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Dynamics of a susceptible-infected-recovered model on complex networks
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We present a susceptible-infected-recovered model based on a dynamic flow network that describes the
epidemic process on complex metapopulation networks. This model views population regions as interconnected
nodes and describes the evolution of each region using a system of differential equations. The next-generation
matrix method is used to derive the global basic reproduction number for three cases: a general network with
homogeneous infection rates in all regions, a fully connected network, and a star network with heterogeneous
infection and recovery rates. For the homogeneous case, we show that this global basic reproduction number
is independent of the migration rates between regions. However, the rate of convergence of each region to an
equilibrium state exhibits a much larger variance in random (Erdős-Rényi) networks compared to small-scale
(Barabási-Albert) networks. For the general heterogeneous case, we report interesting results, namely that the
global basic reproduction number decays exponentially with respect to the smallest nonzero Laplacian eigenvalue
(algebraic connectivity). Furthermore, we demonstrate both analytically and numerically that as the network’s
algebraic connectivity increases, either by increasing the average node degree of each region or the global
migration rate, the global basic reproduction number decreases and converges to the ratio of the average local
infection rate to the average local recovery rate, meaning that the lower bound of the global basic reproduction
rate does not equal the mean of local basic reproduction rates.
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I. INTRODUCTION

Over the past several years, the world has painfully endured
the COVID-19 pandemic. Although COVID-19 is no longer
a public health emergency of international concern [1], vigi-
lance is still required to defend against future pandemics [2,3].
In particular, accurate epidemiological modeling is required
to predict the spread of diseases and formulate appropriate
responses.

An early example of an epidemiological model is the
classic susceptible-infected-recovered (SIR) compartmental
model by Kermack and McKendrick [4]. Similar mod-
els include the susceptible-infected-susceptible (SIS) and
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susceptible-infected-recovered-susceptible (SIRS) models for
the cases in which recovery from infection provides no
immunity and time-limited immunity from reinfection, re-
spectively, and the susceptible-exposed-infected-recovered
(SEIR) model, where exposed individuals undergo a latent
period before becoming infectious [5,6]. Note that these
models are all mean-field models, which assume full mixing
of the population. Due to their simplicity, mean-field models
remain prevalent in epidemic modeling; for example, mean-
field compartmental models were used in [7–9] to model
the spread of COVID-19. In particular, Ref. [7] considered
migration, but only between a “local” region and the “rest of
the world.”

A. Epidemic models on networks

The mean-field approach model cannot deal with epi-
demics’ microscopic-level (agent-based) movements on
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heterogeneous structures despite its simplicity and usefulness.
With the rise of network science [10–12], scientists started
to combine epidemic models with complex networks to
study how heterogeneous connections influence the epidemic
process [13]. By using percolation models and generating
function methods, Newman solved a class of SIR models on
a variety of networks [14]. For heterogeneous networks, such
as scale-free networks, Pastor-Satorras and Vespignani found
that the effective epidemic threshold is close to zero when the
network size is huge [15]. In addition, considering the prop-
agation of information during the spreading process of the
disease, Granell et al. proposed a multilayer compartmental
model and found that transparent information can restrain the
spreading of the disease [16]. Subsequently, Wei et al. found
that the interlayer links could promote the epidemic spreading
on interconnected networks [17].

However, such microscopic-level models are too compli-
cated and resource-intensive for describing macroscopic-level
movements between regions (districts, cities, and states) [18].
As a result, coarse-grained metapopulation models were
developed by considering geographically distributed popula-
tions as different nodes, and human flows as links between
nodes [19–30]. Most models are based on so-called reaction-
diffusion processes regarding human traffic flows among
nodes as a diffusion process [20–22,25–30]. Colizza et al.
gave out the derivation of basic reaction-diffusion equa-
tions describing the metapopulation system at the mechanistic
level and the discovery of a global threshold for subpopulation
invasion [22]. Reference [25] discussed the effects of diffu-
sion rates on epidemic spreads in metapopulation networks,
and it showed that diffusion could suppress epidemics by
increasing the epidemic threshold. Reference [31] proposed
a theoretical framework for studying spreading processes in
structured metapopulations with heterogeneous agents sub-
jected to different recurrent mobility patterns, using layers in a
multiplex network to represent the mobility patterns of agents
of the same class. Empirical studies on H1N1 influenza and
COVID-19 can also be found in [32–37].

B. Related studies

Notably, most studies showed that travel restrictions are
beneficial for suppressing a global pandemic. However, other
research has yielded different results. Involving human mi-
grations between cities, Lee et al. studied a modified SEIR
model and found that travel restrictions are less effective
for influenza epidemic control [38]. Ruan et al. found that,
depending on the infection rate, increasing the traveling
speed would result in either an enhanced or suppressed epi-
demic, while increasing the traveling frequency enhances the
epidemic spreading [39]. During the COVID-19 pandemic,
Chinazzi et al. indicated that sustained 90% travel restric-
tions to and from Mainland China only modestly affected the
epidemic trajectory unless combined with a 50% or higher
reduction of infection in the community [34]. Wang et al. used
a network mean-field and gravity law of migration to establish
an N-seat intertwined SIR metapopulation model. They found
that migration does not directly increase epidemic replication
capacity, but it can increase the influence area of an epidemic
when the basic reproduction number is larger than 1 [40].

Reference [41] proposed an interregional migration model
on SIR networks with distinct timescales. They obtained
upper/lower bounds of the basic reproduction number R0 for
a generic network using a perturbation approximation. Fur-
thermore, they discovered a piecewise convergence function
to the upper bound of R0. The above results show that more
profound studies on the interregional epidemic process are
required.

The spectrum of a network’s Laplacian matrix can reflect
its structural and dynamic properties. For example, the num-
ber of zero eigenvalues of a graph Laplacian is the number of
connected components in the network. The smallest nonzero
eigenvalue λ2 of the Laplacian matrix of a network (also
known as the algebraic connectivity or Fiedler value [42])
plays an important role in the dynamic process on complex
networks. For instance, algebraic connectivity determines the
ability of networks to synchronize, which means the larger its
value, the more likely the collective behavior of nodes will
emerge in the network [43]. A diffusion process refers to a
phenomenon in which the nodes in a network reach a con-
sensus. Here, the larger the algebraic connectivity, the quicker
the nodes reach the same state [44]. Therefore, to investigate
how network structures influence macroscopic-level epidemic
processes, it is important to find the relation between the
algebraic connectivity and the basic reproduction number.

