
PHYSICAL REVIEW E 110, 024306 (2024)

Spiking mode-based neural networks

Zhanghan Lin 1 and Haiping Huang 1,2,*

1PMI Lab, School of Physics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
2Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University,

Guangzhou 510275, People’s Republic of China

(Received 6 November 2023; revised 3 June 2024; accepted 22 July 2024; published 13 August 2024)

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying
working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that
updating all weights is quite expensive. Furthermore, after training, all information related to the computational
task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms.
Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where
the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output
modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and
their associated scores characterizing the importance of each decomposition term. The number of modes is thus
adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the
training cost because of significantly reduced space complexity for learning. Training spiking networks is thus
carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural
activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g.,
a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our
framework in two computational tasks—digit classification and selective sensory integration tasks. Our method
thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this
training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
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I. INTRODUCTION

Spiking neural activity observed in primates’ brains estab-
lishes the computational foundation of high-order cognition
[1]. In contrast to modern artificial neural networks, spik-
ing networks have their own computation efficiency, because
the spiking pattern is sparse and also the all-silent pattern
dominates the computation. Therefore, studying the mecha-
nism of spike-based computation and further deriving efficient
algorithms play an important role in current studies of neuro-
science and AI [2].

In a spiking network (e.g., cortical circuits in the brain),
the membrane potential returns to a resting value (hyper-
polarization) after a spike is emitted. In an algorithmic
implementation, following a spike, the potential is. reset to a
constant during the refractory period [1]. In this short period,
the neuron is not responsive to its afferent synaptic currents
including external signals. The neural dynamics in the form
of spikes is thus not differentiable at spike times, which is in
a stark contrast to the rate model of the dynamics, for which
a backpropagation through time (BPTT) can be implemented
[3–5]. This nondifferentiable property presents a computa-
tional challenge for gradient-based algorithms. A common
strategy is to maintain the nondifferentialbe activation in the
forward pass, but use a surrogate gradient approach in the
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backward pass of BPTT [6]. But previous training of spiking
networks is still computational expensive as the full recur-
rent weight matrix is trained, and thus we propose a mode
decomposition learning (explained in detail below) combined
with the surrogate gradient to make training spiking networks
efficient.

We review relevant existing methods of training spiking
neural networks and highlight the difference from ours. Recur-
rent neural networks (RNNs) using continuous rate dynamics
of neurons can be used to generate coherent output sequences
[7], in which the network weights are trained by the first-order
reduced and controlled error (FORCE) method, where the
inverse of the rate correlation matrix is iteratively estimated
to update the weights during learning [5,7]. This method
can be generalized to supervised learning in spiking neural
networks [8–10]. A recent work proposed to train the rate
network first and then rescale the synaptic weights to adapt
to a spiking setting [11], while earlier works proposed to map
a trained continuous-variable rate RNN to a spiking RNN
model [12,13]. These methods rely either on standard efficient
methods like FORCE for rate models, or on heuristic strate-
gies to modify the weights on the rate counterpart. Another
recently proposed route is a nonlinear voltage-based three-
factor learning rule for multilayer networks of deterministic
integrate-and-fire neurons [14]. All these studies involve in
real-valued weights. In contrast, our current mode decompo-
sition framework works directly on the mode space of the
recurrent connections underlying the spiking dynamics, for
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which many biological plausible factors can be incorporated,
e.g., membrane and synapse timescales, cell types, refractory
time, etc.

Another challenge comes from understanding the com-
putation itself. Even in standard spike-based networks, the
weight values on the synaptic connections are modeled by
real numbers. When a neighboring neuron fires, the input
weight to the target neuron will give a contribution to the
integrated currents. With single real weight values, it is hard
to dissect which task-related information is encoded in neural
activity, especially after learning. In addition, it is commonly
observed that the neural dynamics underlying behavior is low-
dimensionally embedded [15]. There thereby appears a gap
between the extremely high-dimensional weight space and the
actual low-dimensional latent space of neural activity. Recent
works began to fill the gap using the recurrent rate (rather than
spiking) networks, and these works focused on a low-rank
decomposition of connectivity matrix (the basis can be used
to facilitate a projection) [16,17], constructing recurrent rate
networks to realize specific dynamics on designed manifolds
[18], or using variants of principal component analysis on
recurrent rate dynamics [19]. To fill the gap in the trained
spiking networks, we develop a spiking mode-based neural
network (SMNN) here, where the mode vectors constructing
the recurrent weights offer the bases for projection of high-
dimensional neural trajectories. This is not yet addressed in
previous studies.

Recent studies focused on the low-rank connectivity hy-
pothesis for recurrent rate dynamics [16,17,20]. The weight
matrix in RNNs is decomposed into a sum of a few rank-one
connectivity matrices. Recently, this low-rank framework has
been applied to analyze the low-rank excitatory-inhibitory
spiking networks, with a focus either on mean-field analysis of
random networks [21], decomposition of synaptic input into
factor based (partially trained and low-rank) and nonfactor
based (random) components [22], or on the capability of ap-
proximating arbitrary nonlinear input-output mappings using
small size networks [23]. Therefore, taking biological con-
straints into account is an active research frontier providing
a mechanistic understanding of spike-based neural computa-
tions. However, the potential of mode decomposition learning
in spiking networks remains unknown, which we shall address
in this work.

