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Quantifying order in breath figure patterns through Voronoi entropy
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In this study, we simulate breath figures that are evolving two-dimensional assemblies of droplets on a
substrate. We focus on the Voronoi/Shannon entropy of these figures, which quantifies the order related to
the coordination number of droplets. We show that the Voronoi entropy of the complete breath figure pattern
converges to a value that is the one of a randomly distributed point system. Conversely, the subset containing
exclusively large droplets of the breath figure exhibits significantly lower entropy than that obtained for all
droplets. Using molecular dynamics simulations, we show that coalescence events in breath figures induce the
same Voronoi entropy as that caused by repulsive interactions in a bidimensional atomic system.
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I. INTRODUCTION

Water condensation is an extremely important process in
Earth’s water cycle [1] and appears when air is cooled to its
saturation limit. From the formation of clouds which affects
the climate system to the use of air wells and fog fences to col-
lect water [2] through the formation of frost on solid surfaces
[3–5], it has a direct impact on human activities. The con-
densation process on a cold substrate takes place according to
two main physicochemical scenarios. Dropwise condensation
is characterized by individual droplets appearing on the solid
surface, while filmwise condensation consists of a thin and
continuous water film coating the substrate [6,7]. The first
scenario is the origin of microscopic droplet arrangements,
called breath figures, that explain why a mirror gets foggy
in the bathroom or why cold glasses become opaque in a
humid environment. Studies on breath figures were conducted
as far back as a century ago by Rayleigh, Aitken, and Baker
[8–12]. In particular, Aitken discovered that filmwise water
condensation took place on the glass surface treated with a
blowpipe flame, whereas dropwise condensation occurred on
the nontreated surface of the same glass [8,9]. Nowadays,
dropwise condensation is at the origin of applications such as
polymer film micropatterning and functionalization [13–17].

The pattern made of the droplet arrangement inside a
breath figure depends on the substrate geometry and proper-
ties [18–20]. It is the result of a complex interplay of various
physicochemical phenomena, including water droplet nucle-
ation, growth, and coalescence. Breath figures go through
three stages throughout their temporal evolution [21]. This has
been observed for growth on a solid surface [22], on a liquid
interface [23], and also in simulations [24].

These stages are as follows: (i) A first stage with low
surface coverage and rare droplet interactions. (ii) An interme-
diate stage, characterized by high values of surface coverage,
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with frequent interaction between small droplets. (iii) A final
and dense scaling regime for the droplet size distribution
whose average radius increases with time [25]. This distribu-
tion is bimodal with one part associated with small droplets
formed by nucleation and a small degree of coalescence with
other droplets, and one part associated with large droplets re-
sulting from the coalescence of many droplets. Condensation
droplets on solid substrates interact solely through coales-
cence, inhibiting the formation of highly ordered patterns.
Nonetheless, measurements of the pair distribution function in
these systems reveal that the pattern develops spatial correla-
tions and exhibits short-range ordering, reaching a maximum
in the scaling regime [26]. In contrast, condensation droplets
on the surface of a liquid can interact with mechanisms other
than coalescence, leading to varying degrees of translation and
orientation orders during the breath figure time evolution [23].

Our study aims to quantify the order related to the co-
ordination number of droplets on solid surfaces across the
successive stages of time evolution, ranging from the ini-
tial patterns composed of scarce and small droplets to the
final scaling regime with a bimodal radius distribution. To
quantify this order, we employ the Voronoi/Shannon entropy
[21,23,27–33].

At first, we measured the time evolution of the Voronoi
entropy within breath figures from the initial nucleation events
to the scaling regime. Our approach is numerical following the
scheme introduced by Family and Meakin [25]. We define two
distinct sets of droplets, the first being all droplets composing
the breath figure, the second one consisting exclusively of
large droplets. For all droplets, the time evolution of Voronoi
entropy occurs in two distinct stages. First, during the initial
nucleation events, coalescence between small and monodis-
perse droplets induces a decrease in entropy. Second, at large
times, the entropy increases back to a value characteristic of
a random point system. This increase in entropy is attributed
to the inherent bidisperse nature of a breath figure. The sit-
uation is rather different looking at the entropy of solely
large droplets. In the case of this set, the entropy decreases
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FIG. 1. Diagram of one simulation step of the droplet deposition
algorithm.

and reaches a limiting value significantly lower than the one
measured for all droplets.