C. Contributions of this paper

We introduce a generalized system that focuses on the
migratory process between regions within a dynamic flow
network context. We analyze this process using an SIR model
as an example. Our contributions are as follows:

(i) We clarify the concept of an interregional migration and
diffusion process. In reality, populations distribute unevenly
and flow actively, not randomly, across different geographical
regions. Recall that diffusion is the movement of matter or
energy from a region of higher concentration to a region
of lower concentration, resulting in the eventual consensus
of local states [45]. The law of population conservation ap-
plies to interregional migration, meaning that the population
remains constant during transportation without considering
birth and death factors. This law remains valid even when
the weighted flow network is imbalanced, that is, when the
weighted in-degrees and out-degrees of the network are not
equal. However, there are situations in which diffusion pro-
cesses deviate from this law.

(ii) We devise a dynamic flow network model for investi-
gating the macroscopic-level epidemic processes. Under the
context of dynamic networks, we were able to answer the
question of how network topology affects macroscopic epi-
demic processes. We use the same SIR model in Ref. [41] as
the nodal dynamics, and the network flow instead of diffusion
to describe the population flow among regions.

(iii) We study the interregional infections on SIR networks
with homogeneous and heterogeneous local reproductive
rates. Under the homogeneous case, we find that the speed
of convergence for each region to the final equilibrium of sus-
ceptible and recovered individuals exhibits a larger variance
in the ER network compared to the BA network. Considering
the heterogeneous case in two special networks and a general
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network, we obtain a nontrivial extension of the upper/lower
bounds for R0 presented in Ref. [41]. We find that the local
infection rates and recovery rates are independent of each
other in the lower bound of R0, meaning the lower bound
of R0 does not equal the mean of local basic reproduction
numbers.

(iv) We establish the global asymptotic stability of
the disease-free equilibrium by using the Lyapunov direct
method. Based on the proof, we report a feasible way to obtain
the approximated formula of R0 for general networks.

(v) We associate the algebraic connectivity λ2 with R0 in a
general formula, and we show that the increased λ2 causes the
final scale of the pandemic to converge exponentially to the
ratio of the average local infection rate to the average local
recovery rate when the local infection rates and recovery rates
are heterogeneous.

(vi) Based on the general formula R0(λ2), we investigate
the relationship between the scaling factor (coupling strength)
c and R0. The expression of R0(c) not only applies over a
broader range of parameters that define its characteristics, but
it also performs better than the piecewise formula around the
critical value presented in [41].

(vii) We investigate the relationship between the global
basic reproduction number R0 and other topological factors
(degree distribution, average degree, network scale) that in-
fluence λ2 of networks. We show that those factors that make
λ2 increase would help R0 reduce. These results provide new
insight into how to control epidemiological processes from a
macroscopic perspective.

(viii) Both analytical and numerical verification of the
above contributions are presented.

II. MODEL FORMULATION

A. SIR-based metapopulation network model

Based on the interregional infection model in Ref. [41], we
can make the following assumptions:

(i) The nodes and edges form a complex network.
(ii) Each region (e.g., a city, state, or country) can be

regarded as a network node (i.e., a graph vertex).
(iii) We assume that in each region, the local population is

uniformly mixed.
(iv) Population exchanges between regions can be modeled

as weighted directed edges.
Next, we assume a classical SIR compartmental model

upon each network node to define each region’s local epi-
demic dynamics.

Let xi(t ) = (Si(t ), Ii(t ), Ri(t ))T ∈ R3 denote the state of
region i at time t , and its components Si(t ), Ii(t ), and Ri(t )
denote the number of susceptible, infected, and removed in-
dividuals in region i, respectively. For brevity, we omit the
argument of each function, i.e., xi, Si, Ii, and Ri. Without
interregional migration, the nodal dynamics of region i are

ẋi = f (xi ) =

⎡
⎢⎣

−βi
IiSi
Ni

βi
IiSi
Ni

− μiIi

μiIi

⎤
⎥⎦, (1)

where ẋi(t ) is the temporal derivative of xi(t ), and βi and μi

are the local infection and recovery rates for each region i in
the network and Ni = Si + Ii + Ri.

The basic reproduction number R(i)
0 of this regional

model (1) defines a threshold such that if R(i)
0 > 1, then the

epidemic will grow in region i (assuming it is already present),
whereas if R(i)

0 < 1, then the epidemic will go extinct in
region i. We shall call the R(i)

0 ’s the local basic reproduction
numbers of the complex network. For the classical SIR com-
partmental model (1), we have R(i)

0 = βi/μi [5].
Next, we add migration dynamics to (1). Let li j , i �= j,

denote the migration rate of individuals from region i to region
j. We thus obtain

ẋi(t ) = f (xi ) + c
n∑

j=1
i �= j

(l jix j − li jxi ), (2)

where n is the number of regions in the network, and c > 0 is
the global coupling strength (scaling factor) that controls the
overall migration rate of the network [41].

Let R0 denote the global basic reproduction number of the
entire network. Note that R0 considers migrations, whereas
the individual R(i)

0 ’s do not. In Secs. III and IV, we will
compute the R0 of the system for various network structures
and examine the roles of the network structure and human
migration behavior with respect to the epidemic process.

B. Modeling physical dynamic processes on complex networks

We start by considering the importance of model selections
and motivating why we chose system (2) when creating phys-
ical network models. Physical networks can have different
types of flows, such as human and information flow, that can
either follow or violate conservation laws [45]. On the other
hand, some types of flows can move from a region of higher
concentration to a lower concentration, while others can move
oppositely. Therefore, it is crucial to clarify the differences
among the types of flows.