In our current work, we interpret this kind of low-rank con-
struction in its full form, like that in the generalized Hopfield
model [24,25]. Then a score matrix is naturally introduced to
characterize the competition amongst these low-rank modes,
where we find a remarkable piecewise power-law behavior for
their magnitude ranking. Strikingly, the same mode decompo-
sition learning has been shown to take effects for multilayered
perceptrons trained on a real structured dataset [26], for which
the encoding-recoding-decoding hierarchy can be mechanis-
tically explored. As in multilayered perceptrons, this full
decomposition requires less parameters (a linear space com-
plexity is achievable).

In essence, we decompose the traditional real-valued
weights as three matrices: The left one acts as the input mode
space, the right one acts as the output mode space, and the
middle one encodes the importance of each mode in the cor-
responding space. Therefore, we can interpret the weight as

two mode spaces and a score matrix. The neural dynamics
can thus be projected to the input mode space which is an
intrinsically low-dimensional space. In addition, the leaky
integrated fire (LIF) model can be discretized into a discrete
dynamics with intrinsic synaptic dynamics and threshold-type
firing, for which a surrogate gradient descent with an addi-
tional steepness hyperparameter can be applied [6,27]. We
then show in experiments how the SMNN framework is suc-
cessfully applied to classify pixel-by-pixel MNIST datasets
and furthermore to context-dependent computation in neu-
roscience. For both computational tasks, we reveal attractor
structures in a low-dimensional mode space (in the number of
modes) onto which the high-dimensional neural dynamics can
be projected. Overall, we construct a computational efficient
(less model parameters required because of a few dominating
modes) and conceptually simple framework to understand
challenging spike-based computations (attractor picture in
physics). This finding will inspire more physics stuides on
the high-dimensional spiking neural dynamics including those
driven by learning.

II. SPIKING MODE-BASED NEURAL NETWORKS

Our goal is to learn the underlying information represented
by spiking time series using SMNNs. This framework is
applied to classify the handwritten digits whose pixels are
input to the network one by one (a more challenging task
compared to the perceptron learning), and is then generalized
to the context-dependent computation task, where two noisy
sensory inputs with different modalities are input to the net-
work, which is required to output the correct response when
different contextual signals are given. This second task is a
well-known cognitive control experiment carried out in the
prefrontal cortex of Macaque monkeys [28].

A. Recurrent spiking dynamics with mode-based connections

Our network consists of an input layer, a hidden layer with
N LIF neurons and an output layer. In the input layer, input
signals are projected as external currents. Neuron i in the hid-
den layer (reservoir or neural pool) has an input mode ξin

i and
an output mode ξout

i , where both modes ξi ∈ RP. All N modes
form a pattern matrix ξ ∈ RN×P, i.e., each row is a mode
vector. The connectivity weight from neuron j to neuron i is
then constructed as W rec

i j = ∑
μ λμξ in

iμξ out
jμ , where λμ is a score

encoding the competition among modes, and the connectivity
matrix can be written as W rec = ξin�(ξout )� ∈ RN×N where
� ∈ RP×P is the importance matrix which is a diagonal matrix
diag(λ1, . . . , λP ) here. For simplicity, we do not take into
account Dale’s law, i.e., the neuron population is separated
into excitatory and inhibitory subpopulations. This biological
law could be considered as a matrix product between a non-
negative matrix and a diagonal matrix specifying the cell types
[29]. The activity of the hidden layer is transmitted to the
output layer for generating the actual network outputs. Based
on SMNNs, the time complexity of learning can be reduced
from O(N2) to O(2NP + P). It is typical that P is of the order
one, and thus the SMNN has the linear training complexity in
the network size.
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Before specifying the neural dynamics, we remark a few
differences from the singular value decomposition method.
First, the mode decomposition learning rule is inspired in
physics by Hopfield model (a toy model of associative mem-
ory [30], see also our two recent papers [24,26]). In the
generalized form [26], one can flexibly interpret the rank num-
ber as the number of patterns, and this number is adjustable. In
biology, this decomposition may implement a linear-nonlinear
layered computation akin to dendritic integration [26]. Sec-
ond, the elements of the importance matrix is not necessarily
positive and can be learned during the training protocol. Third,
the input and output mode vectors are not necessarily or-
thogonal, allowing for more degrees of freedom to interpret
experimental data or execute computational tasks. In addition,
these mode vectors help to project the dynamics trajectories
in the high-dimensional state space onto the low-dimensional
mode space (the dimensionality is determined by P � N).

In the hidden layer, the membrane potential U(t ) and the
synaptic current Isyn(t ) of LIF neurons are subject to the
following dynamics:

τmem
dU(t )

dt
= −U(t ) + Isyn(t ) + Iext (t ), (1a)

Isyn(t ) = W recr(t ), (1b)

where τmem is the membrane time constants. Iext indicates the
external currents. If the recurrent weight matrix does not adopt
the proposed decomposition form, and only single weight
values are trained, then we call this standard type spiking
neural network (SNN). For comparison, we also consider rate
networks, where the neural dynamics is specified as follows:

τmem
dU(t )

dt
= −U(t ) + W recrrate(t ) + Iext (t ), (2)

where the firing rate rrate(t ) = tanh(U(t)). The recurrent con-
nection can take a mode decomposition, and we call this
a mode decomposition learning recurrent neural network
(MDL-RNN), while RNN refers to the standard rate network
without mode decomposition.

