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Although instantaneous interactions are unphysical, a large variety of maximum entropy statistical inference
methods match the model-inferred and the empirically measured equal-time correlation functions. Focusing on
collective motion of active units, this constraint is reasonable when the interaction timescale is much faster than
that of the interacting units, as in starling flocks, yet it fails in a number of counterexamples, as in leukocyte
coordination (where signaling proteins diffuse among two cells). Here, we relax this assumption and develop
a path integral approach to maximum-entropy framework, which includes delay in signaling. Our method is
able to infer the strength of couplings and fields, but also the time required by the couplings to completely
transfer information among the units. We demonstrate the validity of our approach providing excellent results
on synthetic datasets of non-Markovian trajectories generated by the Heisenberg-Kuramoto and Vicsek models
equipped with delayed interactions. As a proof of concept, we also apply the method to experiments on dendritic
migration, where matching equal-time correlations results in a significant information loss.
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The ability to move is a fundamental property of many
living systems, ranging on different scales, from animals to
cells [1]. As for the latter, advances in live imaging allowed
scientists to collect big data for which statistical analysis
has now become a robust and reliable tool [2]. These in-
vestigations suggest that cells often migrate in groups and
communicate as they move. Establishing whether such inter-
actions are present is, in many cases, of utmost importance
to possibly control and anticipate the evolution of a system.
However, answering this question is notoriously difficult, es-
pecially when unit-to-unit communication is not supported by
the existence of physical bonds, as in juxtacrine interactions,
but it is rather induced by some signaling pathways, as in
paracrine interactions. To inspect these possible interactions,
several methods have been introduced in the past few decades.
Among these, inferential techniques have been designed to
take as input some tracks of moving units, such as birds in
flocks or migrating cells, and output the parameters which
provide information about the motion and the existence of
interactions among the units, and/or between the units and an
external source, such as a predator for a bird flock [3] or a
cancer cell producing signaling proteins for leukocytes [4].

In particular, approaches based on the maximum entropy
(ME) principle [5] have been proven successful in a broad
variety of contexts, revealing interaction patterns resulting

*Contact author: adriano.barra@uniroma1.it

from amino-acid sequences in protein families [6], interaction
structures of genetic networks [7], effective interactions in
networks of neurons [8], etc. The state of the art of this
inverse modeling still exhibits some limitations which make it
unsatisfactory at work on units coordination for collective mo-
tion. Specifically, this approach usually forces the theoretical
and experimental equal-time correlation functions to match,
implicitly assuming instantaneous interactions among units;
however, this assumption may not hold when the interaction is
mediated by some chemicals which take some time to diffuse
from the emitter to the receiver. For example, in cell-migration
experiments, cell i may locally release a chemical compound
along its migratory path, and cell j may cross the former path
of i at a later time and thus feel a delayed interaction with
i mediated by this compound. In this work, we introduce,
develop, and test a ME framework that allows unveiling not
only time-lagged effective interactions but also, and more
generally, interactions that arise indirectly as cell i alters the
environment of cell j.

Let us consider the motion of N particles (i.e., units) in a
D-dimensional space and denote their trajectories by

{
xt

i

}
, 1 � i � N, 1 � t � NT + 1, (1)

where xt
i is the D-dimensional position vector of particle i

at time t , and the superscript index indicates instants of time
separated by δt , for a total of NT + 1 temporal samples. The
velocity vt

i and direction of motion st
i of each particle i at time
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t then read, respectively,

vt
i ≡ xt+1

i − xt
i

δt
, st

i ≡ vt
i∣∣vt
i

∣∣ and mt ≡ 1

N

N∑
i=1

st
i , (2)

is the instantaneous mean alignment of the moving units at
time t which shall also be referred to as the “magnetization,”
while st ≡ {st

1, . . . , st
N } is interpreted as a configuration (at

time t) of N Heisenberg spins. For practical purposes, we
assume that the motion of these units may be temporally cor-
related up to a maximum temporal window of length τM, with
0 � τM < NT. Hereafter, we assume that the correct value for
τM is known a priori; later, once the necessary tools are devel-
oped, we will provide a means for determining τM from the
data in a self-consistent manner via the Akaike information
criterion (AIC) [9].

The two natural observables we use to quantify this tempo-
ral correlation are the temporally averaged magnetization M,

M ≡ 1

NT − τM

NT∑
t=τM+1

mt , (3)

and the two-point correlation function R with delay τ ,

R(τ ) ≡ 1

NT − τM

NT∑
t=τM+1

mt · mt−τ , 1 � τ � τM. (4)

We seek P(s) as the minimal probability measure such that the
theoretical averages for the magnetization (3) and correlation
function (4) match their empirical values and, accordingly, we
obtain it following the ME principle [5,10,11]: we define the
path entropy S as

S[P] = −
∫

DsP(s) log P(s), (5)

where Ds ≡ ∏NT
t=1

∏N
i=1 dst

i and dst
i is the surface element of

the (D − 1)-dimensional sphere.
To solve this optimization task, we introduce the La-

grangian multipliers J ≡ {Jτ }τM
τ=1 and H ≡ {H�}D

�=1, and
obtain

P(s) = 1

Z
exp

⎡
⎣ NT∑

t=τM+1

N∑
i=1

st
i ·
⎛
⎝ 1

N

τM∑
τ=1

Jτ

N∑
j=1

st−τ
j + H

⎞
⎠
⎤
⎦,

(6)

where Z ≡ ∫
DsP[s] is a normalization constant, see the Ap-

pendix for details.
Remarkably, P(s) can be looked at as a Boltzmann-Gibbs

distribution and, consistently, the argument of its exponential
can be interpreted as a Hamiltonian. Thus, the Lagrange multi-
pliers H and Jτ play, respectively, as an effective external field
and as an effective interaction-strength, such that the direction
of the ith unit at time t tends to align with the direction of
H and to align (misalign) with the average unit’s direction at
time t − τ if Jτ > 0 (Jτ < 0). Having obtained an analytical
expression for P(s), we infer the parameters J and H from
datasets.

Before proceeding we note that, in the following, the theo-
retical average over P(s) shall be denoted by brackets, while

the experimental average shall be denoted by the superscript
E (e.g., 〈mt 〉 and mE

t ).
As averaging over the measure P(s) is computationally

cumbersome (as we have to integrate over NT ×N coupled
variables at once), en route toward an approach that can be
routinely applied in a laboratory, hereafter we explore an ap-
proximation, whose consistency can be checked a posteriori.
First, in Eq. (6) we replace the internal field with its empirical
counterpart,

1

N

τM∑
τ=1

Jτ

N∑
j=1

st−τ
j →

τM∑
τ=1

Jτ mE
t−τ . (7)

The resulting distribution is referred to as PA to highlight
that it is an approximation of P. Denoting by 〈〉A the related
average, we get

〈mt 〉A =
∫ ⎛
⎝ NT∏

t=τM+1

N∏
i=1

dst
i

⎞
⎠PA[s]

1

N

N∑
i=1

st
i

=
{
M

(∑τM
τ=1 Jτ mE

t−τ + H
)

if τM � t � NT,

mE
t if 1 � t � τM,

(8)

where

M(x) ≡ x
|x|

I1(|x|)
I0(|x|) , (9)

and I0, I1 are hyperbolic Bessel functions of order 0 and 1,
respectively [12].

