (a), the line shows the cooperation rate in the two games of the population at the initial state, and the cooperation rate of the two games
at the steady state is illustrated by the histogram. Panel (b) shows the frequencies of different strategies when the value of benefit b1 increases
from 1 to 5. The inset shows the evolutionary process of strategies when b1 = 2. Parameters: b2 = 3, c1 = c2 = 1, s = 2, and θ=0.5.

(1, 1, 1, 0; 0, 0, 0, 0) (denoted as game-1 semi-2TFT) indicates that the player always defects in game 2, and that the player only
defects in game 1 when the coplayer defects in both games. The strategy (1, 0, 0, 1; 0, 0, 0, 0) (denoted as game-1 semi-oWSLS)
indicates that the player always defects in game 2 and that the player only defects in game 1 when the coplayer’s behavior
is inconsistent between the two games. The strategy (0, 0, 0, 0; 1, 1, 1, 0) (denoted as game-2 semi-2TFT) indicates that the
player always defects in game 1, and the player defects in game 2 only when the coplayer defects in both games. The strategy
(0, 0, 0, 0; 1, 0, 0, 1) (denoted game-2 semi-oWSLS) indicates that the player always defects in game 1, and the player defects
in game 2 only when the coplayer’s behavior is inconsistent between the two games. Then these four semicooperative strategies
and the previously mentioned correlated strategies 2TFT, oWSLS are classified into two profiles: C1(2TFT, game-1 semi-2TFT,
game-2 semi-2TFT) and C2(oWSLS, game-1 semi-oWSLS, game-2 semi-oWSLS). When these strategies interact in the two
issue games, the expected payoff matrices can be calculated as

⎛
⎜⎜⎜⎜⎜⎜⎝

C1 2TFT Game-1 semi-2TFT Game-2 semi-2TFT

2TFT
( b1−c1

2 , b2−c2
2

) (− c1
2 , b2−c2

2

) ( b1−c1
2 ,− c2

2

)
Game-1
semi-2TFT

( b1
2 , b2−c2

2

) (
0, b2−c2

2

) ( b1
2 ,− c2

2

)
Game-2
semi-2TFT

( b1−c1
2 , b2

2

) (− c1
2 , b2

2

) ( b1−c1
2

)
, 0)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

C2 oWSLS Game-1 semi-oWSLS Game-2 semi-oWSLS

oWSLS (b1 − c1, b2 − c2) (0, b2) (b1, 0)

Game-1
semi-oWSLS (0,−c2)

(
0, b2−c2

2

) ( b1
2 , −c2

2

)
Game-2
semi-oWSLS (−c1, 0)

(−c1
2 , b2

2

) ( b1−c1
2 , 0

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then we explored the dynamics of cooperation when the strategy spaces of the initial population are profile C1 and profile
C2, respectively. As shown in Fig. 2(a-1), the population is at a low cooperation level in both games when the strategy space
is profile C1. Specifically, the cooperation rate in game 1 is negatively correlated with benefit b1, while the cooperation rate
in game 2 is positively correlated with benefit b1. To further explore this reason, we study the frequencies of strategies in the
population. As shown in Fig. 2(a-2), we find that the strategy oTFT has died out, the strategy game-1 semi-2TFT is negatively
correlated with benefit b1, and the strategy game-2 semi-2TFT is positively correlated with benefit b1 when the population is
stabilized. This is because as the benefit b1 gradually exceeds the benefit b2, players are more inclined to defect in game 1 in
pursuit of higher payoffs. Players adopting strategy game-2 semi-2TFT choose to defect in game 1 and tend to cooperate in game
2, whereas players adopting strategy game-1 semi-2TFT have a high degree of tolerance in game 1 and choose to defect in game
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FIG. 2. The cooperation rate in both games and frequencies of strategies with the benefit b1 under different strategy profiles. (a) Profile
C1; (b) profile C2; (1) the cooperation rate; (2) frequencies of strategies. Parameters: b2 = 3, c1 = c2 = 1, s = 2, and θ=0.5.