The spikes are filtered by specific types of synapses in the
brain. Therefore, we denote r ∈ RN in Eq. (1) as the filtered
spike train with the following double-exponential synaptic
filter [1]:

dri

dt
= − ri

τd
+ hi, (3a)

dhi

dt
= −hi

τr
+ 1

τrτd

∑
t k
i <t

δ
(
t − t k

i

)
, (3b)

where τr and τd refer to the synaptic rise time and the synaptic
decay time, respectively, and t k

i refers to the kth spiking time
of unit i. Different timescales of synaptic filters are due to
different types of receptors (such as fast AMPA, relatively fast
GABA, and slow NMDA receptors) with different temporal
characteristics [1]. Note that the above synaptic filter has also
been used in a previous work [11], which proposed to train
the rate network first and then rescale the synaptic weights
to adapt to the spiking setting. We remark that other types of
synaptic filters can also be used, e.g., the simple exponential
type used in previous works [9,27].

By definition,

Iext (t ) = W inu(t ), (4)

where the time-varying inputs u ∈ RNin are fed to the network
via W in ∈ RN×Nin . Corresponding to the continuous dynamics
in Eq. (1), the membrane potential is updated in discrete time
steps by [31]

U[n + 1] = (λmemU[n] + (1 − λmem )I[n])) � (I − S[n]), (5)

where n is the time step, � denotes the element-wise product,
I is an all-one vector of dimension N , and the mem-
brane decay factor λmem ≡ exp(− �t

τmem
). �t is a small time

interval or step size for solving the ordinary differential equa-
tions [Eq. (1)]. We show details of derivations in Appendix A.
A spike thus takes place at a time measured in the unit of �t .
S(t ) is the associated spiking output of neuron i, computed
as Si(t ) = �(Ui(t ) − Uthr ) with a spike threshold Uthr (set
to one in the following analysis, i.e., Uthr = 1) and Heavi-
side step function �. We also consider the refractory period
whose length is denoted by tref . The factor I − S[n] resets
the membrane potential to zero after a spike event (i.e., reset
to the resting potential Ures = 0). If the refractory period is
considered, then the membrane potential will stay at zero for a
short duration, e.g., tref = 2 ms. In the following, I[n] denotes
the total afferent synaptic currents at the time step n and is
calculated as

I[n + 1] = W recr[n] + W inu[n]. (6)

B. Computational tasks

1. MNIST data learning

The MNIST dataset consists of handwritten digits, each
of which is composed of 28 × 28 pixels, belonging to 10
different classes (6000 images for each class). The dataset is
commonly used as a benchmark classification for neural net-
works [32]. The handwritten digit is a static image, and thus
must be transformed into spiking time series. We thus intro-
duce an additional transformation layer consisting of spiking
neurons before the hidden layer. More precisely, each image is
converted into spiking activity using one neuron per pixel. The
transformation layer is then modeled by a population of Pois-
son spiking neurons with a maximum firing rate fmax. Each
neuron in this layer generates a Poisson spike train with a rate
fi = gi

255 fmax, where gi is the corresponding pixel intensity. We
present the same static image every 0.2 ms (step size) and for
a total of 100 time steps as an input to the transformation
layer (therefore for a duration 20 ms), and this input image
is converted into spiking activity as described above to the
hidden layer [Figs. 1(a) and 1(b)].

2. Context-dependent learning task

It is fundamentally important for our brain to attend selec-
tively to one feature of noisy sensory input, while the other
features are ignored. The same modality can be relevant or
irrelevant depending on the contextual cue, thereby allowing
for flexible computation (a fundamental ability of cognitive
control). The neural basis of this selective integration was
found in the prefrontal cortex of Macaque monkeys [28]. In
this experiment, monkeys were trained to make a decision
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(a) (b)

(c)

FIG. 1. Model structures for MNIST and contextual integration tasks. (a) Model structure for MNIST task. Each image is converted to
a spiking activity input to the recurrent reservoir, by Poisson spiking neurons whose rate is determined by the pixel intensity (see details in
the main text). T = 20 ms in our learning setting. (b) The activity profile of one readout unit for the MNIST task. Only the maximal value is
taken for classification. (c) Model structure for contextual integration task. If the cued (context 1 or context 2) input signal is generated using a
positive offset value, then the network is supervised to produce an output approaching +1 regardless of the irrelevant input signals (e.g., those
coming from the other context).

about either the dominant color or motion direction of ran-
domly moving colored dots. Therefore, the color or motion
indicates the context for the neural computation. This context-
dependent flexible computation can be analyzed by training a
recurrent rate neural network [28,29,33]. However, a mode-
based training of spiking networks is lacking so far.

Towards a more biologically plausible setting, we train
a recurrent spiking network using our SMNN framework.
The network has two sensory inputs of different modalities
in analogy to motion and color, implemented as a Gaussian
trajectory whose mean is randomly chosen for each trial, but
the variance is kept to one. In addition, two contextual inputs
(cues indicating which modality should be attended to) are
also provided. The network is then trained to report whether
the sensory input in the relevant modality has a positive mean
or a negative mean (offset). Within this setting, we hypoth-
esize that four attractors would be formed after learning,
corresponding to left motion, right motion, red and green (see
Table I), as expected from the Monkey experiments [28]. We
would test this hypothesis using our SMNN framework. In
simulations, we consider 500 time steps with a step size of

0.2 ms, and noisy signals are only present during the stimulus
window (from 10 to 50 ms) [see an illustration in Figs. 1(c)
or 3(c)].

III. SIMULATION RESULTS OF MODE
DECOMPOSITION LEARNING

Throughout our experiments, the Heaviside step function
is approximated by a sigmoid surrogate only in the backward

TABLE I. Attractor type corresponding to the monkey’s
experiment.