1. Diffusive dynamic processes in networks

In network science, a linearly coupled dynamic process in
complex dynamical networks can be written in the following
form [46]:

ẋi(t ) = f (xi(t )) + c
n∑

j=1
i �= j

li j�(x j (t ) − xi(t )), (3)

where i = 1, . . . , n, xi(t ) = (xi1(t ), xi2(t ), . . . , xim(t ))T ∈ Rm

denotes the state vector of the ith node, ẋi(t ) is the temporal
derivative of xi(t ), and L = (li j ) ∈ Rn×n represents the Lapla-
cian matrix of a general diffusive network. If the network is
an undirected and unweighted graph, then L is symmetric. If
the network is a directed weighted graph, then L is asymmet-
ric. Normally, if node j receives matter/energy/information
from node i, li j �= 0, and li j = 0 otherwise, the diagonal
elements are

lii = −
n∑

j=1,i �= j

li j .
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The foregoing is also known as the dissipative coupling con-
dition. Additionally, c is the coupling strength, and � ∈ Rm×m

denotes the inner coupling matrix.
The advantage of Eq. (3) is that it represents a general

formation of a class of problems such as the classic reaction-
diffusion process, where f (xi ) represents the nodal reaction,
and the Laplacian matrix denotes the diffusion among
nodes. Although (3) has been widely used [20–22,25–30] to
study epidemic processes in both symmetric and asymmetric
networks, due to the different nature of flows, it is not appro-
priate for studying such processes in asymmetric networks.
Therefore, the following subsection offers a general equa-
tion to deal with such kinds of network flows.

2. Dynamic processes in flow networks

When we are dealing with mobility networks among re-
gions, i.e., interregional transportation, we can generalize the
dynamics into the following form of equations:

ẋi(t ) = f (xi(t )) + c
n∑

j=1
i �= j

�(l jix j (t ) − li jxi(t )). (4)

Notably, the inner coupling matrix � represents the transition
rates of a flow that changes its state into another during in-
terregional transportation. To compare the difference between
Eqs. (3) and (4), we first ignore nodal dynamics and inner
couplings, then sum up all the subequations of system (3)
and (4), respectively. If the Laplacian matrix is symmetric
or balanced (in-degree equals out-degree for each node), then∑n

i=1 ẋi(t ) = 0, meaning both systems follow the law of con-
servation. However, if the Laplacian matrix is asymmetric and
imbalanced, system (3) no longer follows the law of conser-
vation, while system (4) still does.

Furthermore, we can rewrite system (4) as

Ẋ = Y − cLT ⊗ �X, (5)

where Y = [ f (x1(t )), f (x2(t )), . . . , f (xn(t ))]T , X =
[x1(t ), x2(t ), . . . , xn(t )]T , and ⊗ denotes the Kronecker
product.

Next, consider the diffusion equation Ẋ = −LX and the
interregional transportation equation Ẋ = −LT X by ignoring
nodal dynamics and inner couplings of systems (3) and (4).
Note that L and LT have the same set of eigenvalues. Assum-
ing the Laplacian matrix of the weighted directed network
(mobility network) has only one zero-eigenvalue, the final
state (number of population) of X will be distributed het-
erogeneously according to the theory of ordinary differential
equations (ODEs). When the mobility network is symmetric,
X will reach a consensus under a typical diffusion process.
However, when the mobility network is asymmetric and un-
balanced (meaning that the in-degrees and out-degrees of the
network are imbalanced), the final state of each xi will not be
the same. That is why Eq. (4) is more suitable for describing
the population flow in networks than Eq. (3). Therefore, we
obtain a dynamic equation capable of modeling nondiffusive
physical flow systems that obey conservation laws.

3. Explicit instances of the dynamic equation

An important application of dynamic equation (4) is to de-
scribe epidemic processes with interregional transportations.
For instance, in the case of an SEIR-type disease, the nodal
dynamics in Eq. (4) can be substituted with a standard SEIR
model equation. To study the interregional epidemic process
of multivariants, one can replace f (xi(t )) with a multivariant
epidemic model. In other words, depending on the research
goal, the nodal dynamic in Eq. (4) can be replaced by any kind
of classic epidemic model. Furthermore, the inner coupling
matrix � makes the dynamic equation more flexible. If one
wants to investigate the impact of quarantine measures and
travel restrictions on the COVID-19 pandemic, one can begin
by replacing the SEIHR model in the nodal dynamics of
Eq. (4). After that, they can set the diagonal element linked
with the isolated state or compartment of � to zero. One
advantage of this dynamic equation is its similarity to the clas-
sic dynamic process (3). As a result, some previous research
results in other domains can be directly applied to it. Notably,
in this paper, we use the SIR model as an example to study
the interregional epidemic process and obtain Eq. (2). Overall,
there are so many potentials that remain to be explored under
the dynamic equation.

III. SIR NETWORKS WITH HOMOGENEOUS LOCAL
INFECTION RATES

This section considers the case in which βi = β and μi =
μ for all regions i in the network, as defined by (2).

A. Global basic reproduction number R0 of general networks

For system (2), there exists a disease-free equilibrium
(DFE), namely E0 = [NS

1 ; . . . ; NS
n ; 0; . . . ; 0]. Since all indi-

viduals remain in the susceptible state, the number of sus-
ceptible individuals in each region, i.e., ES = [NS

1 ; . . . ; NS
n ],

is also the stabilized population of each region, which follows
the migration dynamics

Ṅi(t ) = c
n∑

j=1
i �= j

(l jiNj − li jNi ) (i = 1, . . . , n)

(or Ṅ = −cLT N in matrix form). Note that in most practical
scenarios, we can assume that the populations of each region
are already in stable equilibrium at t = 0, thus the DFE of
system (2), if it exists, is simply the system’s initial state,
which is determined by the right eigenvector ξ of the zero-
eigenvalue of LT , with all individuals susceptible.

The DFE is stable if R0 < 1. To compute R0 for sys-
tem (2), we apply the next-generation matrix method [47],
producing the matrices

F =

⎡
⎢⎣

β I1S1
N1
...

β InSn
Nn

⎤
⎥⎦
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and

V =

⎡
⎢⎣

μI1 + c
∑n

j=1, j �=1(l1 j I1 − l j1I j )
...

μIn + c
∑n

j=1, j �=n(ln jI1 − l jnI j )

⎤
⎥⎦.

From F and V , and linearizing about the DFE E0, we obtain
the Jacobian matrices F = βI and V = cLT + μI, where I is
the identity matrix.