Finally, we performed molecular dynamics simulations of
a bidimensional Lennard-Jones fluid at different temperatures
and densities. We first show that the initial decrease in entropy
for all droplets of a breath figure is the same as the decrease of
Entropy in a Lennard-Jones fluid at low densities. It is worth
noticing that initial values of Voronoi entropy are the same
for the two systems: precisely that obtained for a random
point system. Second, we show that the Voronoi entropy of
large droplets within breath figures is very close to that of
a Lennard-Jones fluid simulated at equivalent density and in
the limit of high temperatures where the repulsive atomic
interaction is predominant. This highlights how coalescence
events in breath figures induce similar values of entropy to that
of repulsive interactions in a two-dimensional atomic system.

II. MATERIALS AND METHODS

A. Simulations of breath figures

We simulate breath figures (BF) following the numerical
scheme depicted by Family and Meakin [25]. Starting with
an initially empty L x L sized two-dimensional surface, at
each simulation step, we place a new droplet of radius R0

at a random position. Each new droplet has a radius R0 and
a contact angle of 90◦, such that it can be represented with
the coordinates of the center and the radius of a hemisphere
on the surface. We chose R0 as the unit length and defined a

dimensionless time t = πR2
0

L2 n with n the number of simulation
steps (i.e., the number of deposited unit size droplets). In
breath figure simulations we fixed L = 2 · 103R0. When a new
droplet is placed at a random position two cases can occur:

(i) The droplet does not overlap with any other ones and is
kept at this random position.

(ii) It overlaps with another droplet giving rise to a co-
alescence event. The two droplets are then replaced by a
new one, respecting mass, center of mass, and contact angle
conservation.

This new droplet can also overlap with others, thus multi-
ple coalescences can occur in one simulation step. Search for
overlap is conducted after every coalescence until there are no
more overlaps. A diagram of the algorithm is shown in Fig. 1.
This simulation therefore reproduces the two mechanisms
of three-dimensional droplet growth on a two-dimensional
surface: growth due to water molecules coming from the at-
mosphere and growth due to their coalescence. Some typical
images of such breath figures are shown in Fig. 2. In this
approach, droplets grow continuously by coalescence, which

frees some space that new droplets can therefore occupy
in subsequent time steps. Due to this process, the shape of
the radius distribution evolves with time. At earlier times,
the probability density function (PDF) of droplet radii is a
monotonously decreasing function with a maximum at R = 1.
Such a distribution is illustrated in the inset of Fig. 2(a).
At approximately t = 1.7, the distribution develops a local
minimum and becomes bimodal. From this time we can there-
fore clearly define a time-dependent critical radius Rc(t ) that
corresponds to the local minimum of the distribution. Three
typical distributions are shown in the insets of Figs. 2(b)–2(d).
The value of Rc(t ) is measured and is shown to increase
monotonously with time, as shown in Fig. 3(a). The increase is
sublinear initially and becomes linear over time after t � 3.5.
This is consistent with the fact that the radius distribution
becomes self-similar over time, with an average radius that
linearly increases with time, and a bimodal distribution con-
sisting of small and polydisperse droplets for R < Rc(t ) and
large and monodisperse droplets for R > Rc(t ) [25].

Based on the previous discussion, we can now consider two
distinct sets of droplets. The first one encompasses all droplets
of the breath figures, while the second consists exclusively of
large droplets with radii larger than Rc(t ). In the following,
the two sets will be referred to respectively as “all droplets”
and “large droplets.”

For each set, we define the surface coverage as φ =∑N
i=1 πR2

i
L2 where N is the number of droplets in the set

[18,20,22,34]. We also define the density ρ =
∑N

i=1(2Ri )2

L2 ,
which is proportional with a factor of 4/π to the sur-
face coverage, to facilitate comparison with simulations of
Lennard-Jones fluids. Indeed as will be detailed in Sec. II C,
density is defined as ρ = Nσ 2

L2 , where σ is the characteristic
length of the Lennard-Jones potential that can be assimilated
to the diameter of a particle. Surface coverage is plotted in
Fig. 3(b). It is a continuously increasing function of time if
we consider all droplets. For the set of large droplets defined
from t = 1.7, the surface coverage saturates from t � 5, in
agreement with the onset of the linear trend in Rc(t ) and of the
scaling regime for the size distribution. The surface coverage
saturates at a value of 0.572 ± 0.003 in agreement with former
measurements [34].

B. Two benchmarks: Random points and nonoverlapping
disk deposition

In addition to the simulation of breath figures (BF), we
simulated two other systems based on the same approach but
with different deposition conditions.

The first case is the simulation of random points (RP).
The algorithm is unchanged, but the radius of the particles
is assumed to be zero so that coalescence never occurs. This
situation corresponds to a random two-dimensional pattern
or a random space-filling structure or Poisson points process
[35], often cited as a reference in quantifying order or disorder
in two-dimensional patterns [21,36,37].