Offset Contextual input Attractor type

Positive (1,0) Left attractor
Negative (1,0) Right attractor
Positive (0,1) Red attractor
Negative (0,1) Green attractor
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(a) (b) (c)

(d) (e)

FIG. 2. Learning performance of MNIST classification task. Five independent runs are used to estimate the standard deviation. (a) Test
accuracy versus different mode size. Spiking model without mode decomposition learning (this counterpart is called SNN) is compared. SMNN
indicates the mode-based learning of spiking networks. (b) Loss function as a function of training minibatch. Each minibatch is composed of
100 digit images. The mode size varies, and the network size N = 100. (c) Comparison of the accuracies between rate and spiking models
with the same fixed network size N = 200. Rate networks with mode decomposition learning (MDL RNN) and without MDL (RNN) are also
considered. (d) Membrane potential traces for three typical reservoir neurons in response to spike train inputs after training. The triangle or
square marks when the filtered spike train takes a maximum value. (P, N ) = (3, 100). Note that the displayed three moments for the maximal
firing rates overlap with each other, but this is not the case for other neurons. (e) Spike trains of reservoir neurons with neuron firing rate (right)
and population firing fraction (bottom) in response to an input image of digit 2. (P, N ) = (3, 100).

pass of the learning process,

�(x) ≈ x

1 + k|x| , (7)

where a steepness parameter k = 25. This is because,
limk→∞ �′(x) = δ(x), where x = U − Uthr. In the forward
pass, the original form of the step function is used to model
the spiking process. Other parameters include �t = 0.2 ms,
τmem = 20 ms, τd = 30 ms, τr = 2 ms, and the refractory
period tref = 2 ms for all tasks. These hyperparameters are
summarized in Table III (see Appendix C). Because we
have not imposed sparsity constraint on the connectivity, we
take the initialization scheme that [ξin�(ξout )�]i j ∼ O( 1√

N
),

similar to what is done in multilayered perceptron learning
[26]. The training is implemented by the adaptive-moment-
estimation (Adam [34]) based stochastic gradient descent
algorithm that minimizes the loss function (cross-entropy
for classification or mean-squared error for regression in
the second task) with a learning rate of 0.001. We remark
that training in the mode space can be done by using auto-
mated differentiation on PyTorch. However, we still leave the

detailed derivation of the learning rule to Appendix B. Codes
are available in our GitHub [35].

A. MNIST classification task

As a proof of concept, we first apply the SMNN to the
benchmark MNIST dataset. The maximum of recurrent unit
activity over time is estimated by ai = maxt {ri(t )} [27], which
are read out by the readout neurons as follows:

o = softmax(W outa), (8)

where the readout weight matrix W out ∈ R10×N . Using BPTT,
the gradients in the mode space θ = (ξin,�, ξout ) is calculated
as follows:

∂L
∂ξin =

T∑
t=1

∂L
∂I(t )

∂I(t )

∂W rec

∂W rec

∂ξin =
T∑

t=1

∂L
∂I(t )

r(t − 1)ξout�,

∂L
∂λμ

=
T∑

t=1

∂L
∂I(t )

∂I(t )

∂W rec

∂W rec

∂λμ

=
T∑

t=1

∂L
∂I(t )

r(t − 1)ξin
μ

(
ξout
μ

)�
,
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(a) (b) (c)

(d) (e)

FIG. 3. Learning performance of contextual integration task. Five independent runs are used to estimate the standard deviation. (a) Mean-
squared error (MSE) versus different mode sizes. Spiking model without the mode decomposition learning (this counterpart is called SNN) is
compared. SMNN indicates the mode-based learning. (b) MSE as a function of training minibatch for different mode sizes. The network size
N = 100. (c) Average output activity in response to test inputs for (P, N ) = (3, 100). The shaded region indicates the stimulus period. Sensory
inputs are only shown during the stimulus period, followed by a response period. Before the response period, the target output is always set
to zero. The shaded region indicates the stimulus period. The fluctuation over 100 random trials is also shown. Colored lines are two target
outputs. (d) Membrane potential trace for five typical reservoir neurons in response to a random input. (e) Spike raster of reservoir neurons
with neuron firing rate (right) and population firing fraction (bottom). (P, N ) = (3, 100) for both (d) and (e).

∂L
∂ξout =

T∑
t=1

∂L
∂I(t )

∂I(t )

∂W rec

∂W rec

∂ξout =
T∑

t=1

∂L
∂I(t )

r(t − 1)ξin�,

(9)

where the μth column of the pattern matrix ξ is denoted by
ξin/out
μ ∈ RN , T is the length of the training trajectory, L is the

loss function, whose gradients ∂L
∂I(t ) with respect to the total

synaptic current are calculated explicitly in Appendix B. Each
training minibatch contains 100 images, and LIF networks
with different mode sizes (P = 1, 2, . . . , 50, 100) are trained.

With increasing mode size, the test accuracy increases with
a small margin [Figs. 2(a) and 2(b)]. A better generalization
is achieved by a larger neural population. The network size is
a key parameter to determine the performance. Surprisingly,
even for the smallest mode size (P = 1), the network could be
trained to perform well, reaching an accuracy of about 96.5%
for N = 200. In comparison with other network counterparts,
the SMNN performs much better than SNN, demonstrating
that the mode decomposition plays an important role as well
[Fig. 2(c)]. In addition, the rate network is slightly better than
SMNN for this digit classification task, while the SMNN bears
a low population firing rate as well as fewer parameters and

is thus energetically efficient and fast. However, for the rate
network counterpart, the mode decomposition learning is still
a key element to boost the performance [Fig. 2(c)]. We also
plot the membrane potential profile for a few representative
neurons in a well-trained network and observe a network
oscillation [Figs. 2(d) and 2(e)], which reflects a neural pop-
ulation coding of a repeated presentation of the same digit in
our stimulus setting (see Sec. II B 1).