1 only if their coplayer defects in both games. Therefore, the number of players who choose to adopt strategy game-2 semi-2TFT
increases gradually as the benefit b1 increases. As shown in Fig. 2(b-1), when the strategy space is profile C2, we find that the
population reaches a state of full cooperation in both games, regardless of the variation of benefit b1. This reason can be found
in Fig. 2(b-2); strategy game-1 semi-oWSLS and strategy game-2 semi-oWSLS are extinct, and only strategy oWSLS exists in
the population when the population reaches a steady state. This is because players who take the strategy oWSLS defect strictly
when faced with coplayers whose behavior is inconsistent.

We further expand the strategy space by introducing the strategy oWSLS from profile C2 into profile C1. Then the strategy
space consists of 2TFT, game-1 semi-2TFT, game-2 semi-2TFT, and oWSLS. When these strategies interact in the two issue
games, the expected payoff matrices can be calculated as

⎛
⎜⎜⎜⎜⎜⎜⎝

2TFT Game-1 semi-2TFT Game-2 semi-2TFT oWSLS

2TFT
( b1−c1

2 , b2−c2
2

) (− c1
2 , b2−c2

2

) ( b1−c1
2 ,− c2

2

)
(b1 − c1, b2 − c2)

Game-1 semi-2TFT
( b1

2 , b2−c2
2

) (
0, b2−c2

2

) ( b1
2 ,− c2

2

) ( b1
2 , b2−c2

2

)
Game-2 semi-2TFT

( b1−c1
2 , b2

2

) (− c1
2 , b2

2

) ( b1−c1
2 , 0

) ( b1−c1
2 , b2

2

)
oWSLS (b1 − c1, b2 − c2)

(− c1
2 , b2−c2

2

) ( b1−c1
2 ,− c2

2

)
(b1 − c1, b2 − c2)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

To investigate how the newly introduced strategy would
affect the population’s evolutionary dynamics, Fig. 3(a)
illustrates the evolution results of cooperation when the pop-
ulation reaches a steady state. We find that the introduction
of strategy oWSLS can significantly promote cooperation
in both games. Specifically, the cooperation rate in both
games gradually increases as the value of the benefit b1

increases from 1 to 2. The two games almost reach a
full cooperation state when benefit b1 = 2. To further ex-
plore this reason, we studied the frequencies of strategies
in the population. As shown in Fig. 3(b), a large bene-

fit b1 is beneficial for the survival of strategy oWSLS. As
the benefit b1 increases from 1 to 2, the frequencies of
strategy game-1 semi-2TFT and strategy game-2 semi-2TFT
rapidly decline and strategy oWSLS rapidly increases. When
benefit b1 = 2, the strategy oWSLS occupies almost the entire
population.

B. Homogeneous population with the same preferences

In the above study, players place equal importance on
both games. Next we explore the effect of variation in game
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FIG. 3. The cooperation rate and frequencies of strategies under different benefits b1. Panel (a) shows the cooperation rate in the two
games increases in both games as benefits b1 increase. Panel (b) shows the frequency of strategy oWSLS is positively correlated with benefit
b1; strategy game-1 semi-2TFT and strategy game-2 semi-2TFT are negatively correlated with benefit b1. Parameters: b2 = 3, c1 = c2 = 1,
s = 2, and θ = 0.5.

preferences on the level of population cooperation by varying
the value of the payoff weights θ . In contrast to the work of
Donahue et al. [41], we have two main results when con-
sidering homogeneous preferences. One is that players are
more inclined to defect in the more preferred game 1. The
other is the smaller the difference in preference between the
two games, the broader the parameter area that a high level
of cooperation can survive. Cooperative evolution results in
both games are shown in Fig. 4. The first result can be seen
in the upper left corner of Figs. 4(a) and 4(b); under small
benefit b1, the more players prefer a given game, the lower
the cooperation in that game. The cooperation rate of game 1
is lower than 0.2, while the cooperation rate of game 2 stays

around 0.5. In the bottom left corner of Figs. 4(a) and 4(b),
we find that the cooperation rate of game 1 is higher than 0.6,
while the cooperation rate of game 2 is lower than 0.5. Players
are more inclined to defect in game 2. As for the second result,
we can find that as θ increases from 0 to 0.5, the critical
value of b1 for full cooperation decreases to about 2. As θ

continues to increase from 0.5 to 1, the critical value of b1 for
full cooperation increases to around 3.5. When θ = 0.5, the
critical value of b1 required for full cooperation is minimized.