The second case involves simulating nonoverlapping disks,
also called a simple sequential inhibition process (SSI) as
previously studied by Smalley [38], Diggle et al. [39], and
Lotwick [40]. In this scenario, we deposit unit-sized droplets
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FIG. 2. Crops of typical images of simulated breath figures at t = 0.3, 2.5, 6.0, and 16.0 from left to right and from up to down. The
corresponding total number of deposited droplets n are 4 · 105, 3 · 106, 8 · 106, and 2 · 107, while the number of droplets actually present are
N = 2 · 105, 9 · 104, 7 · 104, and 5 · 104, respectively. Insets show the corresponding probability distribution functions (PDF) of droplet radii,
calculated from the full simulation of size 2000R0×2000R0.

randomly, adhering to an exclusion principle that prevents
placing a droplet if it intersects with another droplet already
present on the substrate. The condition of coalescence of
breath figures is replaced in this case by a condition of nonde-
position in the SSI simulation. This interaction can be viewed
as a coalescence that does not affect the position and size of
the already present droplet.

C. Molecular dynamics simulations

We perform two-dimensional molecular dynamics simula-
tions of particles in a square box of size L×L. We note m the
mass of one particle. Two particles separated by a distance r
interact through the Lennard-Jones potential:

V (r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6]
if r � 2.5σ

0 if r > 2.5σ
. (1)

Lengths, energies, and masses are expressed in units of σ , ε,
and m respectively, and times in units of m1/2σε−1/2. Without

loss of generality, we take these three constants equal to one.
The equations of motion are integrated through a standard
Verlet algorithm [41] in the canonical ensemble for which the
temperature T is fixed using the classical velocity rescaling
procedure [41]. In this procedure, the Boltzmann constant is
fixed to unity and temperatures are expressed in terms of ε/kb.
We define particle density as ρ = Nσ 2

L2 , where N is the number
of particles.

We simulate assemblies of a constant number N = 212 of
particles and the length L of the simulation box is tuned to set
the density to desired values, contrarily to breath figure sim-
ulations where L is always kept constant and the number of
particles varies. Periodic boundary conditions are applied in
both x and y directions. The time step is set to dt = 0.002
or 0.0002 depending on density and temperature to ensure
energy conservation of our numerical scheme. At higher tem-
peratures, particle velocities and the rate of their interactions
is increased, thus, in order to conserve the total energy of
the system, we need a smaller timestep. In our range of
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FIG. 3. (a) Time evolution of the critical radius of breath figures.
Inset shows an example of probability distribution function (PDF)
for t = 6, figuring Rc. (b) Plot of ρ and φ as a function of time for
both the all droplets and large droplets systems. Plain lines are the
results of a running average of the measurements.

parameters, the system is equilibrated during approximately
105 time steps, and uncorrelated spatial configurations are
then recorded every 103 time steps during a second simulation
of 105 time steps. Simulations are performed for densities
varying between 0.05 and 0.8, and temperatures ranging from
1 to 120. We vary T systematically within this range with
a step size of �T = 1. We limit our study to densities less
than 0.8 and temperatures greater than 1.0 in order to restrict
the analysis to the liquid phase. Indeed, the liquid-hexatic
phase transition is reported to be approximately at ρ � 0.88
for T � 1.0 [42].

D. Measurement of Voronoi entropy

Measurement of Voronoi entropy has already been em-
ployed to characterize ordering related to coordination num-
bers of other 2D systems [21,23,27–33]. For a given system on
the 2D plane, we build a Voronoi diagram/tessellation based
on the set of sites (coordinates of disk centers for droplets
in breath figures, particle positions in molecular dynamics
simulations) [35,43–45]. This diagram is calculated with a
Python script using the scipy.spatial repository, integrating
the Qhull library [46]. It leads to a partitioning of the plane
into polygonal regions consisting of all points closer to a site
than to any other. This diagram defines the nearest neighbors
and the number of sides of a polygon gives the coordination
number of a site in the tessellation (see Fig. 4 and Fig. 8

FIG. 4. Example of a Delaunay triangulation that is the dual of a
Voronoi tesselation, considering (a) all droplets or (b) large droplets
only (R > Rc), for t = 14 in breath figure simulations as explained
in Sec. II A. The considered droplets are shown in dark blue color,
while nonconsidered droplets are in light blue.