B. Contextual integration task

In the contextual integration task, the network activity is
read out by an affine transformation as

o(t ) = W outr(t ), (10)

where W out ∈ R1×N refers to the readout weights, and r(t )
is the filtered spike train. We use the root-mean-squared loss
function defined as

L =
√√√√ T∑

t=0

[z(t ) − o(t )]2, (11)
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where z(t ) is the target output in time t , taking zero except in
the response period, and T denotes the time range. In analogy
to the previous MNIST classification task, the gradient in the
mode-score space θ = (ξin,�, ξout ) for the current context-
dependent computation could be similarly derived (see details
in Appendix B). The learning rate was set to 0.001, and each
training minibatch contains 100 trials.

As shown in Fig. 3(a), the test MSE [i.e., L2, see Eq. (11)]
for the SMNN decreases with the mode size. In particular,
a larger neural population is better. Even for a few modes
like P = 3, the predicted output already matches the target
very well [see Fig. 3(c)]. The SNN without the mode decom-
position achieves a lower MSE, but we emphasize that the
accuracies behind the MSE within the shown range (from 0.01
to 0.02) do not look very different [see Fig. 3(c) for the case
of P = 3]. In this sense, compared to SNN, SMNN saves the
training parameters. The training dynamics in Fig. 3(b) shows
that a larger value of P speeds up the learning. Figure 3(c)
confirms that our training protocol succeeds in reproducing
the result of Monkey’s experiments on the task of flexible
selective integration of sensory inputs. We can even look at
the dynamics profile of the membrane potential [Fig. 3(d)].
During the stimulus period, each neuron has its own timescale
to encode the input signals, and at a network scale, we do
not observe any regular patterns but an asynchronous pattern
typically observed in prefrontal cortex. After the sensory input
is turned off, the network is immediately required to make
a decision, and we observe that the firing frequency of the
neural pool is elevated already a bit earlier than the moment
of removing input, but a very low population firing rate is
still maintained [Fig. 3(e)]. This observation is a reflection
of neural dynamics on the neural manifolds underlying the
perceptual decision making, which we shall detail below.

C. Power law for connectivity importance scores

We next find whether some modes are more important than
others. To make comparable the magnitudes of the pattern
and importance scores, we rank the modes according to the
following measure [26]:

τμ = χ
∣∣∣∣ξin

μ

∣∣∣∣
2 + χ

∣∣∣∣ξout
μ

∣∣∣∣
2 + |λμ|, (12)

where ξin/out
μ ∈ RN (μth column of ξin/out), and χ =∑

μ |λμ|/∑
μ(‖ξin

μ‖2 + ‖ξout
μ ‖2). We observe a piecewise

power law for the τ measure (Fig. 4), implying that the orig-
inal state space of neural activity is actually low dimensional
and can be projected to a low-dimensional mode space, with
Pdom (taking a small value compared to N in Fig. 4) dominant
coordinate axes on which the τ measure vary mildly. For
visualization (see next subsection), we can only take P � 3,
whose results can be compared with experimental intuition.
On the one hand, the task information is coded hierarchically
into the mode space, and, on the other hand, this observation
supports that a fast training of spiking networks is possible
by focusing on leading modes explaining the network macro-
scopic behavior.

D. Reduced dynamics in the mode space

Here we will show how the dynamics of network activity
based on our SMNN learning can be projected to a low-
dimensional counterpart. We follow the previous works of
low-rank recurrent neural networks [20,21]. To construct a
subspace spanned by orthogonal bases, we first split each col-
umn of W in (∈ RN×Nin ) into the parts parallel and orthogonal
to the input mode ξin (or the output mode),

W in
s =

∑
μ

αμξin
μ + βsW s

⊥, (13)

where the μth column of ξin is denoted by ξin
μ ∈ RN , s in-

dicates which component of input signals, αμ and βs are
coefficients for the linear combination. We assume that the
bases are orthogonal; otherwise, one can use Gram-Schmidt
procedure to obtain the orthogonal bases.

The filtered spike trains r(t ) can then be written as a form
of linear combination,

r(t ) =
∑

μ

κμ(t )ξin
μ +

∑
s

νs(t )W s
⊥, (14)

where the coefficients are given respectively by

κμ(t ) =
(
ξin
μ

)�
r(t )(

ξin
μ

)�
ξin
μ

,

νs(t ) = (W s
⊥)�r(t )

(W s
⊥)�W s

⊥
. (15)

The coefficients {κμ(t )} forms a low-dimensional latent dy-
namics of the computational task, for which we display the
results for the two tasks in the following section.

E. Projection in the mode space

To study the neural manifold underlying the perceptual
decision-making, we project the high-dimensional neural ac-
tivity onto the mode space. If the small number of modes is
sufficient to capture the performance, then we can visualize
the manifold by projecting the neural activity onto the mode
space, using the input or output mode vector as the basis. As
expected, after training, four separated attractors are formed
in the mode space, either in the input mode space or in the
output mode space [Fig. 5(a)]. The test dynamics would flow
to the corresponding attractor depending on the context of the
task.