To explain this result, Fig. 5 shows the frequencies of
strategies with the benefit b1 for different payoff weights θ .
As Fig. 5(a) depicts, when θ = 0.1 and under small benefit
b1, the majority of players in the population take the strategy

FIG. 4. Color-coded cooperation rate in both games in dependence on benefit b1 and payoff weights θ . (a) the cooperation rate in game 1;
(b) the cooperation rate in game 2. Parameters: b2 = 3, c1 = c2 = 1, and s = 2.
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FIG. 5. The frequencies of strategies with the benefit b1 under different payoff weights θ . In panels (a–c), an increase in θ facilitates the
strategy oWSLS to occupy populations over a wider range of parameters and reduce the survival range of strategy game-1 semi-2TFT. In
panels (d–f), continued increase of θ reduce the survival range of strategy oWSLS and facilitates the strategy Game-2 semi-2TFT to occupy
populations over a wider range of parameters. Parameters: b2 = 3, c1 = c2 = 1, and s = 2.

game-1 semi-2TFT, while the number of players adopting
oWSLS gradually increases as b1 increases. This is because
the payoff weights between the two games differ significantly;
players can get more payoff in game 2, while the payoffs
players can get in game 1 are very small. Regardless of
whether players choose to cooperate or defect in game 1,
the influence of that game on the players is negligible. This
provides favorable conditions for players to choose defection
in game 2 to pursue high payoffs without fearing retaliation
from opponents in game 1. As b1 increases, strategy oWSLS
can get more payoffs during the strategy interaction. This
motivates players to choose the oWSLS strategy and maintain
cooperation within the population. As shown in Figs. 5(a)5(c),
as the difference in payoff weights between the two games
gradually decreases, the payoffs players can get in game 2 also
gradually decrease, which undoubtedly weakens the motiva-
tion for players to defect in that game. The critical value of b1

required to motivate players to choose oWSLS also gradually
decreases and expands the parameter range where cooperation
can be maintained. When the payoff weights of the two games
are equal, the optimal condition to sustain cooperation to the
maximum extent is achieved. A similar phenomenon can be
seen in Figs. 5(d)–5(f).

C. Heterogeneous population with different preferences

In general, heterogeneous populations can offer a better
condition for cooperation. For example, Szolnoki and Sz-
abó [60] introduced heterogeneous teaching activities, where
some players are better at spreading their strategy, leading
to higher cooperation levels. Perc and Szolnoki [61] intro-
duced heterogeneity through social diversity; they found that

differences in social status or wealth help enhance cooper-
ation. Here, we consider the heterogeneous preferences of
individuals in the population which allow different players
to have different preferences. Specifically, we further divide
the population into two groups of players: one group prefers
issue 1 (where 0.5 < θ1 � 1), with a proportion denoted as
α; the other group prefers issue 2 (where 0 � θ2 < 0.5 and
θ1 + θ2 = 1), with a proportion of 1−α. The larger the value
of α, the more players in the population prefer game 1. The
case of α= 1 indicates everyone in the population prefers
game 1. The other extreme, α= 0, means that everyone in the
population prefers game 2.