Next, we notice that PA is factorized with respect to every
variable st

i , hence 〈mt mt ′ 〉A = 〈mt 〉A〈mt ′ 〉A. This allows us to
recast the constraints in the ME extremization as

ME = 1

NT − τM

NT∑
t=τM+1

〈mt 〉A, (10)

RE(τ ) = 1

NT − τM

NT∑
t=τM+1

〈mt 〉A · 〈mt−τ 〉A, 1 � τ � τM.

(11)

The nonlinearities in J and H introduced by the operator M
make the direct evaluation of these parameters from Eqs. (10)
and (11) nonfeasible. To circumvent this difficulty, we can
note that these equations are simultaneously fulfilled by re-
quiring that

〈mt 〉A = mE
t , τM + 1 � t � NT, (12)

which, exploiting Eq. (8), becomes

M
(

τM∑
τ=1

Jτ mE
t−τ + H

)
= mE

t , τM + 1 � t � NT, (13)

and, finally, by introducing the inverse function GE
t ≡

M−1(mE
t ) we can shift the nonlinearity on the experimentally

determined term and get

τM∑
τ=1

Jτ mE
t−τ + H = GE

t , τM + 1 � t � NT. (14)
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Hence, the solution of the original integral over the past his-
tory of all the particles (5) is effectively approximated in terms
of the solution of the linear system (14).

We stress that Eq. (12) constitutes a stricter condition than
Eqs. (10) and (11), because it stems from approximation (7)
that removed degrees of freedom. To avoid Eq. (14) being
overconstrained, we include an additional and controllable
term in it, i.e.,

∑τM
τ=1 Jτ mE

t−τ + H + σεt = GE
t , where εt ∼

N (0D, 1D) and σ � 0 is a further parameter to be determined:
we have modified the constraint in such a way that the relation
(14) does not hold deterministically. Thus, the related log-
likelihood lA reads

lA(J, H, σ |sE) ≡ − 1

2σ 2

NT∑
t=τM+1

∣∣∣∣∣
τM∑

τ=1

Jτ mE
t−τ + H − GE

t

∣∣∣∣∣
2

−(NT − τM)
D

2
log(2πσ 2). (15)

We now obtain the optimal estimates for J, H , and σ . Setting
∇H lA = 0, we obtain

H = 〈
GE

t

〉
t −

τM∑
τ=1

Jτ

〈
mE

t−τ

〉
t , (16)

where 〈·〉t ≡ 1
NT−τM

∑NT
t=τM+1(·) denotes the time average, and,

proceeding analogously for ∇Jτ
lA = 0, we get

J = A−1 · B, (17)

with

Aλτ ≡ 〈
mE

t−τ · mE
t−λ

〉
t − 〈

mE
t−τ

〉
t · 〈mE

t−λ

〉
t , (18)

Bλ ≡ 〈
GE

t · mE
t−λ

〉
t − 〈

GE
t

〉
t · 〈mE

t−λ

〉
t . (19)

Finally, setting ∇σ lA = 0, we obtain

σ 2 = 1

D

〈∣∣∣∣∣H +
τM∑

τ=1

Jτ mE
t−τ − GE

t

∣∣∣∣∣
2〉

t

. (20)

As detailed in the Appendix, an estimate of the errors for
the inferred parameters can be obtained by using the Fisher
information for the log-likelihood [13]. In fact,

Var(J, H, σ ) ≈ diag(I−1), (21)

where the approximation holds as long as the sample size is
large enough and I is the Fisher information matrix, which in
the present setting reads

I = NT − τM

σ 2

⎛
⎜⎜⎝
〈
mE

t−τ · mE
t−λ

〉
t

〈
mE

t−τ

〉
t 0〈

mE
t−λ

〉
t δ 0

0 0 2D

⎞
⎟⎟⎠.

So far in our analysis, we assumed that τM is known, yet
in most practical cases it is not. To estimate τM, we rely
on the AIC [9], which provides a tool for model selection,
each model being characterised by a different value of τM.
In general, given a dataset and a model with a mean-squared
error ε2, np parameters, and no observations, the quantity

AIC ≡ 2np

no
+ log(ε2) (22)

assesses the quality of such a model for the data available. In
fact, the AIC favors models with a small error and a small
number of parameters. In the analysis above, the parameters
in Eq. (22) are

no = D(NT − τM), np = τM + D + 1, ε2 = NT

NT − τM
σ 2,

thus

AIC = 2
τM + D + 1

D(NT − τM)
+ log

NT σ 2

NT − τM
. (23)

In the following, after performing inference for multiple val-
ues of τM and determining σ 2 from Eq. (20), we evaluate
Eq. (23) for each inferred model (i.e., by varying τM) and
we choose the effective τM as that with the smallest value
of AIC: the maximal (in modulus) J within the time window
0 � t � τM is then interpreted as the best inferred coupling.

We test our framework on both synthetic and real datasets.
The models used to generate the synthetic datasets are the
Heisenberg-Kuramoto model (HKM) [4], whose Boltzmann-
Gibbs distribution is precisely (6), and the (topological or
metric [14]) Vicsek model (VM) [15], both equipped with a
(tunable) delay in the interactions [16]. Each model has its
own set of parameters, which we denote as planted parame-
ters, while those returned by the ME extremization are labeled
as inferred.

As a conditio sine qua non for further analyses, the val-
idation of our ME method on the HKM is shown in Fig. 1
providing excellent results, even away from the Markovian
limit τM = 1.

Next, introducing the i.i.d. noise ηt
k ∼ N (0, 1) and using

	 to account for the planted delay in signaling, we con-
sider the VM in a 2D square lattice of size L with periodic
boundary conditions, defined by the following dynamical
equations [15,17]:

vt+1
k = v0�

(
J∣∣nt
k

∣∣ ∑
j∈nt

k

vt−Dik
j

v0
+H+

√
δt ηt

k

)
, (24)

xt+1
k = xt

k + δt vt+1
k k = 1, . . . , N, (25)

where Di j = (	 − 1)(1 − δ
j
i ) while vt

i , xt
i are the velocity and

position of the ith particle at time t , respectively, and two
temporally consecutive frames are distant δt . In the topolog-
ical implementation of the VM, nt

k is the set of topological
neighbors of the kth particle (including the kth particle itself)
and |nt

k| := nc is the number of neighbors of the kth particle at
time t . In the metric counterpart, deepened in the Appendix,
nt

k is the set of the closer units within an interaction range. As
standard in the VM, �(v) ≡ v/|v|, thus the velocity of each
particle has constant magnitude v0. Finally, the magnetization
of the VM is given by

mt = 1

N

N∑
k=1

�
(
vt

k

)
, (26)

which is the adaptation of the last expression in Eq. (2) to
the case. In the validation of the ME inference for the VM
we set Hy = 0: the parameters to estimate are thus J, Hx and
the delay (whose inferred value we call τME as opposite to
	 that is the planted value) as reported in Fig. 2. Further, to
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FIG. 1. Validation of our inference method with the HKM. Here D = 2, τM = 4, σ = 0.1, and we drew 150 planted parameters
J1, . . . , JτM , Hx, Hy independently and identically from a uniform distribution over the range (−1, 1). (a) Scatter plot of planted vs inferred
parameters: they match along the diagonal as they should. (b) Histogram of the absolute error between J, H planted and J, H inferred: for
each realisation of the process we calculate |Jinferred − Jplanted| and |H inferred − Hplanted| and the related 150×(D + τM) components make up
the sample; the black dot represents the average and the black horizontal line represents a confidence interval of 68%; the average error
is ∼10−2, which is the expected amount of error given the size of the planted dataset. (c) Pearson correlation matrix between planted and
inferred parameters: as expected distinct types of parameters, e.g., H and J, are uncorrelated. (d) Histogram of τ inferred

M − τ
planted
M : the peak of

the distribution correctly returns the inferred delay as the planted one.

deepen the statistical properties of the inferred model, we also
compare the lowest-order moments of some observables for
trajectories generated by the inferred ME model and by the
planted VM: in particular, we measure the magnetization M
and the correlation function R(τ = 	) to check that their val-
ues are statistically compatible: Fig. 3 provides a positive test
of the inference method for the topological VM (and the same
holds also for the metric case, discussed in the Appendix).