We next consider a context switching experiment and look
at how the dynamics is changed in the low-dimensional in-
trinsic space. The experimental protocol is shown in Fig. 5(b).
At t = 30 ms, the context is switched to the other one, and
the network should carry out computation according to the
new context, e.g., making a correct response to the input
signal. Before the context is switched, the context cued input
signals have a positive offset. Correspondingly, the neural ac-
tivity trajectory in the mode space evolves to the left attractor
[Fig. 5(c)]. Once the context is switched, the context cues
another input signal that has a negative offset. The neural
trajectory is then directed to the neighboring green attractor.
Therefore, the neural dynamics can be guided by the contex-
tual cue, mimicking what occurs in the prefrontal cortex of
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(a) (b)

(c) (d)

FIG. 4. Connectivity importance |λμ| versus rank (in descending order). Both MNIST classification and contextual integration task are
considered, and the simulation conditions are the same with that in Fig. 2 for MNIST and that in Fig. 3 for context-dependent computation.
We fix P = 30. Three independent runs are used to estimate the standard deviation. We also define a more precise measure τμ = χ‖ξin

μ‖2 +
χ‖ξout

μ ‖2 + |λμ|, where χ = ∑
μ |λμ|/∑

μ(‖ξin
μ‖2 + ‖ξout

μ ‖2). [(a) and (b)] MNIST classification. [(c) and (d)] Contextual integration task.
There appears the piecewise power-law behavior for the τ measure in the log-log plot [(b) and (d)]. The colored vertical dashed lines mark the
fitting ranges for different network sizes.

Monkeys that perform the contextual integration task [28]. We
plot the dynamics of κ for the context switching experiment
[Fig. 5(d)], which reveals the qualitatively same behavior as
observed in Fig. 5(c). A similar attractor picture is also found
in the MNIST classification task (Fig. 6).

F. Spiking variability measured by Fano factor

The spiking activity is commonly irregular, displaying
strong variability even when the neural population is shown
identical stimuli. One can thus count the spiking events in a
time window of duration T for one neuron and then repeat the
experiment over many trials and finally measure the mean and
variance of the counts. The spiking variability is measured by

the Fano factor calculated as [1]

F (T ) = σ 2
N (T )

μN (T )
, (16)

where μN is the mean value of spike counts for one neuron
in a neural population of N neurons, while σ 2

N denotes the
corresponding variance of spike counts. The Fano factor is
exactly one for a Poisson spiking process, irrespective of T .

We plot the Fano factor distribution across neurons in
Fig. 7. The Fano factor is estimated over the entire experimen-
tal window. For the MNIST classification task, the Fano factor
is mainly distributed from 2 to 4 [Fig. 7(a)], indicating highly
unreliable firing patterns, which corresponds to that observed
in Fig. 2(e). For an input image, some neurons fire at high
frequencies, while others remain silent. This non-Poissonian
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(a) (b)

(c) (d)

FIG. 5. The filtered spike train of the hidden layer projected to the mode space for the contextual integration task. The mode size P = 3,
and the network size N = 100. (a) Projection into the input mode space. Three hundred randomly generated trials were used. Different colors
encode different offset signs and contextual cues. The color gets darker with time in the dynamics trajectory. (b) Context switching experiment.
At t = 30 ms, the previous contextual cue is shifted to the other one. The left-y axis encodes the input signals, while the right-y axis encodes
the contextual information. (c) Activity projection for the context switching experiment in (b). (d) Projection coefficient in the input mode
space for the context switching experiment in (b).

phenomenon has also been observed in cortical areas [36].
For the context-integration task, the Fano factor is surprisingly
concentrated around one [Fig. 7(b)], except for a long tail at
large values of Fano factor. This model observation highlights
the potential of our method in studying the alignment between
the simulation and neural experiments of context-dependent
cognitive decision making.

G. Ablation studies on the refractory, activation
function and network robustness

To study effects of the refractory period and smoothness
of activation function on the network performance, we further
design ablation experiments, where we consider the first sce-
nario of setting tref zero, and the second scenario of adopting
a smooth current-transfer function φ(x) instead of the step

function as follows:

φ(x) = 1
2 [1 + tanh(βx)], (17)

where we set β = 20 to mimic the step function. Note that
in this control experiment, we use this transfer function
both in forward and backward passes during the training. As
shown in Fig. 8(a) for the MNIST task, the absence of the re-
fractory period allows the network to respond more correctly
to external stimuli. Performance without the refractory period
is slightly better than with the refractory period, but as the
mode number increases, the gap shrinks. For the contextual
integration task, an appropriate refractory period is able to
optimize network performance [Fig. 8(b)], consistent with
previous results in standard SNNs [11]. Finally, we remark
that networks that use a smooth transfer function instead of
the step function perform much worse than spiking networks
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FIG. 6. Projection of the network activity at the moment of max-
imum firing rates in the MNIST classification task. Three labels of
digits are considered. Other settings are the same as in Fig. 2.

using a sharp step function (neurons can thus fire or be silent),
indicating the importance of spiking event.