In contrast to the work of Donahue et al. [41], we find
that there exists an optimal proportion of players with differ-
ent preferences under which the cooperation rate can reach
its highest level in the population when considering hetero-
geneous preferences. We mainly observe two evolutionary
results in Fig. 6(a-1). As the proportion α of the population
preferring game 1 increases, the cooperation in the two games
first increases and then decreases, and the optimal proportion
that contributes to cooperation is around α = 0.5. The other
result is that cooperation in game 1 is higher than that in
game 2 when α < 0.5, the cooperation in the two games is
equal when α = 0.5, and the cooperation in game 1 is lower
than that in game 2 when α > 0.5. The reasons for these two
results can be seen in Fig. 6(a-2). In extreme cases (i.e., α = 0
and α = 1), the population is homogeneous. As α increases,
the degree of heterogeneity in the population first increases
and then decreases. Correspondingly, the cooperation rate in
the population also first increases and then decreases. As α

increases from 0 to 0.5, although players who prefer game 2
still constitute the majority of the population, their proportion
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FIG. 6. The cooperation rate and frequencies of strategies with the proportion α of the population favoring game 1 under different payoff
weights. (a) θ1 = 0.7; (b) θ1 = 0.8; (c) θ1 = 0.9; (1) the cooperation rate; (2) the frequencies of strategies. Parameters: b1 = 2, b2 = 3, c1 =
c2 = 1, and s = 2.

is gradually decreasing. As a result, the proportion of game-1
semi-2TFT in the population is decreasing and oWSLS is
gradually increasing. The existence of the strategy oWSLS fa-
cilitates cooperation in both games in the population, whereas
the strategy game-1 semi-2TFT only promotes cooperation
in game 1. This leads to the fact that although cooperation
increases in both games, cooperation in game 1 is always

higher than cooperation in game 2. When α = 0.5, the only
two strategies in the population are oWSLS and 2TFT. Players
who choose these two strategies exhibit the same behavior in
both games. At the same time, the number of players who
choose to take the strategy oWSLS reaches the highest, so
the level of cooperation is the same and maximized in both
games. When α continues to increase from 0.5 to 1, players

FIG. 7. The cooperation rate and frequencies of strategies with relative benefit b1/b2. Panel (a) shows the cooperation rate in the two
games increases with the increase of b1/b2. Panel (b) indicates the frequency of strategy oWSLS increases and the frequency of strategy
game-2 semi-2TFT decreases as b1/b2 increases. Parameters: b2 = 3, c1 = c2 = 1, s = 2, θ1 = 0.9, and α = 0.8.
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FIG. 8. The cooperation rate under different exploration rates μ. The cooperation rate in the two games gradually increases and then
decreases as the mutation rate μ increases. Parameters: b2 = 3, c1 = c2 = 1, s = 2, and θ = 0.5.

who prefer game 1 constitute the majority of the population,
and their proportion is gradually increasing. Correspondingly,
the proportion of game-2 semi-2TFT in the population is also
increasing and oWSLS is decreasing. The emergence of the
strategy game-2 semi-2TFT promotes cooperation in game 2,
so the cooperation in game 2 is higher than the cooperation in
game 1. A similar phenomenon can be observed in Figs. 6(b)
and 6(c). Under the same conditions, an increase in θ will
further increase the payoff difference between the two games,
making the promotion effect of heterogeneity on the popula-
tion cooperation rate more significant.

In the above, we fixed the relative benefit b1/b2. Next, we
further explore the effect of b1/b2 on the evolution of cooper-
ation in Fig. 7. In Fig. 7(a), we find that an increase in b1/b2

promotes cooperation in both games. Specifically, cooperation
in both games begins to increase at b1/b2 = 0.5, and the two
games reach full cooperation at b1/b2 = 0.9. In Fig. 7(b),
we can observe that players in the population almost adopt
the strategy game-2 semi 2TFT when b1/b2 � 0.5, which is
because, in this parameter range, players are more inclined to
defect in game 1. As b1/b2 increases, more players will tend to
adopt the strategy oWSLS, and the strategy oWSLS occupies
almost the entire population at b1/b2 = 0.9.