Finally, to highlight the inconsistency that would result by
neglecting interaction delays in real experiments, we consider
datasets on dendritic migration in a chemokine gradient [10]:
all the aspects of biological relevance will be discussed else-
where, here we just focus on the methodology. Positions of all
cells were recorded at (ordered) multiple times and we studied
two regions of the experiment, the former (region A) where
the gradient is low and the latter (region B) where the gradient
is high, providing two datasets suitable to be addressed by our
approach; see the Appendix for details. We estimate

δAIC(τM) ≡ AIC(τM) − min
τ ′

M

AIC(τ ′
M),

i.e., the difference between AIC for a given τM and AIC for
the optimal τM, the inferred parameters Jτ , H , σ and the
connected correlation function

C(τ ) ≡ 〈m(st ) · m(st−τ )〉t − 〈m(st )〉t · 〈m(st−τ )〉t (27)

for the optimal value of τM. These results are reported in
Fig. 4 for both datasets A and B, highlighting marked dif-
ferences between the prediction by the standard ME and our
technique. Indeed, as shown in Fig. 4(a), the optimal τ is 13

for region A and 14 for region B, and, as shown in Fig. 4(b),
the corresponding couplings Jτ=13 and Jτ=14 are both posi-
tive, while in the τ → 0 part of these panels the interactions
are actually repulsive: accordingly the connected correlation
functions provided in Fig. 4(d) are small but systematically
different from zero for τ < τM , then they vanish. As expected
the method correctly returns a higher field in region B, w.r.t.
A, as shown in Fig. 4(c). A further last control test on this
inference can be achieved simply by reshuffling the frames
and feeding the ME method with this random permutation: in
this case the coupling should disappear yet the field should
be preserved and, indeed, this is the case, as shown in the
Appendix (see Fig. 9).

To summarize, we revised the standard ME method to
encompass scenarios where communication among units is
slow: the dependence over the whole history of any particle
has to be considered and the emerging dynamics does not
have to be any longer Markovian. While from a gnoseological
perspective such general setting should always be prefer-
able to versions where equal-time correlators are constrained,
when communication among units is reasonably faster than
the fastest timescale of their dynamics, standard ME and our
method return the same outcome. Whatever the route, in a
nutshell, we use the knowledge stemming from empirical
correlations to construct an effective Hamiltonian model that
correctly reproduces the observed motion (e.g., its statistical
characterstics, at some prescribed order, depending on how
much empirical information we relied upon and thus how
many Lagrange multipliers we used). The interactions that
we infer via maximum entropy should however be seen as
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FIG. 2. Validation of our inference method with the topological VM, simulated in a periodic, two-dimensional square lattice with size
L = 150. N = 100, 	 = 6, δt = 1, v0 = 1, nc = 4, H = (Hx, 0). Hx and J are i.i.d. over the set [0, 2]×[0, 2]. The analogous picture for the
metric case is reported in the Appendix. (a) Example of the empirical correlation R(τ ) vs τ . (b) Example of the (related) inferred coupling: note
the presence of two peaks, the former (at τ = 1) is the Markovian self-interaction, the latter (at τ = 	 = 6) is the non-Markovian contribution
by nearest neighbors, in accordance with Eqs. (24) and (25). (c) Scatter plot of the inferred vs the planted values of the coupling: note that the
larger the (external) field Hx , the greater the overestimation of the (inferred) coupling. (d) Scatter plot of the number of nearest neighbors nc

estimated as the ratio between the intensities of the coupling at τ = 1 (the Markovian self-interaction accounting for inertia) and at τ = 6 (the
non-Markovian interaction with other units), i.e., nc = 1 + J	/J1.

effective interactions as, in principle, we do not know the
model that generated the dynamics. For instance, when ana-
lyzing trajectories generated by the Vicsek model, the details
of the generating model do not enter in our analysis, nev-
ertheless the inferred values of these interactions—despite
being effective—carry valuable information about the motion
(furthermore, an underlying model may not even exist, and in
general it is now known).
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APPENDIX

In this Appendix, we present details of the mathemati-
cal framework developed for inferring delayed interactions
among dynamical units, such as a group of migrating cells,

using only their trajectories. First, we present our approach
to generalize the maximum entropy (ME) method, standardly
based on matching equal-time correlation, to cope with delay
in signaling, then we validate our method on synthetic and
real datasets. As for the synthetic ones, we focus on trajec-
tories generated by the Heisenberg-Kuramoto model (HKM)
[4] with delay and on trajectories generated according to the
Vicsek model (VM) [15], both in its topological as well as
metric implementations; finally, we consider a real test-case
focusing on the trajectories of dendritic cells migrating to-
ward a chemoattractive source, namely in the presence of a
chemokine gradient [10].

APPENDIX A: DYNAMIC MAXIMUM-ENTROPY
FORMALISM

1. Problem formulation

Let us consider the motion of N particles in a D-
dimensional space, and denote by{

xt
i

}
, 1 � i � N, 1 � t � NT + 1 (A1)

the set of trajectories, where xt
i is the position of the particle

i at time t and the superscript index indicates instants of time
separated by δt , for a total of NT + 1 temporal samples. By
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FIG. 3. Validation of our inference method with the topological VM whose setting is the same as in Fig. 2. The superscripts V and ME
pertain to quantities calculated for the VM or inferred via the ME method, respectively. (a) Observables M and R(	) as functions of Hx , with
J = 1.0. (b) Observables M and R(	) as functions of J , with Hx = 1.0. (c) Sum of the relative errors |MME −MV M |

|MV M | + |RV M (	)−RME (	)|
RV M (	) as functions

of Hx and J . (d) Absolute deviation between the inferred τME := argmaxτ |JME (τ )| and the planted parameter 	 as a function of J and Hx . The
analogous figure for the metric case is reported in the Appendix.

using these collected positions xt
i , we can evaluate the velocity

v and direction of motion s of each particle i at time t :

vt
i ≡ xt+1

i − xt
i

δt
, st

i ≡ vt
i∣∣vt
i

∣∣ , 1 � i � N, 1 � t � NT.

(A2)
Focusing on the collection of variables s ≡ {st

i},
1 � i � N, 1 � t � NT, a natural framework to determine
a probability measure for these units is the path-integral
formalism [10,11]: we define the path entropy S as

S[P] = −
∫

DsP(s) log P(s), (A3)

where Ds ≡ ∏NT
t=1

∏N
i=1 dst

i is the integration measure and
each dst

i is a surface element of the (D − 1)-dimensional
sphere. The average alignment of the moving units at time t is
given by

m(st ) ≡ 1

N

N∑
i=1

st
i , (A4)

where

st ≡ {
st

i

}
, 1 � i � N. (A5)

The latter can be interpreted as a configuration of soft spins
that evolve in time, thus, we will refer to m(st ) as the

magnetization at time t . Furthermore, to quantify the direction
along which the units move on average, we introduce the
temporally averaged magnetization M:

M(s) ≡ 1

NT − τM

NT∑
t=τM+1

m(st ). (A6)

In our analysis, we assume that the motion of the units above
can be temporally correlated up to a maximum temporal
window whose length is τM with 0 � τM < NT. A natural
observable to quantify this persistence is the two-point cor-
relation function R with delay τ

R(τ, s) ≡ 1

NT − τM

NT∑
t=τM+1

m(st ) · m(st−τ ), 1 � τ � τM.