We next consider the network robustness in a weight-
pruning experiment. More precisely, for a well-trained con-
nectivity matrix W rec

i j = ∑
μ λμξ in

iμξ out
jμ , we set some elements

where their absolute values |W rec
i j | < θ to zero, where θ is an

adjustable pruning threshold. This operation leads to a diluted
connectivity matrix Ŵ

rec
:

Ŵ
rec = W rec � M, (18)

where � is an element-wise multiplication, and the θ -tuned
mask matrix reads

Mi j =
{

0,
∣∣W rec

i j

∣∣ < θ ;

1,
∣∣W rec

i j

∣∣ � θ.
(19)

Increasing the threshold θ increases the pruning rate, making
the original network sparser. As shown in Fig. 9, for the
MNIST classification task and the contextual integration task,
when the pruning rate is below 60%, there is no significant
change in the network’s test accuracy (or mean-squared error).
However, when the pruning rate is above 60%, the network’s
test accuracy (or mean-squared error) sharply decreases (or
increases) with the pruning rate, indicating that a strongly
diluted network sacrifices the network performance. But this
raises another interesting open question whether a diluted net-
work can be learned while maintaining a similar performance

to the full network, rather than pruning a well-trained weight
matrix of full rank. Training a sparse mode-based spiking
network seems challenging as the sparsity of the connectivity
increases [22]. Interestingly, even with complete pruning of
connection weights, the test accuracy for the MNIST classi-
fication task remains close to 89%. This might be explained
by the specific transformation layer which already contains
enough information about the digit label and therefore a rate-
maximum-over-time readout is accurate.

Finally, we also carry out the pruning experiment on
trained SNNs where the mode decomposition is not used.
As shown in Fig. 10, the SMNN is able to maintain a better
accuracy with fewer parameters compared to a well-trained
SNN subject to an equivalent pruning after training.

IV. CONCLUSION

In this work, we propose a spiking mode-based neural
network framework for training various computational tasks.
This framework is based on mode decomposition learning
inspired from the Hopfield network and multilayered percep-
tron training [24,26]. From the SMNN learning rule, we can
adapt the mode size to the task difficulty, and retrieve the
power-law behavior of the importance scores, and further-
more, the high-dimensional recurrent activity can be projected
to the low-dimensional mode space with a few leading modes,
derived from the power-law behavior. Using a few modes,
we can speed up the training of recurrent spiking networks,
thereby making a large scale of spike-based computation pos-
sible in practice. Further extension of our work allows us to
treat more biological networks, e.g., considering excitatory-
inhibitory networks, sparsity of network connections, and
sequence memory from network activity, etc. It would be very
interesting to see whether a biological plausible rule can be
derived for a sparse sign-constrained spiking network, which
we leave for future works.

To conclude, our work provides a fast, interpretable and
biologically plausible framework for analyzing neuroscience
experiments and designing brainlike computation circuits, and
in particular, the derived plasticity rule in high-dimensional
spiking dynamics is linked to intriguing physics pictures of
attractors, power-law behavior, which would help to elucidate

FIG. 7. Fano factor statistics across neurons. (a) MNIST classification. (b) Contextual integration task. (P, N ) = (10, 200).
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FIG. 8. Ablation experiments by setting the refractory period tref = 0 or replacing the step function by a smooth approximate function.
The network size N = 100, and the standard deviation is estimated using three independent experiments. (a) Test accuracy for the MNIST
classification task. (b) Test mean-squared error for the contextual integration task.

inner workings of high-dimensional brain dynamics—a cen-
tral topic of nonequilibrium physics.
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APPENDIX A: DISCRETIZATION OF CONTINUOUS
NEURAL AND SYNAPTIC DYNAMICS

The interested continuous dynamics can be written in the
following form:

τ
dx

dt
= −x(t ) + y(t ), (A1)

where y(t ) is a time-dependent driving term. This first-order
linear differential equation has a solution,

x(t ) = 1

τ
e−t/τ

∫ t

0
y(s)es/τ ds, (A2)

which implies that x(0) = 0. Next, we assume the discretiza-
tion step size �t is a small quantity. We then have

x(t + �t ) = 1

τ
e− t+�t

τ

∫ t+�t

0
y(s)es/τ ds

= λτ x(t ) + 1

τ
e− t+�t

τ

∫ t+�t

t
y(s)es/τ ds

= λτ x(t ) + λτ

τ

∫ �t

0
y(t + s)es/τ ds

� λτ x(t ) + λτ

τ
y(t )

∫ �t

0
es/τ ds

= λτ x(t ) + (1 − λτ )y(t ), (A3)

where we change the integral variable in the third equality,
and the approximation in the fourth line holds when �t is
close to zero, and we define λτ = e−�t/τ . Note that in our
simulations, τr is relatively small, and therefore we neglect the

FIG. 9. Test performance in pruning experiments where the weights are set to zero if its absolute value falls below a threshold. (a) Test
accuracy for the MNIST classification task. (b) Test mean-squared error for the contextual integration task. (P, N ) = (3, 100).
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FIG. 10. Test performance in pruning experiments on trained SNNs (N = 100) where the weights are set to zero if its absolute value falls
below a threshold. (a) Test accuracy for the MNIST classification task. (b) Test mean-squared error for the contextual integration task. The
vertical line marks the model complexity of SMNN [(1 − (2NP + P)/N2) × 100%], and the corresponding test performances are specified in
the brackets.

corresponding decay factor in the second term of the last
line in Eq. (A3). A full set of discrete dynamics is given
in Eq. (B1). If a single exponential synaptic filter is consid-
ered, then the above discretization equation [Eq. (A3)] can be
directly used, and λτ = e−�t/τsyn , where τsyn is the synaptic
decay time constant as used in a recent work [27].