D. Model extensions and robustness test

Figure 8 presents the details of how exploration rates μ in-
fluence the level of cooperation in the two games. As shown in
Figs. 8(a)–8(e), an increase in the rate of exploration enhances
the level of cooperation in the two games of the population
and results in a smaller value of benefit b1 required for the
population to reach a fully cooperative state. In particular, the
exploration rate that can maximize cooperative emergence in
both games is μ=0.01. In Figs. 8(f)–8(i), continued increases
in the rate of exploration inhibit the level of cooperation
in the two games of the population. Besides, we find that
the difference in the level of cooperation between the two
games gradually diminishes as the exploration rate increases.
In particular, when the exploration rate μ = 1, the two games
have the same level of cooperation and are not affected by
benefits b1. The reason for this is that, as the exploration rate
increases, players randomly select a strategy from the strategy
space during strategy updating with a larger probability and
engage in payoff-dependent strategy imitation with a smaller
probability. When the exploration rate μ = 1, players only
randomly select one strategy from the strategy space in the
process of strategy updating.
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FIG. 9. The cooperation rate in both games with the benefit b1 under different payoff weights θ . (a) θ = 0.3; (b) θ = 0.5; (c) θ = 0.7. (1)
The cooperation rate in game 1; (2) the cooperation rate in game 1. Parameters: b2 = 3, c1 = c2 = 1, and s = 2.

We further expand the study by considering that the strat-
egy space consists of stochastic strategies. A strategy can be
defined as a stochastic strategy if each entry in the eight-
dimensional vector of the strategy is uniformly sampled in
the interval (0,1). We assume the limit of rare exploration
μ → 0 for the strategy update process, which can simplify
the calculation of the evolutionary dynamics [62–64]. We
conduct 200 simulations and record the cooperation rate of
each player at the end of each simulation. Figure 9 shows the
evolutionary results of the cooperation of correlated stochastic
strategies and uncorrelated stochastic strategies. Compared to
the uncorrelated case, the correlated case can significantly
promote cooperation in both games regardless of which game
players prefer. As shown in Fig. 9(a), the correlation between
games can significantly enhance cooperation in the two games
when θ = 0.3. In Figs. 9(b) and 9(c), this enhancement in
the two games can also be seen when θ = 0.5 and θ = 0.7,
respectively. Besides, in Fig. 9(a-1), we can also find that
the cooperation rate in game 1 increases as benefits b1 in-
crease under correlated strategies and uncorrelated strategies.
In Fig. 9(a-2), the cooperation rate in game 2 decreases as
benefits b1 increase under uncorrelated strategies, and the
cooperation rate in game 2 increases as b1 increases under
correlated strategies. Comparing Figs. 9(a-1), 9(b-1), and 9(c-
1), we further find that an increase in θ can amplify the effect
of b1 on cooperation in game 1, while in Figs. 9(a-2), 9(b-2),
and 9(c-2), the change in θ does not have a significant effect
on the cooperation rate in game 2.

Each entry of the stochastic strategy is randomly generated
between 0 and 1. The definitions of cooperative and defec-
tive strategies for deterministic strategies no longer apply to
stochastic strategies. To quantify the frequencies of different
strategy categories in the evolutionary simulation, we define a
stochastic strategy as approximately cooperative if it induces
two players with that strategy to mutually cooperate with a
probability of at least 0.8 [41]. Similarly, a stochastic strategy
is defined as approximately noncooperative if the cooperation
rate is below 0.2. We conduct 200 simulations and record the
cooperation rate of each player at the end of each simulation.
Then we distinguish four categories of strategies according to
the players who may cooperate in both games (AC), cooperate
in one game and defect in the other (C1 or C2), and defect in
both games (AD). Figure 10 shows the frequencies of the four
categories of strategies with the benefit b1 for different payoff
weights θ . As Fig. 10(a) depicts, when θ = 0.3, the frequency
of strategy AC and strategy C1 gradually increase with the
increase of benefit b1, and the frequency of strategy C2 and
strategy AD gradually decrease with the increase of benefit
b1. Both strategies AC and C1 can promote cooperation in
game 1, which explains why an increase in b1 can promote
cooperation to a greater extent in game 1 than in game 2.
The increase in strategies AC and C1 provides a double boost
to cooperation in game 1, while the decrease in strategy C2
diminishes the boost to cooperation in game 2 provided by
strategy AC. Comparing Figs. 10(a)–10(c), we further find
that the frequency of strategy C1 gradually increases and
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FIG. 10. The frequencies of strategies with different benefits b1 and payoff weighs θ . The frequencies of AC and C1 are positively
correlated with the benefit b1, and the frequencies of C2 and AD are negatively correlated with the benefit b1. The frequency of C1 gradually
increases while the frequency of C2 gradually decreases with the increase of payoff weight θ . Parameters: b2 = 3, c1 = c2 = 1, and s = 2.