(A7)
For the moment we suppose that the correct value for τM is
known a priori; in the following sections, after having devel-
oped the necessary tools, we also provide a recipe for selecting
τM in a self-consistent manner for any dataset. Notice that the
expression in Eq. (A7) implements a “mean-field” correlation
as the direction of each unit i is related to the direction of any
other unit up to τM time steps before, regardless of their spatial
distance.

Following the ME principle [5], we seek P as the minimal
probability measure whose average magnetization (A6) and
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FIG. 4. Inference for the chemokine-gradient dataset (δt = 2 min), for both regions A and B. (a) Difference between the AIC and its
minimal value, as a function of the total number of interactions τM. (b) Inferred values of the delayed interaction Jτ and corresponding errors.
(c) Inferred values of the two components of the field, Hx and Hy, and inferred value of σ . (d) Correlation function C(τ ); see Eq. (27).

two-point correlation function (A7) match their respective
empirical values:

max
P

S[P], (A8)

subject to ∫
DsP(s)M(s) = ME, (A9)

∫
DsP(s)R(τ, s) = RE(τ ), 1 � τ � τM, (A10)

∫
DsP(s) = 1, (A11)

where ME and RE are the empirical values of the average
magnetization and two-point correlation, respectively.

To solve Eq. (A8), we use the method of Lagrangian mul-
tipliers. The Lagrangian S
 reads

S
[P, J, H] = − 1

N (NT − τM)

∫
DsP[s] log P[s]

+
τM∑

τ=1

Jτ

(∫
DsP[s]R(τ, s) − RE(τ )

)

+ H ·
(∫

DsP(s)M(s) − ME

)

+ ζ

N (NT − τM)

(∫
DsP[s] − 1

)
, (A12)

where J ≡ {Jτ }τM
τ=1, H ≡ {H�}D

�=1, ζ play as Lagrangian mul-
tipliers and the normalization factor 1

N (NT −τM ) ensures that S


is an intensive quantity with respect to N and NT , and that
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the final expression for P(s) is well defined (vide infra). The
Lagrangian can be easily extremized with respect to P:

δS


δP
= − 1

N (NT − τM)
(log P(s) + 1 − ζ )

+
τM∑

τ=1

Jτ R(τ, s) + H · M(s) = 0, (A13)

yielding

P(s) = 1

Z
exp

{
N (NT − τM)

[
τM∑

τ=1

Jτ R(τ, s) + H · M(s)

]}
,

(A14)

where the Lagrangian multipliers J, H are determined im-
plicitly by Eqs. (A9) to (A11), and Z ≡ exp{(1 − ζ )/
[N (NT − τM)]}. By substituting Eqs. (A6) and (A7) into
Eq. (A14), we get

P(s) = 1

Z
exp

⎡
⎣N

NT∑
t=τM+1

m(st ) ·
(

τM∑
τ=1

Jτ m(st−τ ) + H

)⎤⎦.

(A15)

Finally, by plugging Eq. (A4) into Eq. (A15), we obtain

P(s) = 1

Z
exp

⎡
⎣ NT∑

t=τM+1

N∑
i=1

st
i ·
⎛
⎝ 1

N

τM∑
τ=1

Jτ

N∑
j=1

st−τ
j + H

⎞
⎠
⎤
⎦,

(A16)

where the normalization constant Z reads

Z =
∫

Ds exp

⎡
⎣ NT∑

t=τM+1

N∑
i=1

st
i ·
⎛
⎝ 1

N

τM∑
τ=1

Jτ

N∑
j=1

st−τ
j + H

⎞
⎠
⎤
⎦.

(A17)

We emphasize that the resulting P(s) can be interpreted as a
Boltzmann-Gibbs distribution whose exponential defines an
effective energy function that, consistently with thermody-
namic principles, scales linearly with the number of degrees
of freedom N and NT . More generally, the structure of P(s)
suggests that the direction of the ith particle at time t tends
to be aligned with the direction given by H—which plays
as an external field—and that, if Jτ > 0 (resp. Jτ < 0), the
direction of the ith particle at time t tends to be aligned
(resp. misaligned) with the average unit’s direction at time
(t − τ )—which plays as an internal field.

2. Solution method

In this section we present our strategy to obtain an esti-
mate for the parameters J and H , starting from a sample of
experimental data. We first recast the problem into a max-
imum likelihood setting, which allows us to implement a
simplification in the expression for P(s), yielding to an ap-
proximated expression denoted as PA(s). This approximation
is made necessary by the prohibitive difficulty of averaging
over the probability measure (A16), since it involves han-
dling simultaneously all the correlated variables over their
past history, as standard in path-integral formulations. In fact,

the idea is to replace the mean expectation of the internal
field produced by the peer units and appearing in the ex-
ponent of the Boltzmann-Gibbs representation (A16), with
its empirical evaluation. As we will show, this makes the
measure PA(s) factorized in such a way that we can recast the
Lagrangian constraints in an approximated linear system that
is feasible for a straightforward evaluation of the parameters J
and H .

Let us implement the plan. Suppose that we experimentally
observe a system of N particles at regular time intervals for a
total of NT + 1 timepoints, then, according to Eq. (A2), we can
evaluate the velocity v and the direction s for each particle and
time point, overall collecting the dataset:

sE = {
sE,t

i

∣∣1 � i � N, 1 � t � NT
}
, (A18)

hence, we can calculate

mE
t ≡ mE(sE,t ) = 1

N

N∑
i=1

sE,t
i , (A19)

ME ≡ ME(sE) = 1

NT − τM

NT∑
t=τM+1

mE(sE,t ), (A20)

RE (τ ) = 1

NT − τM

NT∑
t=τM+1

mE(sE,t ) · mE(sE,t−τ ), (A21)

where the superscript E highlights that the quantity is evalu-
ated by experimental data and in the last definition we wrote
RE (τ ) ≡ RE(τ, sE) to lighten notation. To estimate the pa-
rameters J and H appearing in Eq. (A16), and thus build a
model for the dataset sE, we can use the method of maximum
likelihood [18]. The log-likelihood l of the model (A16) given
the dataset sE is

l (J, H|sE)

≡ log P(sE|J, H ) =
NT∑

t=τM+1

N∑
i=1

sE,t
i

·
⎛
⎝ 1

N

τM∑
τ=1

Jτ

N∑
j=1

sE ,t−τ
j + H

⎞
⎠

− log
∫

Dse[
∑NT

t=τM+1

∑N
i=1 st

i ·( 1
N

∑τM
τ=1 Jτ

∑N
j=1 st−τ

j +H )]
.

(A22)

The values of J and H that maximize l (J, H|sE) represent the
maximum likelihood estimate for the parameters. We there-
fore derive l (J, H|sE) in Eq. (A22) and solve for

∂l

∂J
= 0,

∂l

∂H
= 0. (A23)

However, such a direct approach requires the evaluation of
high-dimensional multi-variable integrals, like the one ap-
pearing in the last term of Eq. (A22), which entail several
numerical issues as for the stability of the solution and the
computational time (e.g., in our experimental datasets the
number of correlated variables, for which we have to per-
form integrals, is O(105), being NT = 150 and N = 300).
Thus, we resort to an approximation: First, in Eq. (A16)
we replace the internal field, acting on st

i , with its empirical
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counterpart

1

N

τM∑
τ=1

Jτ

N∑
j=1

st−τ
j →

τM∑
τ=1

Jτ mE
t−τ , (A24)

along the lines of the mean-field approximation in statistical
mechanics.

