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Extreme events in frequency-swept semiconductor lasers
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We analyze a delay differential equation model for a frequency-swept semiconductor laser and demonstrate
existence of extreme events in its dynamics, with probabilities heavily dependent on the sweep rate. The extreme
events appear even in absence of any noise in the system and do not exhibit significant dependence on its
presence. We investigate the problem numerically and show that intensity dynamics of these events are highly
localized in the filter detuning space. Overlaying it with the structure of steady-state and periodic solutions of the
static system, we show that the dynamics is governed by attraction to these periodic solutions and such extreme
events occur as a result of passing through the region of stable high-intensity bridge of periodic solutions.
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I. INTRODUCTION

The study of rare and extreme events (EEs), in certain cases
referred to as rogue waves, is an actively explored interdis-
ciplinary research field, and their investigation is considered
to be of great importance as these events are hard to predict,
while their appearance may cause abnormalities, functional
failures in models or devices, or lead to severe consequences
in areas such as geology, climatology, population dynamics,
or economics [1–4].

In EE analysis, definitions may vary depending on the
system under investigation. Nonetheless, they are all aimed
at capturing the main features of extreme events, which are
their low occurrence rate and high deviation of their amplitude
from the average that can be related to presence of a long tail
in the overall statistical distribution. There are several widely
used criteria, typically defining event amplitude thresholds
based on certain deviation from the mean of population (ex-
pressed in a specific number of standard deviations [5–7]) or
referenced to a value called abnormality index (AI) [8–10].
Alternatively, or often as a complementary step, analysis of
intensity distributions may be performed to indicate presence
of an extended or heavy tail and its deviation from the ex-
pected distribution [11–13].

In the optical domain, extreme events or optical rogue
waves were observed and investigated in a variety of systems,
including mode-locked lasers [14,15], semiconductor lasers
with continuous-wave [7,16] or chaotic [17] optical injection,
external cavity [5,18], phase-conjugated feedback [10,19],
broad-area VCSELs [12,20,21], nonlinear optical fibers, and
other optical systems [9,22,23].

A number of recent works develop approaches to pre-
diction of extreme events using machine learning, reservoir
computing and other advanced computational and forecasting
techniques [24,25]. Nevertheless, the majority of studies are
still limited to identification of presence of extreme events
and analysis of their statistics, without going deeper into their
possible origins.

In our work, we investigate the appearance of extreme
events in a frequency-swept semiconductor laser with a
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narrow-band intracavity filter. Frequency-swept lasers are
widely explored and used in the context of optical coher-
ence tomography (OCT) [26,27], light detection and ranging
(LiDAR) [28,29], and other applications [30,31]. It has
been previously shown that semiconductor lasers may have
complex asymmetric steady-state and periodic solutions and
exhibit nonlinear behavior [32]. Due to this asymmetric struc-
ture and induced nonlinearity, the system exhibits different
behavior for different frequency detuning directions: we have
previously shown a stable periodic dynamics and subhar-
monic locking effects for positive detunings in a wide range
of sweep rates [33], and now focus on the opposite (negative)
sweep direction. In this work, we demonstrate the appearance
of extreme events introduced by the frequency sweep, and
analyze their origin, structure and statistics with respect to the
bifurcation structure of periodic solutions and the sweep rate.

II. MODEL

In our study, we work with a ring cavity laser model,
considering unidirectional generation and presence of a
narrow-band intracavity spectral filter, and employ the same
approach as in a number of preceding works [32–34]. We start
with a set of equations governing the complex electrical field
amplitude Ẽ and time-dependent cumulative saturable gain
G as

γ −1 dẼ

dt
+ (1 + i�)Ẽ = √

κe
1−iα

2 GẼ (t − 1), (1)

η−1 dG

dt
= J − G − (eG − 1)|Ẽ (t − 1)|2, (2)

where the whole model is normalized to the cavity round
trip time. The normalization-related multipliers γ and η cor-
respond to the bandwidth of the intracavity spectral filter
multiplied by the cavity round trip time, and to the ratio of
the cavity round trip time and the carrier density relaxation
time, respectively. Linear intensity losses per round trip are
described by the attenuation factor κ , the pump parameter is
denoted by J , and α is the linewidth enhancement factor. The
frequency sweep is introduced by the parameter � = �(t ),
which defines the detuning with respect to a reference laser
cavity mode frequency.
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TABLE I. Parameters used in the model.