the frequency of C2 gradually decreases as θ increases. This
explains why an increase in θ amplifies the effect of b1 on
cooperation in game 1, while it does not have a significant
effect on the cooperation rate in game 2. This reasoning is
similar to the above.

For all previous evolutionary simulations, we fixed the se-
lection intensity s = 2. However, the selection intensity plays
an important role in determining the impact of the game on
reproductive success [65]. Here Fig. 11 shows that we ob-
tain similar results when we vary the selection intensity s.
As shown in Fig. 11(a), under different selection intensities
s, the decrease in the difference in preferences between the
two games can still increase the parameter area that a high
level of cooperation can survive. As shown in Fig. 11(b),
under different selection intensities s, the optimal proportion
of players with different preferences under which the cooper-
ation rate can reach its highest level in the population remains
around 0.5.

IV. CONCLUSION

In this paper, we study a multi-issue game model from
a multiobjective and correlated strategy perspective. In this
model, multiple issue games are played simultaneously and
each issue is represented by an infinitely repeated prisoner’s
dilemma game. The correlations between different issues are
established through both strategies and payoffs. The corre-
lated strategy means that a player’s action in an issue not
only depends on the historical behavioral information in this
issue but also on the historical behavioral information of other
issues. Preferences for issues are measured by a weight vector.
We also consider population heterogeneity in the model by
assigning different payoff weights to represent players who
may have different preferences on the same issues.

Our results are based on the model of two issues. Firstly,
we investigate the evolutionary results of cooperation under
different strategy spaces. We find that the introduction of strat-
egy oWSLS can promote the cooperation of the population

FIG. 11. The cooperation rate in both games under different selection intensities s. (a) The effect of different game preferences θ on
cooperation rate under homogeneous preferences when s = 10, 0.1, respectively. (b) The effect of different proportions α on cooperation
under heterogeneous populations when s = 10, 0.1, respectively. Parameters: b1 = 2, b2 = 3, c1 = c2 = 1, and θ1 = 0.7.
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and can be the dominant strategy in the population under the
large benefit of game 1. Then we find that, under the small
benefit of game 1, players are more inclined to defect in a
game if that game is preferred by players. We also find that
the smaller the difference in preferences between the two
games, the broader the parameter area that a high level of
cooperation can survive. Specifically, as the payoff weight of
game 1 increases, the value of the benefit of game 1 required
for full cooperation decreases and then increases. When the
payoff weights of both games are the same, the value of the
benefit of game 1 required for full cooperation is minimized.
Besides, under the condition of heterogeneous payoff weight,
we further find an optimal proportion of players with dif-
ferent preferences for the same issues that can make a peak
of cooperation in both games in the population. Finally, we
further extend the study by varying the mutation rate and by
considering the strategy space consisting of stochastic strate-
gies. We find that an increased mutation rate first promotes
and then inhibits the level of cooperation in the popula-

tion. Compared to the uncorrelated stochastic strategies, the
correlated stochastic strategies can significantly promote co-
operation in both issues regardless of which issue players
prefer. These results extend our understanding of the evolu-
tion of cooperation in correlated multi-issue social dilemmas.
However, our study is limited to the strategy space of reac-
tive strategies, and the model can be extended to a larger
strategy space, such as memory-one strategies or even
memory-n strategies. In addition, the study of correlated
multi-issue games in a structured population deserves further
exploration.
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