APPENDIX B: DERIVATION OF MODE-BASED
LEARNING RULES

In this section, we provide details to derive the spiking
mode-based learning rules. First, the discrete update rules for
the dynamics are given as follows:

r(t + 1) = λd r(t ) + (1 − λd )h(t + 1),

h(t + 1) = λrh(t ) + S(t + 1),

U(t + 1) = (λmemU(t ) + (1 − λmem )I(t + 1))) � (I − S(t )),

I(t + 1) = W recr(t ) + W inu(t ), (B1)

where λd = e−�t/τd , λr = e−�t/τr , and t is a discrete time step
(or in the unit of �t) and λmem = e−�t/τmem . With the loss
function L, we define the following error gradients K(t ) ≡
∂L

∂r(t ) , and by using the chain rule, we immediately have the
following results.

a. Case 1: t = T :

∂L
∂r(T )

= K(T ),

∂L
∂I(T )

= K(T )
∂r(T )

∂I(T )
. (B2)

b. Case 2: t < T :

∂L
∂r(t )

= G(t ) + K(t + 1)
∂r(t + 1)

∂r(t )

= G(t ) + λdK(t + 1),

∂L
∂I(t )

= ∂L
∂I(t + 1)

∂I(t + 1)

∂I(t )
+ ∂L

∂r(t )

∂r(t )

∂I(t )

= K(t )
∂r(t )

∂I(t )
, (B3)

where G(t ) is the explicit differentiation of L with respect
to r(t ). Using the surrogate gradient of the step function, we
have

S(t ) = �(U(t ) − UthrI ) ≈ U(t ) − UthrI
1 + k|U(t ) − UthrI| ,

∂S(t )

∂U(t )
= diag

(
1

(1 + k|U(t ) − UthrI|)2

)
, (B4)

where I represents an all-one vector and |a| for a vector a
equals to |ai| when the ith component is considered. As a
result, we can easily get

∂r(t )

∂I(t )
= ∂r(t )

∂h(t )

∂h(t )

∂S(t )

∂S(t )

∂U(t )

∂U(t )

∂I(t )

= (1 − λd )(1 − λmem )diag

(
1

(1 + k|U(t ) − UthrI|)2

)
.

(B5)

Therefore, we can update the mode component and the
connectivity importance as follows:

∂L
∂ξin =

T∑
t=1

∂L
∂I(t )

∂I(t )

∂W rec

∂W rec

∂ξin =
T∑

t=1

∂L
∂I(t )

r(t − 1)ξout�,

∂L
∂λμ

=
T∑

t=1

∂L
∂I(t )

∂I(t )

∂W rec

∂W rec

∂λμ

=
T∑

t=1

∂L
∂I(t )

r(t − 1)ξin
μ

(
ξout
μ

)�
,

∂L
∂ξout =

T∑
t=1

∂L
∂I(t )

∂I(t )

∂W rec

∂W rec

∂ξout =
T∑

t=1

∂L
∂I(t )

r(t − 1)ξin�,

(B6)
where ξin/out

μ ∈ RN (μth column of ξin/out).
For the handwritten digit classification task, ai =

max
t

{ri(t )} = ri(tm
i ), o = softmax(W outa) and L = −zT ln o,
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TABLE II. Parameter initialization.

Parameter Initial distribution Description

W in N (0, 1/Nin ) Input weight
ξin N (0, 1) Input mode
ξout N (0, 1) Output mode
λμ N (0, 1) Connectivity importance
W out N (0, 1/N ) Readout weight

where tm
i is the time when the maximal firing rate is

reached, and z is the one-hot target label. We then have
the following equations for updating time-dependent error
gradients:

Ki(T ) = ∂L
∂ai

∑
j

∂ai

∂r j (T )

= ((o − z)W out )i

∑
j

∂ri
(
tm
i

)
∂r j (T )

= ((o − z)W out )i

∑
j

∂ri
(
tm
i

)
∂r j

(
tm
i

)δ
(
T − tm

i

)
= ((o − z)W out )iδ

(
T − tm

i

)
, (B7)

and

Ki(t ) = ∂L
∂ai

∑
j

∂ai

∂r j (t )
+ λdKi(t + 1)

= ((o − z)W out )i

∑
j

∂ai

∂r j (t )
+ λdKi(t + 1),∀t < T .

(B8)
The sum in the first term of the last equality in Eq. (B8) can
be explicitly calculated out, i.e.,

TABLE III. Model parameters.

Parameter Value Description

�t 0.2 ms Discretization step size
τmem 20 ms Membrane time constant
τr 2 ms Synaptic rise time
τd 30 ms Synaptic decay time
Uthr 1 Spiking threshold
Ures 0 Resting potential
tref 2 ms Refractory period
k 25 Steepness parameter

∑
j

∂ai

∂r j (t )
=

∑
j

∂ri
(
tm
i

)
∂r j (t )

=
∑

j

∂ri
(
tm
i

)
∂r j

(
tm
i

)δ
(
t − tm

i

)

+
∑

j

∂ri
(
tm
i

)
∂r j

(
tm
i − 1

)δ
(
t + 1 − tm

i

)

= δ
(
t + 1 − tm

i

) ∑
j

[
δi jλd +

[
∂r

(
tm
i

)
∂I

(
tm
i

)
]

ii

W rec
i j

]

+ δ
(
t − tm

i

)
. (B9)

For the contextual integration task, o(t ) = W outr and L =√∑T
t=0[z(t ) − o(t )]2, where z(t ) is the target output. In a

similar way, one can derive the following error gradients:

K(T ) = z(T ) − o(T )

L W out, (B10a)

K(t ) = z(t ) − o(t )

L W out + λdK(t + 1),∀t < T . (B10b)

The other update equations are the same as above.

APPENDIX C: INITIALIZATION
AND MODEL PARAMETERS

The initialization scheme is given in Table II, where the
constructed recurrent weights should be multiplied by a factor
of 1√

PN
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