for examples of BF with sets made of all droplets and large
droplets, respectively, and for LJFs). The Voronoi entropy
quantifies the dispersion of polygon side numbers based on
Shannon entropy:

S =
∑

k

−Pk ln(Pk ), (2)

with Pk the probability that a polygon has k sides or neighbors.
If the tessellation is constructed from polygons of the same
type, e.g., hexagons, the Voronoi entropy is minimal and equal
to zero. The Voronoi entropy increases with the diversity of
polygon types present in a given Voronoi diagram. It can be
recognized from Eq. (2) that the Voronoi/Shannon entropy
quantifies the average unlikelihood or unexpectedness to find
polygons with the given number of sides in the addressed
Voronoi tessellation. For instance, the Voronoi entropy equals
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1.69 for an assembly of random points (see Sec. III A). We
calculate S for BF on 20 independent simulations for both
sets of all droplets and large droplets. For molecular dynamics
simulations with a Lennard-Jones potential, we calculate S
on 100 uncorrelated particle spatial configurations for each
density and temperature value.

III. RESULTS

A. Voronoi entropy of a breath figure

In this section, we calculate the Voronoi entropy S for
the two subsets of a breath figure as defined above: the first
subset being all droplets and the second the large droplets.
For all droplets, S starts from a value that is consistent with
the one calculated in our random point (RP) simulations
(S = 1.6904 ± 0.0005). This value aligns perfectly with re-
sults obtained from early simulations of Poisson distributed
random points [47]. Nevertheless, it slightly deviates from
the value of 1.71 often reported in the literature to charac-
terize such arrangements [21]. We attribute this difference to
a possible confusion between random points and hierarchi-
cal arrangements also known as compound negative binomial
(CNB) distributions [48].

As time increases we observe a decrease of entropy that we
interpret as a direct consequence of coalescence events. Then
from approximately t � 0.7, entropy increases and for large
times reaches a limit value that is also close to that of an RP
system. We attribute this increase in entropy to polydispersity
in droplet size. In contrast, the entropy of the second subset
consisting solely of large droplets is a decreasing function of
time and reaches a steady state value of approximately 1.26,
which is sensibly lower than the one observed for all droplets.

A more detailed examination of the entropy of all droplets
reveals a more complex behavior. The initial decrease, starting
from the RP value, resembles that of the SSI system, as de-
picted in Fig. 5(b) [a magnification of Fig. 5(a) for low times].
The deviation of the entropy S for all droplets from that of SSI
can be attributed to the polydispersity in droplet size distribu-
tion. This polydispersity is present in breath figure simulations
while, by definition, it is not in the SSI model. Furthermore, S
for all droplets increases until it surpasses the initial RP value
to reach a maximum of 1.71. It is attained due to a hierarchical
arrangement within the breath figure, such as in a compound
negative binomial (CNB) distribution [48,49]. Indeed, due to
the clustering effect, CNB exhibits higher entropy compared
to RP. Bidispersity causes the small droplets of the breath
figure to cluster between the large droplets. For large values
of t , the entropy S for all droplets asymptotically approaches
the entropy value for RP. This behavior can be explained by
the significant reduction in the number of large droplets at
large times, roughly t > 20. In between large droplets, small
droplets are arranged randomly, as for initial times. Thus, the
value of entropy turns back to that of a random point system.

B. Voronoi entropy in Lennard-Jones fluids
and comparison with breath figures

We measured the Voronoi entropy S of Lennard-Jones
fluids (LJF) as described in Secs. II C and II D. In Fig. 6,
S is represented as a function of density for two different

FIG. 5. (a) Time evolution of S for all droplets (blue) and for
large droplets (black). The orange dashed line is placed at the asymp-
totic value of S corresponding to an assembly of random points (RP).
(b) A zoom on the early instants of the evolution. The brown full
curve shows the time evolution of S for a nonoverlapping random
disk system (SSI), explained in Sec. II B.

FIG. 6. Comparison of the evolution of S for BF, MD, RP, and
SSI as a function of density and surface coverage. The black dot
corresponds to the Voronoi entropy of the large droplets of breath
figures at their density of saturation as explained in Sec. II A.
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temperatures. We plotted the results for T = 1 and T = 100
that correspond to results at intermediate and infinite tem-
peratures, respectively. Some snapshots of the simulation for
different densities and temperatures are presented in Fig. 7 of
the Appendix.

Regardless of temperature, the limit ρ → 0 gives a value
of S very close to 1.69, which is the value expected for a
random point system. At a given temperature, the Voronoi
entropy is a decreasing function of density, and for a given
density, the lower the temperature the lower the entropy. For
T = 1 the effect of the attractive part of the interaction results
in a stronger decrease of S as ρ increases. As discussed in
Sec. II C, this behavior marks the onset of the liquid-to-hexatic
transition.