The value R0 is the spectral radius (maximum of the
absolute values of the eigenvalues) of FV −1. However, V −1

is difficult to compute. Instead, we note that the eigenval-
ues of FV −1 are reciprocals of those of V F−1 = V/β. Since
V = cLT + μI, the smallest eigenvalue of V is μ. Therefore,
the smallest eigenvalue of V F−1 is μ/β. We thus obtain the
following:

Theorem 1. The global basic reproduction number R0 of
the SIR network is β/μ, independent of the Laplacian matrix
L. In other words, R0 is independent of network migration
when all the local infection and recovery rates are homoge-
neous across regions, becoming simply the ratio between the
global infection and recovery rates.

B. Numerical results

In this subsection, we consider the evolution of system (2)
on random and scale-free networks, namely Erdős-Rényi
(ER) [10], Barabási-Albert (BA) [12], and Watts-Strogatz
(WS) [11] networks. Figure 1 shows the evolution of (2) for
a 100-region ER network and a 100-region BA network, with
Ni = 106 individuals in each region. The network parameters
of the ER model are p = 1 (probability that an edge is rewired
in the network), and that of the BA model are m0 = 3 (number
of initial nodes) and m = 2 (new edges per added node). The
average degree of both networks is 〈k〉 = 2.

We define β = 0.25, μ = 0.1, and li j = 0.001 for all re-
gions i and j �= i. In other words, R0 = 2.5, via Theorem 1.
The initial state of the network is such that there is a single
infected individual in some randomly chosen region of the
network, to which all other individuals are susceptible.

As the final proportion of recovered individuals depends
solely on R0, we find that all trajectories in both panels of
Fig. 1 converge to the same value. However, the speed of con-
vergence for each region to the final equilibrium of susceptible
and recovered individuals exhibits a larger variance in the ER
case compared to the BA case.

Figure 2 considers a 100-region WS network with average
degree 〈k〉 = 2 (again with Ni = 106 individuals in each re-
gion and β = 0.25, μ = 0.1, and li j = 0.001 for all regions
i and j �= i), and it shows the final proportion of recovered
individuals with respect to the rewiring probability of the
WS network. Note that a rewiring probability of 0 yields
a k-regular ring lattice, while a rewiring probability of 1
yields an ER random network. It is demonstrated that the
final proportion of recovered individuals is not sensitive to
the rewiring probability of the WS network. This is consistent
with Theorem 1.

(a) ER network

(b) BA network

FIG. 1. Cumulative recovered individuals in a 100-region SIR
network with homogeneous infection and recovery rates. Each line
represents one of the regions.

FIG. 2. Final proportion of recovered individuals in a 100-region
SIR WS network with homogeneous infection and recovery rates,
where β = 0.25 and μ = 0.1 (average of 20 network instances).
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IV. SIR NETWORKS WITH HETEROGENEOUS LOCAL
INFECTION RATES AND RECOVERY RATES

In Sec. III, we considered the case in which all regions’
disease infection rates are equal. However, this is not ap-
plicable to most real-world systems, due to differences in
population densities, climate, government policies, etc., which
lead to differences in regional infection rates. In this section,
we consider different values of the local infection rates βi

in the network along with different values of local recovery
rates μi.

A. Upper and lower bounds of R0 in two kinds of network

Applying the next-generation matrix method, we find that
R0 is the smallest eigenvalue of the matrix M = V F−1, where
V = [LT + diag(μ1, . . . , μn)] and F = diag(β1, β2, . . . , βn).
In other words,

M = [LT + diag(μ1, . . . , μn)]diag(1/β1, . . . , 1/βn).

However, since the eigenvalues of M are difficult to find in the
general case, below we will focus on two special cases: a fully
connected network and a star network.

1. Fully connected network

We consider a fully connected network with equal migra-
tion rates on all edges, such that li j = c for all i �= j. Thus, the
Laplacian matrix L is

L = c(nI − J),

where J is a matrix of 1’s. Then we can have the following
theorem:

Theorem 2. Considering a fully connected undirected SIR
network with heterogeneous local infection rates and recovery
rates, if the coupling strength is large enough, the global basic
reproduction number will converge to R0 = β̄/μ̄, where β̄

and μ̄ are the mean of nodal infection rates and recovery rate,
respectively.

Similarly, the following corollary can be obtained:
Corollary 1. Considering a fully connected undirected SIR

network with heterogeneous local infection rates and recovery
rates, if the coupling strength is small enough, the global basic
reproduction number R0 will get close to the largest nodal
basic reproduction number, maxi βi/μi.

The proof can be found in Appendix A.

2. Star network

We consider a star network with equal migration rates on
all edges, such that li, j = c for all i �= j. We define region 1 to
be the hub of the network, i.e., the Laplacian matrix is

L = c

⎡
⎢⎢⎣

n − 1 −1 · · · −1
−1 1
...

. . .

−1 1

⎤
⎥⎥⎦.

We summarize our findings as follows:
Theorem 3. Considering a star undirected SIR network

with heterogeneous local infection rates and recovery rates,
if the coupling strength is large enough, the global basic
reproduction number will converge to R0 = β̄/μ̄, where β̄

and μ̄ are the mean of nodal infection rates and recovery rate,
respectively.

Corollary 2. Considering a star undirected SIR network
with heterogeneous local infection rates and recovery rates,
if the coupling strength is small enough, the global basic
reproduction number R0 will get close to the largest nodal
basic reproduction number, maxi βi/μi.

The proof can be found in Appendix B.
It is obvious that if one keeps increasing the connectivity

of a network, that network will eventually become a fully
connected one. That means the spectrum property of their M
matrices will converge as the connectivity increases. There-
fore, we have the following statements:

Remark 1. High connectivity for an SIR network with het-
erogeneous local reproductive rates means its global basic
reproduction number will get close to the ratio of the average
local infection rate to the average local recovery rate.

There are many methods to increase the connectivity of
one network, for example, increasing the average degree, i.e.,
adding more links to the network, shortening the average
shortest path length, or reducing the network scale. In the next
section, we will validate the above statements both analyti-
cally and numerically.

B. Lyapunov stability of the disease-free equilibrium
of general networks

The latest section shows that obtaining analytical results
of R0 for general network structure is very challenging.
Therefore, this section uses Lyapunov stability analysis to
find R0 for more general cases. To estimate the R0 of sys-
tem (2), we need to find the stability condition of the DFE
E0 = [NS

1 ; . . . ; NS
n ; 0; . . . ; 0]. We shall prove the disease-free

equilibrium’s global stability by means of Lyapunov’s second
method.