Parameter Value

Attenuation factor (κ) 0.35
Linewidth enhancement factor (α) 5
Pump parameter (J) 10
Filter bandwidth * round trip time (γ ) 0.25
Ratio of cavity round trip time and carrier density
relaxation time (η)

1

With a substitution Ẽ = Ee−i
∫ t

0 �(x)dx, these equations may
be transformed into

γ −1 dE

dt
+ E = √

κe
1−iα

2 G−iφ(t )E (t − 1), (3)

η−1 dG

dt
= J − G − (eG − 1)|E (t − 1)|2, (4)

where φ(t ) = ∫ t
t−1 �(x)dx represents accumulated filter de-

tuning. In our further analysis, we consider linear detuning
sweep, such that it can be described as φ(t ) = φ(0) + εt ,
where ε is the frequency sweep rate. For simplicity, we later
on assume φ(0) = 0. Other fixed parameter values used in the
model are the same as in our previous work [33], as it helps to
complement the analysis done before, and they can be seen in
Table I.

It should be noted that Eqs. (3)–(4) and their obtained
solutions are 2π periodic with respect to the filter detuning
and will be the same for φ → φ + 2πn, where n is an integer
number. To obtain and analyze CW and periodic branches of a
static system (in absence of the filter sweep ε = 0, so that the
system is autonomous), we use DDE-BIFTOOL [35] considering
a phase parameter φ(t ) = φ0.

The bifurcation structure for the static laser system inves-
tigated in this work can be seen in Fig. 1: it contains stable
and unstable steady states (corresponding to the cavity modes)
with two fold and a number of Hopf bifurcation points. The
steady states are connected by the bridge of periodic solutions
with multiple folds and branches. This complicated structure
is defined by the narrow-band filtering in the cavity and the
presence of the phase-amplitude coupling in the semiconduc-
tor gain medium leading to the nonlinear cavity behavior [32].
Disconnected branch of periodic solutions, or isola, is also
shown in Fig. 1(c) in more detail to illustrate the complexity of
folds and coexisting branches of stable and unstable limit cy-
cles. Even though not required for understanding of this work,
the extended version of the isola solutions with secondary
branches of period doubling solutions can also be seen in the
Appendix. We note that the loci of folds are very close to the
loci of the period doubling solutions, for which we only show
solutions that have stable regions. There are three loci of the
stable periodic solutions, which are important for the further
analysis. They are indicated in Fig. 1 as top bridge (TB),
bottom bridge (BB) and isola solutions. It is important to note
for further analysis that 2π periodicity of the solutions and the
fold over cause the BB of a given branch to be under the TB
of the adjacent branch. This specific bistability between stable
periodic solutions with very different amplitudes is indicated
later in Fig. 5. More detailed descriptions and analysis of the
steady-state, bifurcation points, bridge, and isola solutions for

(a)

(b)

(c)

FIG. 1. The logarithm of intensity (a) of two CW branches and
extrema of periodic bridge and isola solutions for static φ = φ0.
Black (red) lines correspond to stable (unstable) steady-state solu-
tions in absence of any sweep (ε = 0). Green and purple circles
indicate fold and Hopf bifurcation points. Stable (unstable) branches
of the periodic solutions are represented by blue (yellow) lines. The
solutions and all corresponding bifurcation points are 2π periodic
with respect to φ; for simplicity, only two CW branches together
with one of each type of periodic branches are shown. (b) provides
details of the bridge solutions, with indication of top (TB) and bottom
(BB) parts. The points of the stable region bifurcations are denoted
by triangles (fold), squares (period doubling), and diamonds (torus).
(c) provides details of isola solutions, with the inset showing the
folded region.

this system can be found in Ref. [33], while here we limit the
details to the extent required within the context of this study.