With the substitution (A24), pairs like st
is

t−τ
j no longer

appear in Eq. (A22), that is, in a statistical-mechanics jargon,
the original two-body model has been recast into a one-body
model. Also, with this passage, the dependence displayed by
the probability distribution on the first tranche of trajectories,
i.e., st

i , t = 1, . . . , τM is lost, but it can be restored, at least
formally, by introducing some constraints that set the missing
variables to their experimental values, in such a way that PA(s)
remains defined over the whole set of variables:

P(s) → PA(s) ≡ 1

ZA

N∏
i=1

⎧⎨
⎩

NT∏
t=τM+1

e[st
i ·(
∑τM

τ=1 Jτ mE
t−τ +H )]

⎫⎬
⎭

·
[

τM∏
t=1

δ
(
st

i − sE,t
i

)]
, (A25)

with

ZA ≡
∫ ⎛
⎝ NT∏

t=τM+1

N∏
i=1

dst
i

⎞
⎠ exp

[
st

i ·
(

τM∑
τ=1

Jτ mE
t−τ + H

)]
,

(A26)
where the subscript A stands for approximated. In this way,
we are still able to evaluate all the momenta of the variables s,
including those involving st

i , t = 1, . . . , τM.
We denote by 〈〉A the average performed with respect to

PA, i.e., for the generic observable F (s),

〈F (s)〉A ≡
∫

DsPA[s]F (s), (A27)

and note that

〈mt 〉A =
∫ ⎛
⎝ NT∏

t=τM+1

N∏
i=1

dst
i

⎞
⎠PA(s)

(
1

N

N∑
i=1

st
i

)

=
{
M

(∑τM
τ=1 Jτ mE

t−τ + H
)

τM � t � NT,

mE
t 1 � t � τM,

(A28)

where the vector function M is defined as

M(x) ≡ x
|x|

I1(|x|)
I0(|x|) , (A29)

and I0, I1 are hyperbolic Bessel functions (also known as
modified Bessel function of the first kind) of order 0 and 1,
respectively [12]. In addition, we note that PA is factorized
with respect to every variable st

i , thus any average of products
of magnetizations at different times t and t ′ equals a product
of averages:

〈mt mt ′ 〉A = 〈mt 〉A〈mt ′ 〉A. (A30)

The approximation (A25) and the property (A30) allow us to
rearrange Eqs. (A9) and (A10) in the following form:

1

NT − τM

NT∑
t=τM+1

〈mt 〉A = ME = 1

NT − τM

NT∑
t=τM+1

mE
t , (A31)

1

NT − τM

NT∑
t=τM+1

〈mt 〉A · 〈mt−τ 〉A = RE(τ )

= 1

NT − τM

NT∑
t=τM+1

mE
t · mE

t−τ , 1 � τ � τM, (A32)

where we dropped the explicit dependence on sE ,t to lighten
the notation. These equations are simultaneously fulfilled by
requiring that

〈mt 〉A = mE
t , τM + 1 � t � NT. (A33)

In fact, given that Eq. (A33) is automatically satisfied for 1 �
t � τM, if Eq. (A33) holds, then Eqs. (A31) and (A32) are
satisfied too.

We stress that (A33) is only a sufficient condition for
Eqs. (A31) and (A32) to hold since this condition introduces
stricter constraints than those stemming from Eqs. (A31) and
(A32). However, by moving from Eqs. (A31) and (A32) to
Eq. (A33) we retain the very same parameters, that are H and
J. Specifically, in this problem, the amount of data available
NT×N is typically much larger than the number of parame-
ters D + τM. Thus, this stricter condition does not imply any
overfitting (we are introducing constraints and not parameters)
which, however, could be controlled by tuning τM.

Exploiting Eq. (A28), Eq. (A33) can be rewritten as

M
(

τM∑
τ=1

Jτ mE
t−τ + H

)
= mE

t , τM + 1 � t � NT. (A34)

Since M is a monotone function, its inverse function is well
defined and we can rewrite Eq. (A34) as

GE
t ≡ M−1(mE

t

)
, (A35)

τM∑
τ=1

Jτ mE
t−τ + H = GE

t , τM + 1 � t � NT. (A36)

We observe that the operator GE
t is linear in the variables

J, H: this property turns out to be crucial for the following
developments. Let us underline that Eq. (A36) constitutes a
linear system, whose solution provides us with the parameters
J, H , but this system involves more constraints than param-
eters. More precisely, as a result of Eq. (A33), the number
of parameters is still D + τM, and the number of constraints
is now (NT − τM)×D. We can therefore enrich the model by
stating that the relation (A36) does not hold deterministically
and, thus, introduce a source of noise represented by a stan-
dard Gaussian variable tuned by the additional parameter σ .
This stochastic term turns the linear system (A36) into an
autoregressive model (A37) of order τM

τM∑
τ=1

Jτ mE
t−τ + H + σεt = GE

t , τM + 1 � t � NT, (A37)

εt ∼ N (0D, 1D), σ � 0. (A38)
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In other words, given the parameters J, H , and σ , the magne-
tization mt at time t depends on the magnetization exhibited
in the previous τM times according to the evolution rule:

mt = M
[

H +
τM∑

τ=1

Jτ mt−τ + σεt

]
. (A39)

Now, the log-likelihood lA(J, H, σ |sE) related to the autore-
gressive model is introduced as

− 1

2σ 2

NT∑
t=τM+1

∣∣∣∣∣
τM∑

τ=1

Jτ mE
t−τ + H − GE

t

∣∣∣∣∣
2

− (NT − τM)
D

2
log(2πσ 2), (A40)

and, in the next section, we will extremize lA(J, H, σ |sE) to
obtain an estimate for J, H , and σ .

a. Analytical solution for the estimated parameters

As customary in maximum likelihood estimations, we
evaluate the gradient of the log-likelihood lA(J, H, σ |sE) and
set it to zero to estimate J, H , and σ . To this goal, we first
compute the derivatives of Eq. (A40),

∇H lA = −NT − τM

σ 2

〈
H +

τM∑
τ=1

Jτ mE
t−τ − GE

t

〉
t

, (A41)

∇Jτ
lA = −NT − τM

σ 2

〈(
H +

τM∑
λ=1

JλmE
t−λ − GE

t

)
· mE

t−τ

〉
t

,

(A42)

∇σ lA = NT − τM

σ 3

〈∣∣∣∣∣
τM∑

τ=1

Jτ mE
t−τ + H − GE

t

∣∣∣∣∣
2〉

t

− (NT − τM)
D

σ
, (A43)

where

〈·〉t ≡ 1

NT − τM

NT∑
t=τM+1

(A44)

denotes the time average.
Setting Eq. (A41) to zero and solving for H , we get

H = 〈
GE

t

〉
t −

τM∑
τ=1

Jτ

〈
mE

t−τ

〉
t . (A45)

Proceeding along the same lines, from Eq. (A42), for J we
obtain

τM∑
τ=1

Aλτ Jτ = Bτ ↔ J ≡ A−1 · B, (A46)

where the τM×τM matrix Aλτ and the τM-dimensional vector
Bλ are

Aλτ ≡ 〈
mE

t−τ · mE
t−λ

〉
t − 〈

mE
t−τ

〉
t · 〈mE

t−λ

〉
t , (A47)