Theorem 4. Consider system (2). The disease-free equilib-
rium E0 = [NS

1 ; . . . ; NS
n ; 0; . . . ; 0] of (2) is globally asymp-

totically stable if R0 < 1, where R0 = β̄/μ̄ + g, and g is a
parameter function that belongs to a bounded set associated
with the network.

The proof can be found in Appendix C.
Remark 2. Theorem 4 implies that R0 = β̄/μ̄ + g is an

analytical formula for the global basic reproduction number.
By using a numerical approximation, we are able to determine
a more accurate form of g.

Next, we set out to obtain an approximation of g. In the
following section, we will determine the relationship between
g and the network structure using numerical methods.

C. Numerical results about R0 in general networks

In this section, we investigate the relationship between the
macroscopic-level epidemic process and the network topol-
ogy. We compute R0 of some representative networks. We
shall assign initial populations Ni = 106 and infection rates
βi ∼ normal (u = 0.125, σ 2 = 0.1) for each of the n regions,
and a global recovery rate of μ = 0.1, except for Figs. 3
and 5.
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FIG. 3. R0 with respect to λ2 on different kinds of SIR net-
works with heterogeneous local infection rates βi ∼ normal(u =
0.125, σ 2 = 0.1) and recovery rates μi ∼ normal(u = 0.1, σ 2 =
0.05) (average of 100 network instances).

1. A general formula for R0

In general, we can directly calculate R0 from the matrix M;
however, we still need to know the relationships between R0

and various parameters, such as local infection rate βi, local
recovery rate μi, and other parameters associated with the
network topology. Those kinds of relations cannot be directly
obtained from matrix M. Theorem 4 provides a rough approx-
imation of R0. By introducing the algebraic connectivity λ2 as
a parameter of R0, we are able to associate the macroscopic-
level epidemic process and the network topology. It is worth
noting that λ2 is generally considered as a function of the

FIG. 4. R0 with respect to λ2 on different kinds of SIR net-
works with heterogeneous local infection rates βi ∼ normal(u =
0.125, σ 2 = 0.1) and homogeneous recovery rates μ = 0.1 (average
of 100 network instances).

FIG. 5. R0 with respect to ε on Barabási-Albert (BA) SIR
network with heterogeneous local infection rates βi ∼ normal(u =
0.125, σ 2 = 0.1) and homogeneous recovery rates μ = 0.125 (aver-
age of 100 network instances). The critical value ε∗ = 1/(βmax − μ).

network structure’s directly associated parameters, such as
scaling factor (coupling strength), average degree, network
scale, and so on. There is no universal formula for calculat-
ing λ2 that applies to all networks. However, it is possible
to derive approximated formulas for λ2 for specific types of
networks [48,49].

Figure 3 shows the global basic reproduction number cal-
culated by the next-generation matrix method under different
kinds of SIR networks with heterogeneous local infection
rates and recovery rates (colored dots). It is demonstrated
that R0 decays as λ2 increases. The numerical results suggest
that R0 follows an exponential decay rule with respect to λ2,
i.e., g = A1e−h1λ2 + A2e−h2λ2 , where A1, A2, h1, and h2 are
tunable parameters. Therefore, an analytical formula for the
basic reproduction number is obtained,

R0(λ2) = β̄/μ̄ + A1e−h1λ2 + A2e−h2λ2 . (6)

The solid lines in Fig. 3 represent the fitted values
of R0 according to (6). The fitted lines agree closely
with the empirical data, demonstrating the veracity of the
exponential fit.

Figure 4 shows the global basic reproduction number of
different kinds of SIR networks with heterogeneous local
infection rates and homogeneous recovery rates μ. Not sur-
prisingly, the trends of Figs. 3 and 4 are almost identical.
Notably, Fig. 3 has a larger drop due to the large difference
between maxi βi/μi and β̄/μ̄. Therefore, for simplicity, we
consider homogeneous μ in the following simulations.

2. Increasing scaling factor reduces R0

The global coupling strength c is a scaling factor of
the Laplacian matrix, which has a linear relationship with
the eigenvalues of L. Therefore, we postulate that g′(c) =
A1e−h′

1c + A2e−h′
2c. Reference [41] derives the relationship

of R0 and a scaling factor ε. To compare the formula
R0(c) = β̄/μ̄ + g′(c) with Castioni’s R(ε) [41], we rewrite
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FIG. 6. Interregional infection on different kinds of SIR net-
works with an average degree 〈k〉 = 4, with heterogeneous local
infection rates βi ∼ normal(u = 0.125, σ 2 = 0.1) and homogeneous
recovery rates μ = 0.1 (average of 100 network instances).

g′(c) into f (ε) = A1e−h′
1/ε + A2e−h′

2/ε based on c = 1/ε.
Figure 5 shows both Castioni’s formula and ours, with the
latter applying over a broader range of parameters to define
its characteristics, and it performs better than Castioni’s piece-
wise formula around the critical value ε∗ = 1/(βmax − μ).

Figure 6 shows the global basic reproduction number for
different kinds of SIR networks with heterogeneous local
infection rates with the same average degree 〈k〉 = 4. Sur-
prisingly, regardless of the network type and network scale,
all the R0’s will reduce to β̄/μ (orange dashed line) when
the global coupling strength increases. Such convergence is
aligned with the analytical results in Sec. IV A. Because of
the linear relationship between λ2 and the global coupling
strength, the results are also aligned with the formula (6).
Furthermore, the rates of such convergence are quite different
for different networks. The R0 reduction on regular networks
is much slower than on other randomized networks. This is
because those regular networks have a much larger average
shortest path length, which means they have poor connectivity
and are located far from the baseline, the fully connected
network. These results suggest that increasing human traffic
flow on interregional networks can reduce the global spread-
ing speed of an epidemic process.

Figure 7 explores the above-mentioned phenomena on syn-
thetic and real-world networks. The red circles represent the
calculated R0 based on a U.S. airline network (1997) com-
prising 332 nodes (cities) and 12 average edges (airlines) for
each node [50]. The other lines represent different synthetic
networks consisting of 332 nodes. Considering the same av-
erage degree 〈k〉 = 12, the airline network’s epidemiological
performance is similar to that of a BA network. This is simply
because the airline network’s degree distribution is similar to
that of BA networks.