At low densities (ρ < 0.2), the Voronoi entropy displays
the same decreasing trend as a function of density for all mod-
els considered: BF, SSI, and LJF at high and low temperatures.
It seems reasonable to associate the increase of density with an
increase in the probability of particles or droplets interacting,
thus to a decrease of entropy. We know that in the case of
BF and SSI, this interaction is coalescence. The entropy for
LJF displays this same decreasing behavior at large tempera-
tures, where the repulsive part of the potential is predominant.
As a consequence, we can conclude that coalescence events
in BF can be viewed as an effective repulsive interaction,
just as it is the case of a high-temperature Lennard-Jones
fluid.

Around ρ � 0.4 the Voronoi entropy of all droplets of BF
(blue curve in Fig. 6) is increasing with density. This behavior
is analogous to that described and explained in Sec. III A. It
deviates from SSI and LJF because of the polydispersity in
droplet size. This is no longer the case if we consider the
entropy of the large droplets of BF. The density and entropy
variations are small for this set of droplets, and both quantities
quickly reach their steady-state values corresponding to the
scaling regime. For this reason, we represented in Fig. 6 the
entropy for large droplets by a single point with error bars.
Dispersion in measurements of entropy is due to finite system
size. One can observe that the value of entropy for large
droplets compares well with that of a Lennard-Jones fluid in
the limit of high temperatures (typically T > 10.0) and at a
density equal to that of the asymptotic density of the large
droplets of a BF (ρ = 0.72). One can conclude that while
all droplets of a BF behave similarly to a random system,
the set consisting of large droplets exhibits a Voronoi entropy
consistent with that of a high-temperature Lennard-Jones fluid
where repulsive interactions are predominant.

IV. CONCLUSION

In this paper, we have quantified the time evolution of the
Voronoi entropy of breath figures by performing numerical
simulations, taking into account deposition and coalescence
processes. When considering the entire set of droplets, the
entropy starts at 1.69, which is the value one would expect
for a random point system. However, it then undergoes a
complex evolution linked to the interaction between droplets,
namely coalescence becoming more important as surface
coverage increases, as well as changes in polydispersity as
the system’s density increases. Ultimately, it asymptotically

FIG. 7. Snapshots of particles molecular dynamics simulations
of varying densities and temperatures. Images of the first row are
at ρ = 0.8 and those at the second row are at ρ = 0.05. The first
column is at T = 1, while the second is at T = 80. All images show
particles in a window of size (48×48)σ . The particles are represented
by blue disks whose diameter is σ .

returns to a value of 1.69, that of a random point sys-
tem as the pattern becomes self-similar. In contrast, the set
comprised solely of large droplets resulting from numerous
coalescence events demonstrates a lower entropy of a value
of 1.26.

FIG. 8. Voronoi tesselations calculated from particle positions
shown in Fig. 7. The colors of the Voronoi polygons represent their
coordination number according to the colorbar on the right.

024302-6



QUANTIFYING ORDER IN BREATH FIGURE PATTERNS … PHYSICAL REVIEW E 110, 024302 (2024)

We have also characterized the evolution of the Voronoi
entropy of simulated Lennard-Jones fluids as a function of
density and temperature. We compared the data obtained
for breath figures with that coming from molecular simu-
lations of Lennard-Jones fluids at various temperatures. We
demonstrated by this comparison that the order related to the
coordination number observed in the set of large droplets of
breath figures is similar to that observed in atomic systems
in the limit of high temperatures (T > 40), where attractive
energies and forces are not at play [50].

Consequently, coalescence events can be regarded as
effective repulsive interactions in breath figures from the per-
spective of Voronoi entropy, which quantifies the ordering
related to the coordination number.

APPENDIX: VORONOI TESSELATIONS OF LJ FLUIDS

Figure 7 shows snapshots of molecular dynamics simula-
tions for two different densities at two different temperatures
as explained in Sec. II C. For high density (ρ = 0.8) at high
temperature (T = 80), a larger dispersion in the coordination
number of particles is apparent in Fig. 8 compared to the snap-
shot at the same density at low temperature (T = 1). This is
consistent with the corresponding values of Voronoi entropies
presented in Fig. 6. Conversely, at low density (ρ = 0.05)
and low temperature (T = 1), a high dispersion is observable,
due to the presence of a very slight clustering effect between
particles. This also aligns with the Voronoi entropy values
discussed in the article.
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