Bλ ≡ 〈
GE

t · mE
t−λ

〉
t − 〈

GE
t

〉
t · 〈mE

t−λ

〉
t . (A48)

Finally, setting ∇σ lA = 0, we obtain the variance σ 2 of the
autoregressive process (A39):

σ 2 = 1

D

〈∣∣∣∣∣H +
τM∑

τ=1

Jτ mE
t−τ − GE

t

∣∣∣∣∣
2〉

t

. (A49)

b. Errors on the inferred measurements

To estimate the errors for the inferred parameters in the
maximum likelihood estimation, we exploit the Fisher in-
formation matrix (see, e.g., Ref. [13]). We recall that, given
some dataset X where each observation xi is assumed to be
identically and independently distributed according to a true
underlying distribution, and being fθ (x) a model probability
density function parametrized by θ, we can write the log-
likelihood function as l (θ|x) = ∑n

i=1 log fθ (xi ), where n is the
sample size. Then, the (empirical) Fisher information matrix
I has elements given by

Iθa,θb ≡ −
∫

exp[l (θ|x)]
∂2l (θ|x)

∂θa∂θb
dx, (A50)

namely its elements correspond to the expectation of the el-
ements of the Hessian matrix of the log-likelihood. Let us
suppose that the true parameter is θ0, and that the maximum-
likelihood estimate of θ0 is θ∗ = argmaxθl (θ|x). Then, one
can prove that θ∗ ∼ N (θ0, I−1(θ0)). Since when the sample
size approaches infinity, the maximum-likelihood estimate
approaches the true parameter (this is also known as the con-
sistency property), we can write that the covariance matrix for
the estimated parameters is just

�θ∗ ≈
n
1

I−1(θ∗). (A51)

We will use this result to provide the error estimates for
our model. By Eq. (A40) the matrix elements of the Fisher
information read

IHa,Hb = NT − τM

σ 2
δab, (A52)

IJτ ,H = NT − τM

σ 2

〈
mE

t−τ

〉
t , (A53)

IJτ ,Jλ
= NT − τM

σ 2

〈
mE

t−τ · mE
t−λ

〉
t , (A54)

Iσ,σ = NT − τM

σ 2
2D, (A55)

Iσ,Jτ
= Iσ,H = 0, (A56)

and Eq. (A50) becomes

I = NT − τM

σ 2

⎛
⎜⎜⎝
〈
mE

t−τ · mE
t−λ

〉
t

〈
mE

t−τ

〉
t

0〈
mE

t−λ

〉
t δ 0

0 0 2D

⎞
⎟⎟⎠. (A57)

Finally, by substituting Eq. (A57) into Eq. (A51), we obtain
the error estimates for J, H , and σ :

Var(J, H, σ ) = diag(�θ∗ ). (A58)
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In the section dedicated to the model validation, we use this re-
lation to test the goodness of our method on synthetic datasets.

c. Effective number of delayed interactions

So far, in our analysis, we assumed that the parameter τM

is a known constant. In most practical inference scenarios,
where one needs to find from scratch the best model for a
given dataset, the number of the effective delayed interactions
τM that must be considered is unknown: in what follows, we
will provide a way to estimate it.

To tackle this problem, we rely on the Akaike information
criterion (AIC) [9], which is used in the literature to probe the
flexibility of an autoregressive model. In fact, given a dataset
and a model with a mean-squared error ε2, np parameters and
no observations, the quantity

AIC ≡ 2np

no
+ log(ε2) (A59)

estimates the prediction error of the model. Thus, having
developed several models for a certain dataset, the AIC es-
timates the quality of each model relative to all others, hence
providing a tool for model selection. Note that, by definition,
the AIC favours those models yielding a small error and a
small number of parameters.

In the analysis above, the parameters appearing in
Eq. (A59) are

no = D(NT − τM), np = τM + D + 1, ε2 = NT

NT − τM
σ 2.

(A60)

Thus,

AIC = 2
τM + D + 1

D(NT − τM)
+ log

(
NT σ 2

NT − τM

)
. (A61)

To summarize, the protocol followed in the next sections is
the following: we will perform inference for multiple val-
ues of τM and we solve for the fields and the couplings via
Eqs. (A45), (A46). We further determine σ 2 from Eq. (A49),
then we will evaluate Eq. (A61) for each of the inferred mod-
els, and we will select the value of τM that implies the smallest
estimate of AIC. Finally, the maximal Jτ in the selected time
window τ ∈ [0, τM] turns out to be the best estimate (inferred
value) of the actual coupling (planted value).

APPENDIX B: MODEL VALIDATION

In the remainder of this Appendix, we test our infer-
ence method on synthetic and real datasets: we consider two
synthetic datasets, generated from the HKM and from the
VM, and a biological dataset, collected via time-lapse mi-
croscopy on dendritic cell migration in a chemoattractant field
(see Ref. [4] for details).

In general, we first run the inference protocol on such
datasets and obtain the parameters J and H , which we call
inferred parameters, and then we evaluate the goodness of the
inference process. As for the HKM and the VM, previously
addressed, a validation is possibile by comparing the inferred
parameters and those set in the model under consideration
and denoted as planted parameters. The HKM is the direct

formulation of the inverse problem developed in this paper,
thus, in this setting, inferred and planted parameters must
match even quantitatively (and their agreement is a conditio
sine qua non to move to more challenging scenarios); in fact,
in this case, inference is excellent. Conversely, for the VM,
the inference process can be harder as this model is not the
direct model of the delayed ME approach we developed, and,
to investigate the problem meticulously, we face two versions
of the delayed VM, namely, the topological and the metric
ones. In both cases we have a set of units whose dynamics is
non-Markovian and influenced by the trajectories of a subset
of peers, made of i. the closest nc units (regardless of their
reciprocal distance) in the former version, or ii. the closest
units within a certain interaction range r (regardless of their
number) in the latter version.

Finally, the analysis of the biological datasets aims to be
a proof of concept to highlight the non-Markovianity of bio-
logical dynamics: this is why we consider for the test study
the migration of dendritic cells as the latter are expected to
perceive signaling proteins that must diffuse from the emitter
cell to the receiver one, thus, these interactions are natural
prototypes of delayed interactions.

We anticipate that, beyond successfully testing our
delayed-inference protocol on all the synthetic datasets, we
obtained a remarkable result in inspecting the biological ones:
the trajectory of a given dendritic cell at time t turns out to
be influenced by those of the other cells for a past temporal
window spanning back up to τM ∼ O(10) time-steps, thus
resulting in severe violation of the Markovian assumption.

1. Synthetic dataset: Heisenberg-Kuramoto model

The HKM with delayed interactions can be defined by
interpreting the probability distribution (A16), with nor-
malization given by Eq. (A17), as the Gibbs measure
exp(−H(s|J, H )) of the Hamiltonian

H(s|J, H ) =
N∑

i=1

st
i ·
⎛
⎝ 1

N

τM∑
τ=1

Jτ

N∑
j=1

st−τ
j + H

⎞
⎠, (B1)

where the dynamical variables are the spins s, while the
parameters J and H represent, respectively, the interactions
perceived with a delay τ (back in the history up to τ = τM)
and the external field.

To setup the validation of our inferential protocol on the
HKM we perform the following steps:

(1) We set D = 2 and τM = 4, and draw the planted
parameters J1, . . . , JτM , Hx, Hy independently and identically
from U (−1, 1), where U (a, b) denotes the uniform probabil-
ity distribution between a and b.