To relate the computed R0 values to the final cumulative
proportion of infected individuals, Fig. 8 plots this proportion

FIG. 7. Interregional infection on the U.S. airline network and
synthetic networks with n = 332 nodes, with local infection rates
βi ∼ normal(u = 0.125, σ 2 = 0.1) and homogeneous recovery rates
μ = 0.1 (average of 100 network instances).

with respect to c for a U.S. airline network, regular, ER, and
BA networks with n = 332 nodes and an average degree of
〈k〉 = 12. Gray bands denote the 5th and 95th percentiles for
20 network instances, as simulated using the Runge-Kutta
method, whereas the solid line denotes the mean. Consistent
with Fig. 7, this proportion decreases with c. Additionally, we
plot the arrival time of the peak of infected people in Fig. 9.
Surprisingly, the epidemic peak time increases as the global
coupling strength increases. In other words, the increase in
the migration rate can reduce the final epidemic scale and
postpone the epidemic peak.

3. Increasing average node degree reduces R0

The above results also show that networks with a larger
average degree exhibit better performance for reducing the
R0. For those who have small average degrees, their R0’s
are much higher than the averaged nodal Ri

0, especially when
the coupling is weak. This is because the larger the average
degree is, the closer the graph will be to a complete graph. In
other words, the λ2 will reach its maxima if we keep inserting
links to the network. According to Eq. (6), as λ2 increases, R0

will reduce an approach to the lower bound.
We consider a k-regular network, an ER network, and a

BA network with n = 100 regions, where the global coupling
strength c = 0.1. Figure 10 shows the computed R0 value
with respect to the average degree 〈k〉. It is demonstrated that
while R0 converges to β̄/μ when 〈k〉 is high, BA networks
produce the highest R0 out of the three network types when
the migration rate is low, which aligns with the finding in
Fig. 6. As in the previous example, a higher mean node degree
leads to a lower average path length, and therefore a lower
cumulative number of infections.
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(a) Regular network (b) Random network

(c) BA network (d) Airline travel network

FIG. 8. Final scale of interregional pandemics on SIR networks with n = 332 nodes and an average degree of 〈k〉 = 12, with local infection
rates βi ∼ normal(u = 0.125, σ 2 = 0.1) and homogeneous recovery rates μ = 0.1. The solid black line represents the average data from 30
network instances, with the shaded area indicating the margin of error for each data point. The orange dashed line represents the expected final
epidemic scale of the classic SIR model with R0 = 1.25.

4. Reducing network size reduces R0

In Fig. 11, we consider R0 with respect to the network
size for a BA network and three WS networks with rewiring
probabilities of 0, 0.1, and 1. Note that p = 0 yields a regular
ring lattice while p = 1 approximates an ER random network.
Note that for large network sizes, R0 is approximately linear
in n, the network size, whereas for low values of p, R0 contin-
ues to increase with n even for thousands of network nodes.
To explain this, note that the average path length in ER and
BA networks experiences a saturation effect for large network
sizes [51], whereas for a ring lattice, the average path length
is approximately linear in n. Reference [48] shows that for
BA networks, λ2 remains constant as the network scale (size)

enlarges. As for k-regular and WS networks, λ2 decreases as
n increases [49].

After analyzing the above results, it can be concluded
that curves for k-regular networks are always higher than
those of ER networks. This is because the value of λ2

is always higher for ER networks as compared to k-
regular networks when they have the same parameter
settings.

V. DISCUSSION AND FUTURE WORKS

This paper introduced an SIR-based interregional epidemic
model on complex networks, with the population divided
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(a) Regular network (b) Random network

(c) BA network (d) Airline travel network

FIG. 9. Arrival time (the date since the first case) of the epidemical peak of interregional pandemics on SIR networks with n = 332 nodes
and an average degree of 〈k〉 = 12, with local infection rates βi ∼ normal(u = 0.125, σ 2 = 0.1) and homogeneous recovery rates μ = 0.1.
The solid black line represents the average data from 30 network instances, with the shaded area indicating the margin of error for each data
point.

into regions with migration between them. The model can
be expressed as the combination of local epidemic dynamics
and interregion migration dynamics, which are defined by a
general dynamic equation using the transpose of the Laplacian
matrix [see (5)].

Note that the presence of the diagonal inner coupling ma-
trix in (5) reflects the fact that all individuals in the model
are allowed to migrate between regions without restriction.
We can replace this with a more general inner coupling ma-
trix to represent different cases. For example, if all infected
individuals are barred from traveling between regions, the
corresponding diagonal entry will become zero. If people can
become infected during interregional migration, the nondiag-

onal entry will become nonzero. A more realistic model may
instead differentiate between known and unknown (latent or
asymptomatic) infections, thus adding more compartments to
the epidemic model.

An interesting result of epidemic networks, such as the
one proposed in this paper, is that increasing the network’s
algebraic connectivity by manipulating the network topology
(degree distribution, average degree, network size, scaling fac-
tor, etc.) can lead to a lower number of cumulative infections
and a later epidemic peak, as shown in Secs. III and IV.
Previously, in [41,52], scientists reported similar phenom-
ena by changing the global scaling factor. In other words,
a tradeoff may exist between reducing global infections and
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FIG. 10. R0 with respect to average degree on different kinds
of SIR networks with n = 100 regions, with the global coupling
strength c = 0.1, local infection rates βi ∼ normal(u = 0.125, σ 2 =
0.1), and homogeneous recovery rates μ = 0.1 (average of 100 net-
work instances).

maintaining the stability of local health systems, which may
collapse if an epidemic happens too quickly. Furthermore,
although travel restrictions may delay the onset of an epidemic
locally, they are ineffective in the long-term [53]. Ideally,
policymakers will continuously adjust travel policies accord-
ing to the global situation, in combination with interventions
to limit local spreading. The impact of travel restrictions
on the economy and public well-being should also be
considered [54].

FIG. 11. R0 with respect to network scale on different kinds
of SIR networks with an average degree 〈k〉 = 4, with the global
coupling strength c = 0.1, local infection rates βi ∼ normal(u =
0.125, σ 2 = 0.1), and homogeneous recovery rates μ = 0.1 (average
of 100 network instances).