III. GENERAL DYNAMICS AND CRITERIA

To obtain the first understanding of the system’s dynam-
ics in the negative sweep direction (going from right to left
along parameter φ through the structure of CW and periodic
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(a)

(b)

(c)

FIG. 2. Time traces for various sweep rates ε values: (a)ε =
−0.05, (b)ε = −0.20, and (c)ε = −0.35. The time axis is referenced
to filter detuning parameter φ = εt . The arrows indicate that the
traces should be read from right to left due to the negative ε values.
The red circle in (c) denotes the extreme event according to the
definition IEE � μ + 5σ .

solutions described before), we investigate the time traces for
various sweep rates: they can be seen in Fig. 2. The minus
sign in the value of ε indicates the negative sweep direction.
It should be noted that these traces should be read from right
to left, as φ = ε ∗ t and ε is negative—this is indicated by the
arrows in the corresponding plots and later in this work. For
all the illustrated cases there is a high number of events, with
some of them not even being distinguishable in the plots due

to their high density, especially those with smaller intensities.
An event is being defined as an intensity peak (local maxi-
mum) in the recorded time trace, while the event amplitude is
the value of the corresponding intensity peak IEE = max|E|2.
The plots for various sweep rates clearly have different visual
appearance, and low-probability events with outstandingly
high intensities, which can be seen, for example, in cases of
ε = 0.05 [Fig. 2(a)] or ε = 0.35 [Fig. 2(c)].

Definitions of extreme events may vary: in oceanographic
studies the criterion is usually taken as abnormality in-
dex AI = 2 ≡ HRW � 2Hs, which means that a wave height
should exceed the value called significant wave height Hs (the
average of one-third of the highest waves) by a factor of 2 to
be qualified as a rogue wave. Alternatively, as statistical prop-
erties of the wave heights distribution in such systems lead to
Hs ≈ 4σ , it is often substituted with μ + 8σ , defined on mean
(μ) and standard deviation (σ ) of the recorded data [36,37].
Nevertheless, in the domains of optics and laser physics, the
observable variables and statistical properties of the system
may differ considerably—this adds complexity to the choice
of appropriate criteria, with no full consensus reached in the
community so far. While abnormality index remains valid and
widely used, on many occasions it may appear too soft to
isolate the events with typical features of extreme events. The
alternative criterion based on mean and standard deviation
varies considerably from work to work (typically 4σ − 8σ )
and may be applied on the full recorded data or on the popu-
lation of events’ intensities [7,12,16,18,38,39].

In our work, we consider the criterion based on mean and
five times standard deviations of the events population, such
that IEE � μevents + 5σevents: for our system Hs ≈ 2.5σevents
within the whole range of investigated sweep rates. As such,
we consider the criterion based on 5σ to be reasonable, and
its implementation allows us to well isolate the high-intensity
peaks of interest. It should be admitted that, as in any other
work related to extreme events, the choice of other criteria
may identify more or less events as extreme, while the effect
of the corresponding change in the threshold value definition
may often be counterbalanced by a change in the system
parameters (for example by changing the value of the pump
parameter). The criterion based on abnormality index AI = 2
gives lower estimations of the EE threshold in our case and
does not allow to clearly isolate the events of interest. Nev-
ertheless, we still indicate its value in some figures to clearly
show its position. As was noted before, the sweep rates affect
the dynamics and intensity distribution of events in investi-
gated time traces, so in our analysis the threshold value for
extreme events (excess of it qualifies the event as extreme) is
calculated for each individual fixed value of the sweep rate ε.

The intensities of individual events within traces, such as
those seen in Fig. 2, may be systematically assessed for a
range of different sweep rates ε to make a scatter plot in
Fig. 3(a) with the sweep rate on the horizontal axis and de-
tected events’ intensity on the vertical axis: in each column
there are blue dots reflecting all the events observed within the
time trace for corresponding ε. It can be seen that maximum
intensities of events in corresponding dynamics vary quite
considerably in a nonmonotonic manner with the value of
ε, which supports the initial observation from Fig. 2. The
levels of the mean, median, and five standard deviation values
of events’ population for each given sweep rate, as well as
calculated threshold values (indicated by red bars at the top) to
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FIG. 3. Individual intensities of all detected events plotted as a
scatter (blue circles) for a range of (a)ε = [−0.7, 0]. The plot also
contains the lines corresponding to mean (green), median (orange),
and 5σ (purple) values of events’ intensities for a given sweep rate.
The red bars indicate calculated threshold intensities to qualify for
extreme events: Ithr = mean + 5σ . (b) shows average number of
events per filter cycle (while detuning parameter φ is swept within
2π ) for sweep rates ε from the same range.

qualify the events as extreme, complement this plot such that it
gives all the information needed for analysis and identification
of EEs.