(2) With the parameters just set, we sample the trajec-
tories from the Boltzmann-Gibbs distribution related to the
Hamiltonian (B1) from t = 0 to t = 5×103, and store the
magnetizations from t = 1×103 to t = 5×103 to consider
equilibrated snapshots.

(a) The simplest (despite rather lengthy) way of gen-
erating trajectories is to create the configuration st by
collecting all the vectors st−1, . . . , st−τM and inserting them
into the Hamiltonian (B1). Then we generate, through its
Boltzmann-Gibbs weight, the configuration st and so on
for st+1;
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FIG. 5. Examples of trajectories generated by the VM. Simulations were implemented by letting N = 100 particles free to move in a
2D square of linear size L = 150 with periodic boundary conditions. Further, we set δt = 1, 	 = 6 and nc = 4. (a) Trajectories sampled
at J = 0, Hx = Hy = 0 (as in a standard random walk). (b) Trajectories sampled at J > 0, Hx = Hy = 0 (as in a correlated random walk).
(c) Trajectories sampled at J = 0, Hx = 0, Hy > 0 (as in a drifted random walk). (d) Trajectories sampled at J > 0 and Hx = 0, Hy > 0 (as in
a correlated and drifted random walk).

(b) However, as we just need their averages (i.e., mt

as a function of mt−1, . . . , mt−τM ), an alternative (faster)
route consists in using the coarse-grained evolution coded
by Eq. (A39) and iterate the latter (that is equivalent to the
previous one as the model is mean-field).

Note that trajectories are not sampled as a whole, rather
gradually built up time step by time step, such that their gen-
eration is not a unique high-dimensional sample from P(s),
rather a stochastic process with memory.

(3) We use the stored magnetizations to carry out the infer-
ence process according to our formulation [see Eq. (A45) for
the fields, Eq. (A46) for the couplings, and Eq. (A49) for the
variance], obtaining the estimates of , Hx, Hy, J1, . . . , JτM , σ .
τM is found by using the Akaike information criterion [see
Eq. (A61) and its related discussion].

(4) We store the corresponding pairs of inferred and
planted parameters.

This process is repeated 150 times and the collected data
are summarized in Fig. 1. In particular, Fig. 1(a) shows that
the planted and inferred parameters are arranged along the
diagonal x = y, implying a quantitatively excellent estimate
for parameters. In addition, Fig. 1(d) shows that the inference
framework is able to exactly detect the extent of the time
window [0, τM] most of the times; although in some cases this
is slightly overestimated, we verified that the magnitude of the
extra interactions J inferred

τ>τ planted is statistically compatible with zero
within the error on the planted data. This can be seen from
Fig. 1(b): as Jplanted

τ>τ planted ≡ 0, if J inferred
τ>τ planted �= 0, then its magnitude

corresponds to the absolute error and in these cases we reveal
only small errors [∼O(10−2)].

2. Synthetic dataset: Vicsek model

a. Topological Vicsek model with delay

In this section, we consider the topological version of the
VM [15,17], equipped with a delay 	 in signaling among
different units. Such a model is defined by the following

dynamical equations:

Di j = (	 − 1)
(
1 − δ

j
i

)
, (B2)

vt+1
k = v0�

(
J∣∣nt
k

∣∣ ∑
j∈nt

k

vt−Dik
j

v0
+H+

√
δt ηt

k

)
, (B3)

xt+1
k = xt

k + δt vt+1
k k = 1, . . . , N, (B4)

where vt
i , xt

i are the velocity and the position of the ith particle
at time t , respectively.

Note that nc and {nt
1, . . . , nt

nc
} are, respectively, the total

number of topological neighbors and the set of topological
neighbors of the ith particle, including the ith particle, at time
t , and that, by selecting 	 = 1, the Markovian limit of the
standard VM is recovered. The normalization operator �,

�(v) ≡ v

|v| , (B5)

ensures that the magnitude of the velocity of each unit is
kept constant. Further, H is the external field applied to each
particle, and ηt

k ∼ N (0, 1) is an i.i.d. noise. In this model,
the particles are self-propelled, i.e., |vt

j | = v0. Note that, as
discussed above, we denoted the planted parameter H with
the same symbol as the magnetic field in the ME distribution
(A15), but they do not need to coincide. Finally, the magneti-
zation of the VM is given by the expression

mt = 1

Nv0

N∑
k=1

vt
k, (B6)

which is analogous to Eq. (A4).
Examples of trajectories generated by this VM are shown

in Fig. 5.
The validation procedure for the ME inference in the case

of the VM is different from that of the HKM: in the case
of the VM we have J, Hx as free parameters. Despite these
parameters play the same role of the coupling and the field
in the HKM, the way they enter in the update rule of the
units (B2)–(B4) is different from that of the ME model:
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FIG. 6. Validation of our inference method with the metric Vicsek model (VM). The parameter setting is the same as in Fig. 2. (a) Example
of the empirical correlation R(τ ) vs τ . (b) Example of the (related) inferred coupling: note the presence of two peaks as in the topological case.
(c) Scatter plot of the inferred vs the planted values of the coupling, for several values of the (external) field Hx , as explained in the legend.
(d) Scatter plot of the nearest neighbors nc where the inferred estimate is obtained as nc = 1 + Jτ=	

Jτ=1
.

for the VM we lack a Hamiltonian formulation and direct
and inverse problems are not diagonal, therefore a straight
comparison between planted and inferred parameters is not
expected to hold sharply. Nevertheless, the estimate of Jinferred

and Hinferred is still very informative about the real values
of the delayed couplings. In fact, as shown in Fig. 2(c), for
Jplanted = 0 the algorithm correctly returns Jinferred = 0, then,
for values of Jplanted > 0 (Jplanted < 0) the inference protocol
returns positive (negative) values of Jinferred; we also notice
slight overestimates in the positive branch as the external
field gets larger and larger and this should be ascribed to an
intrinsic limitation of the present protocol.

As a sideline, we also stress that, since in our mean-field
framework all units contribute equally, it is possible to obtain
an estimate of the number of nearest neighbors nc. Indeed,
by a glance at Fig. 2(b) we see that there are mainly two
contributions to the coupling, namely J(τ=1) and J(τ=	): the
former is due to the inertia of the unit mass and this contri-
bution is intrinsically Markovian, while the latter is due to the
contribution of all the other units within nc; see Eqs. (B2)–
(B4). Hence, we propose the formula nc ≈ 1 + Jτ=	/Jτ=1 to
estimate the number of nearest neighbors and this looks like a
reasonable one; see Fig. 2(d).

Beyond these evidences, a standard validation method in
these nondiagonal problems is to compare the lowest-order
moments of some observables evaluated from the original
trajectories generated via the VM with those sampled from

the ME once the optimal values for J and H are learned. In
particular, we measure the magnetization M and the corre-
lation function R(τ = 	) in both models, and check if their
values are statistically compatible. Indeed, they are as shown
in Fig. 3.

Furthermore, we also inspect the Markovian limit, namely
the standard topological VM, where we set 	 = 1 in Eq. (B2).
In this case the inference protocol correctly returns that the
trajectories are Markovian: we expect that only J(τ=1) is sig-
nificantly different from zero among the inferred couplings
Jτ for all τ ∈ (1, . . . , τM ) of the delayed ME protocol: this
prediction is confirmed too (data not shown).

To summarize, in general, the validation procedure is car-
ried out by means of the following algorithm:

(1) Draw Hx from U (0, 2) and J from U (−2,+2).
(2) Run the dynamics (B2)–(B4) from t = 0 to t =

2×103, storing the magnetization at each step (excluding the
first 103 that are used for equilibration).