In general, the next-generation matrix method can directly
calculate R0 from the matrix M. However, we still need to
know the relationships between R0 and various parameters,
such as local infection rate βi, local recovery rate μi, and
particularly parameters associated with the network topology.
The above shows the potential value of formula (6) when
we are dealing with real mobility networks when having
only limited knowledge of the graph. If we can estimate the
algebraic connectivity of a class of networks [48,49], we may
be able to obtain R0 without complete knowledge of the
mobility network. This will be extremely useful and important
for preventing future global pandemics.

Our dynamic equation exhibits great potential that can be
applied to many kinds of infectious diseases. In the future, we
will introduce multivariant dynamics, the SEIHR model [7,8],
and the SVEIHR model [9] into the dynamic equation and dis-
cover more interesting phenomena. Furthermore, we will use
a more general epidemic model to verify the current paper’s
results. By uncovering universalities that underpin epidemic
processes with interregional migration, we will contribute sig-
nificantly to this area of research.

Although this paper provides interesting results for several
network types, it contains several limitations. First, our theo-
retical results do not explicitly express g. Second, other kinds
of epidemic models remain to be studied. Further research is
required to examine network dynamics on more general net-
works. Finally, the effect of time-varying migration controls,
e.g., in response to disease incidence in adjacent regions, also
needs further research.

VI. CONCLUDING REMARKS

This paper investigated an SIR model for interregional
epidemic infection in complex networks. The model consid-
ered geographically distributed populations as interconnected
nodes and described the interregional transportation of a net-
work using a generalized formula that extended the classic
dynamical complex network systems. The paper studied inter-
regional infection on SIR networks with homogeneous local
reproduction rates and derived the global basic reproduction
number (R0) using the next-generation matrix method. The
results showed that travel restrictions may not influence the
final epidemic scale in the whole system as long as the regions
are interconnected. Interregional infection on SIR networks
with heterogeneous local infection rates and recovery rates
was explored, and the analytical results of the global basic
reproduction number on fully connected networks and star
networks were obtained. The results suggest that increasing
network connectivity can make the global spreading speed
converge to the ratio of the average local infection rate to the
average local recovery rate. By using the second Lyapunov
method, more general results are obtained, which support
the results derived from the next-generation matrix method.
Further investigations show that the rate of convergence is
exponential with respect to the second smallest Laplacian
eigenvalue. Numerical results on real-world and synthetic
networks also suggest that increasing the migration rate can
lead to fewer cumulative infections and a later epidemic
peak. The study revealed interesting results about the effec-
tiveness of travel restrictions, and it highlights the need for
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policymakers to consider the tradeoffs between the final
global epidemic scale and arrival times of the local peak. The
proposed model’s limitations include being based on a SIR
model and not verifying if other models, such as SIRS and
SEIR, have the same properties discovered. Analytical results
for more general networks also remain unresolved. Overall,
the proposed model covers a wide range of research questions
and provides insights into interregional epidemic infection in
complex networks.
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APPENDIX A: PROOF OF THEOREM 2 AND COROLLARY 1

Proof. The characteristic polynomial of a fully connected network’s M = [LT + diag(μ1, . . . , μn)]diag(1/β1, . . . , 1/βn) is

P = det(M − λ̂I) = det

⎡
⎢⎢⎢⎢⎢⎣

μ1+(n−1)c
β1

− λ̂ − c
β2

· · · − c
βn

− c
β1

μ2+(n−1)c
β2

− λ̂ · · · − c
βn

...
...

. . .
...

− c
β1

− c
β2

· · · μn+(n−1)c
βn

− λ̂

⎤
⎥⎥⎥⎥⎥⎦.

Applying the row operation r1 ← ∑n
i=1 ri, we obtain

P = det

⎡
⎢⎢⎢⎢⎢⎣

μ1

β1
− λ̂

μ2

β2
− λ̂ · · · μn

βn
− λ̂

− c
β1

μ2+(n−1)c
β2

− λ̂ · · · − c
βn

...
...

. . .
...

− c
β1

− c
β2

· · · μn+(n−1)c
βn

− λ̂

⎤
⎥⎥⎥⎥⎥⎦.

Applying the column operations c j ← c j − c1β1/β j , j = 2, . . . , n, we obtain

P = det

⎡
⎢⎢⎢⎢⎢⎣

μ1

β1
− λ̂

(
μ2−μ1+β1λ̂

β2

) − λ̂ · · · (
μn−μ1+β1λ̂

βn

) − λ̂

− c
β1

μ2+nc
β2

− λ̂ · · · 0
...

...
. . .

...

− c
β1

0 · · · μn+nc
βn

− λ̂

⎤
⎥⎥⎥⎥⎥⎦.

Finally, applying the row operation

r1 ← r1 −
n∑

i=2

ri
(μi − μ1) + (β1 − βi )λ̂

μi − μ1 − βiλ̂
,

we obtain

P = det

⎡
⎢⎢⎢⎣

β1� 0 · · · 0
− c

β1

μ2+nc
β2

− λ̂ · · · 0
...

...
. . .

...

− c
β1

0 · · · μn+nc
βn

− λ̂

⎤
⎥⎥⎥⎦,

where

β1� = μ1 − λ̂β1 + c
n∑

i=2

(μi − μ1) + (β1 − βi )λ̂

μi − μ1 − βiλ̂
.

Since we now have a triangular matrix,

P = β1�

n∏
i=2

(
μi + nc

βi
− λ̂

)
.

The eigenvalues of M are the zeros of P and are thus
{λ̂1, . . . , λ̂n}, where λ̂1 is the solution to (β1� = 0) and λ̂i =
(μi + nc)/βi for i = 2, . . . , n. Finally, R0 = 1/ mini λ̂i.

When c → ∞, we have

β1� → μ1 − λ̂β1 −
n∑

i=2

(μi − μ1) + (βi − β1)λ̂

n

= 1

n

n∑
i=1

μi − λ̂

n

n∑
i=1

βi.