(3) Perform the ME inference process, using the magneti-
zations defined in Eq. (B6) as input and infer the couplings J
and the field H .

(4) Setting the parameters according to the previous step,
simulate the ME model from t = 0 to t = 2×103, collecting
the magnetization at each step (excluding the first 103 that are
used for equilibration).

(5) For both frameworks, evaluate the moments M and
R(τ ), and calculate their relative difference.
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FIG. 7. Validation of our inference method with the metric Vicsek model (VM). The parameter setting is the same as in Fig. 2. The
superscripts V and ME pertain to quantities calculated for the VM or inferred via the ME method, respectively. (a) Observables M and R(	)
as functions of Hx , for the both models, with J = 1.0. (b) Observables M and R(	) as functions of J , for both models, with Hx = 1.0. (c) Sum
of the relative errors |MME −MV |

|MV | + |RV (	)−RME (	)|
RV (	) as functions of Hx and J . (d) Absolute deviation between τME := argmaxτ |JME (τ )| and the

planted parameter 	 as a function of J and Hx .

b. Metric Vicsek model with delay

The solely difference between the metric version of the VM
and its topological counterpart is that, for the former, the peers
that contribute to the internal field for the velocity update of

the kth unit [see Eqs. (B2)–(B4)] are those units within a given

radius and we fix the interaction range to rnc :=
√

ncL2

πN . The
interaction range has been defined as a function of nc to obtain
comparable results for the two implementations.

FIG. 8. Trajectories of each cell through the whole observation time. For each trajectory a parameter that we call anisotropy
A = 2 max(|	Xmax |,|	Ymax |)

|	Xmax |+|	Ymax | − 1 ∈ [0, 1] has been measured and used to paint tracks with the most anisotropy in black, and the least anisotropic
tracks in yellow. Datasets corresponding to region A and region B are represented, respectively, in the left and in the right panel.
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Dataset [A]

Dataset [B]

FIG. 9. Test on the validity of the delayed inference procedure: we reshuffled trajectories in the chemokine-gradient dataset, for both
regions A and B, and gave this random dataset back to the inferential protocol to inspect its outcomes. (a) Difference between the AIC
and its minimal value, as a function of the total number of interactions τM; note that this time the optimal τM is zero, in agreement with a
Bernoullian process. (b) Inferred values of the delayed interaction Jτ and corresponding errors: note that, as expected, in this case there is no
inferred coupling. (c) Inferred values for the two components of the field, Hx and Hy, and inferred value of σ . (d) Correlation function C(τ ),
see Eq. (B7), from the experimental data and from the ME model. As expected, while permutation invariance over the frames destroyed the
temporal correlation of the motion (induced by the couplings) it did not erase the gradient of the chemoattractant, that is still well inferred.

Apart from this criterion for neighbor selection, the dynam-
ical evolution is the same as in the previous case.

As in the topological counterpart, we perform inference
of both coupling and field. Results are collected in Fig. 6
and a comparison of the lowest order statistics, e.g., MVM

x
versus MME

x and RVM versus RME, is presented in Fig. 7. As
in the topological case, we can also inspect the number of
units contributing to the internal field by the formula nc ∼
1 + J(τ=	)/J(τ=1), yet, in this metric case, there is a (very
mild) systematic underestimate of nc beyond the over-estimate
of the coupling in the presence of large field, as in the previous
case [see Figs. 6(c) and 6(d)]. Finally, mirroring the previous
scenario, we also inspected in this metric situation if the
Markovian limit [i.e., 	 = 1 in Eqs. (B2)–(B4)] is captured
by our ME dalayed inference protocol and this test turns out

again to be successful as the algorithm return J(τ=1) �= 0 only,
as it should (data not shown).

3. Real dataset: Dendritic cells in a chemokine gradient

Having successfully tested our delayed ME inference on
heterogeneous synthetic datasets, we now apply it to an
experimental dataset on cell migration as a proof of concept.
To be specific, in this section we consider a two-dimensional
tracking experiment where leukocytes move in the pres-
ence of chemokines (i.e., signaling proteins for white cells),
which guide cell migration by acting as a chemoattractant,
see Fig. 8 (the higher values of the gradient are in the
right side of the pictures that is where cells are migrating).
Some chemokines control cells of the immune system during

024301-15



ELENA AGLIARI et al. PHYSICAL REVIEW E 110, 024301 (2024)

immune-surveillance processes: for example, they may direct
lymphocytes to lymph nodes so that they can control the
invasion of pathogens, by interacting with antigen-presenting
cells residing in these tissues: we consider this phenomenol-
ogy as the most suitable to be investigated with this new
inferential methodology. This is because, from one side, there
is a vast network of signaling proteins (released by other
cells) affecting immune dynamics [19], in such a way that
these leukocytes have to integrate all these diffusing signals
to decide the next direction of motion and this may result in
a delayed interaction because the diffusion of these proteins
is slow if compared for instance with electric signals that
are instead used by neurons to communicate or the elec-
tromagnetic field, the light, used by flocks. From the other
side, there is a vast literature that implements Markov pro-
cesses as a natural starting point to model immunodynamics,
see, e.g., Refs. [10,20–24], thus confirming—or otherwise
disproving—that their motion can be effectively described
by a Markov chain is an important question in theoretical
immunology.

The system under investigation has been described in
Ref. [10]: we collected ordered time series of the positions
of dendritic cells migrating via chemotaxis toward a chemoat-
tractant (i.e., dendritic cells perceive, and follow, a citokine
gradient released by the chemoattractant). Data was collected
for regions A and B, thus yielding two distinct datasets; see
Fig. 8.

We apply the inferential ME framework to datasets A and
B separately. For the inferred ME model, we will show

δAIC(τM) ≡ AIC(τM) − min
τ ′

M

AIC(τ ′
M),

i.e., the difference between AIC for a given τM and AIC for
the optimal value of τM, as well as the inferred parameters Jτ ,

Hx, Hy, and σ and the correlation function

C(τ ) ≡ 〈m(st ) · m(st−τ )〉t − 〈m(st )〉t · 〈m(st−τ )〉t , (B7)

with 1 � τ � τM, for the optimal value of τM. These results
are shown in Fig. 4 for both datasets A and B.

The results obtained for the two datasets are consistent
and the unique picture that emerges can be streamlined as
follows: the dynamics of a given leukocyte at a given time
is influenced by the past actions of its peers for a very long
time window (in these cases τM ∼ 13, 14), hence the trajec-
tories that these cells paint while migrating are far from the
Markovian limit. Moreover, along the dynamics, the inferred
coupling are (mainly) negative in the recent past (τ = 1, 2)
and (essentially) positive in the further past (τ � 3) and the
AIC criterion selects τM ∼ 13, 14. We speculate that a cell,
during migration, may integrate signals it receives in time and,
from this perspective, the present research seems to suggest
that—at least in the present setting—dendritic cells may inte-
grate signals for a temporal time-window of O(10) time steps,
but clearly a dedicated study has to deepen this aspect in a
forthcoming paper.

Finally, as an additional test on the inference protocol
on these real datasets, we also kept the collected ordered
magnetizations of the various frames and we reshuffled them
to produce two new fake datasets (one per region) that we
used to test the temporal-delayed protocol: results, reported
in Fig. 9, correctly return the same external field (as that is a
one-point correlation information that is not destroyed by the
permutation of frames), while it selects as the optimal delay
τM = 0 (that is correct as shuffling rules out any temporal
correlation) and, coherently, a null value for the coupling.
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