Thus, λ̂1 → μ̄/β̄, where β̄ and μ̄ are the mean of all the
regions’ local infection rates and recovery rates, respectively.
Furthermore, λ̂i → ∞ for all i �= 1. Therefore, R0 ≈ β̄/μ̄.
When c → 0, λ̂i → μi/βi for all i = 1, . . . , n, and R0 ≈
maxi βi/μi, i.e., the maximum basic reproduction number of
the isolated regions.
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APPENDIX B: PROOF OF THEOREM 3
AND COROLLARY 2

Proof. The characteristic polynomial of a star network’s
M = [LT + diag(μ1, . . . , μn)]diag(1/β1, . . . , 1/βn) is

P = det(M − λ̂I)

= det

⎡
⎢⎢⎢⎢⎣

μ1+(n−1)c
β1

− λ̂ − c
β2

· · · − c
βn

− c
β1

μ2+c
β2

− λ̂ · · · 0
...

...
. . .

...

− c
β1

0 · · · μn+c
βn

− λ̂

⎤
⎥⎥⎥⎥⎦.

Applying the row operation r1 ← ∑n
i=1 ri, we obtain

P = det

⎡
⎢⎢⎢⎢⎣

μ1

β1
− λ̂

μ2

β2
− λ̂ · · · μn

βn
− λ̂

− c
β1

μ2+c
β2

− λ̂ · · · 0
...

...
. . .

...

− c
β1

0 · · · μn+c
βn

− λ̂

⎤
⎥⎥⎥⎥⎦.

Then, applying the row operation

r1 ← r1 −
n∑

i=2

ri
μi − βiλ̂

μi + c − βiλ̂
,

we obtain

P = det

⎡
⎢⎢⎢⎣

β1� 0 · · · 0
− c

β1

μ2+c
β2

− λ̂ · · · 0
...

...
. . .

...

− c
β1

0 · · · μn+c
βn

− λ̂

⎤
⎥⎥⎥⎦,

where

β1� = μ1 − β1λ̂ + c
n∑

i=2

μi − βiλ̂

μi + c − βiλ̂
.

Letting P = 0, we obtain eigenvalues {λ̂1, . . . , λ̂n}, where λ̂1

is the solution to (β1� = 0) and λ̂i = (μi + nc)/βi for i =
2, . . . , n. Similarly, R0 = 1/ mini λ̂i.

When c → ∞, we have

β1� → μ1 − λ̂β1 +
n∑

i=2

(μi − βiλ̂) =
n∑

i=1

μi − λ̂

n∑
i=1

βi.

Thus, λ̂1 → μ̄/β̄, where β̄ is the mean of all the regions’ local
infection rates. Furthermore, λ̂i → ∞ for all i �= 1. Therefore,
R0 ≈ β̄/μ̄.

When c → 0, λ̂i → μi/βi for all i = 1, . . . , n, and R0 ≈
maxi βi/μi, i.e., the maximum basic reproduction number of
the isolated regions.

APPENDIX C: PROOF OF THEOREM 4

Proof. Based on system (2), consider a possible Lyapunov
function V : {X ∈ 	 : Si > 0, i = 1, . . . , n} → R by

V = 1

2

[
n∑

i=1

(
Si − NS

i + Ii + Ri
)]2

+
n∑

i=1

Ii. (C1)

Note that as Si, Ii, and Ri approach infinity, the function V also
approaches infinity, indicating that V is radially unbounded.
Therefore, E0 is the global minimum of V . Then the derivative
of V along the trajectories of (2) is

V ′ =
n∑

i=1

(
Si − NS

i + Ii + Ri
) d

dt

n∑
i=1

(Si + Ii + Ri )+ d

dt

n∑
i=1

Ii.

Since there are no births/deaths in system (2), we have

d

dt

n∑
i=1

(Si + Ii + Ri ) = 0.

Therefore,

V ′ =
n∑

i=1

(
βi

IiSi

Ni
− μiIi

)

=
n∑

i=1

[
Ii(βi

Si

Ni
− μi )

]

� Imax

n∑
i=1

(
βi

NS
i

Ni
+ g − μi

)
,

where Imax is the maximum Ii, and g � 0 is a parameter func-
tion that belongs to a bounded set associated with the network
structure.

Rewriting V ′ in terms of a basic reproductive number, we
have

V ′ � Imax(R0 − 1),

where R0 = β̄/μ̄ + g.
If R0 < 1, then V ′ � 0. Note that V ′ = 0 if and only if

Si = NS
i and Ii = 0, or if R0 = 1, Si = NS

i , and Ii = 0 (i =
1, . . . , n). Therefore, the largest compact invariant set in {X ∈
	 : V ′ = 0} is the singleton {E0}, where E0 is the disease-free
equilibrium. According to LaSalle’s invariant principle, E0 is
globally asymptotically stable.

[1] World Health Organization, Statement on the fifteenth meeting
of the IHR (2005) Emergency Committee on the COVID-19
pandemic (2023).

[2] D. MacKenzie, Stopping the Next Pandemic: How Covid-19 Can
Help Us Save Humanity (Bridge Street, London, 2021).

[3] H. Clark, M. Cárdenas, M. Dybul, M. Kazatchkine, J. Liu,
D. Miliband, A. Nordström, P. Sudan, E. Zedillo, T. Obaid,

R. McCarney, E. Radin, M. K. Eliasz, C. McNab, H.
Legido-Quigley, and E. J. Sirleaf, The Lancet 399, 1995
(2022).

[4] W. O. Kermack and A. G. McKendrick, Proc. R. Soc. A 115,
700 (1927).

[5] H. W. Hethcote, Math. Biosci. 28, 335 (1976).
[6] H. W. Hethcote and D. W. Tudor, J. Math. Biol. 9, 37 (1980).

024304-13

https://doi.org/10.1016/S0140-6736(22)00929-1
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/0025-5564(76)90132-2
https://doi.org/10.1007/BF00276034


NIU, CHAN, WONG, VAN WYK, AND LIU PHYSICAL REVIEW E 110, 024304 (2024)

[7] R. Niu, E. W. M. Wong, Y.-C. Chan, M. A. van Wyk, and G.
Chen, IEEE Access 8, 195503 (2020).

[8] R. Niu, Y.-C. Chan, E. W. M. Wong, M. A. van Wyk, and G.
Chen, Nonlin. Dyn. 106, 1311 (2021).

[9] J. Wang, Y.-C. Chan, R. Niu, E. W. M. Wong, and M. A. van
Wyk, Viruses 14, 1482 (2022).
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