The blue dots above the EE threshold bar indicate that
there are extreme events observed for corresponding sweep
rate values: this is the case for ε = [−0.30,−0.41]. It should
be emphasized again that the threshold values within the same
criterion are calculated separately for the time traces obtained
at each given sweep rate and may vary depending on the
latter: this approach was previously used in other works where
the variable parameter introduces considerable change in the
overall dynamics [5]. The purple line related to the value of 5σ

indicates that the variation of the EE threshold intensity level
is primarily linked to the change in the standard deviation
value, while the mean and median experience only gradual
changes within the range of sweep rates.

As has been noted before, the Eqs. (3)–(4) are 2π peri-
odic with respect to the filter detuning parameter φ, so for
description of periodic passage of the filter through the sys-
tem’s bifurcation structure we define a filter cycle as a change
of filter detuning φ by 2π : in case the cumulative detuning
accounts for 2πn change, where n is an integer number, we
say that the filter passed n cycles. As such, the number of
events per filter cycle can also be assessed [Fig. 3(b)]: it

experiences a smooth decay with a rather steep change for
ε = (−0.0,−0.1], followed by a more gradual decline for
faster sweep rates.

It should also be specifically emphasized that no noise has
been included in the model at this stage, so extreme events
can be attributed to the presence of the sweep in the system,
which results in forcing the trajectory to slowly pass through
the bifurcation structure defined in the static case—this will
be discussed in more detail further below. Appearance of
extreme events in laser systems where some parameters are
being swept has been shown before for current modulation
[39,40].

As a next step of our analysis, the probability of EE
is obtained [Fig. 4(a)]: for its calculation, time traces with
a length of 100 000 cavity round trips were recorded for
different sweep rate values. Longer recordings, tested for in-
dividual traces, do not give any considerable deviations from
the obtained values. The EE criterion was recalculated for
each sweep rate parameter ε and the probability of EE was
assessed with respect to the total number of events as PEE =
NEE/Nevents, where NEE and Nevents are number of extreme
events and a total number of events, respectively. The assess-
ment was performed both for cases without noise and with
artificially added random phase and intensity noise. The noise
was introduced as an additive Gaussian source in Eq. (3),
having a standard deviation of 0.001. Plotting EE probability
as a function of the sweep rate P(ε), a sharp peak is observed
in a rather narrow range of sweep rate values region ε =
[−0.30,−0.41] as expected based on Fig. 3. It is important
to note that there is no significant difference between the two
cases, which confirms that observed EEs do not originate from
the noise and random fluctuations in the system, but from the
presence of the frequency filter sweep. This differs from the
typical situations, when EEs are primarily caused by various
noise in the system close to bistability regions [41,42] or
may be enhanced or suppressed by it [43]. The bottom panels
of Figs. 4(b)–4(d) show probability density function (PDF)
distributions for events’ intensities at three different sweep
rates: ε = −0.30 [right side of the interval shown in Fig. 4(a)
with relatively limited number of EEs identified], ε = −0.36
(middle of the range with the highest EE probability), and
ε = −0.42 (left side of the interval with no EEs identified).
Besides, two vertical dashed lines correspond to the thresh-
old values to qualify extreme events for AI = 2 (blue) and
Ithr = mean + 5σ (orange) criteria: it can be seen that AI
criterion is always softer and events identified by it do not
clearly exhibit the typical features of extreme events—they do
not come from a tail deviating from the expected distribution,
nor are relatively rare in occurrence. The second criterion
appears to be more adequate, as it highlights presence of
events from the deviating tails and does not identify EEs in
absence of such deviations. While it may not exactly catch
all the events deviating from the expected statistics, this is
also rarely achieved with any other criterion. Importantly, all
identified events comply with the definition of EE and we
analyze those further below and show their distinct features
and dynamics.

To investigate the EE dynamics for these sweep rates,
an overlay with the CW and periodic solutions of the static
system can be done. The time traces for ε = −0.36 have
been chosen for this and further analysis steps as this value
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FIG. 4. Top panel (a): Probability of extreme events vs sweep
rate for ε = [−0.28, −0.43] range. Two cases are illustrated: system
as is (orange patterned bars) and with added noise (gray bars). Bot-
tom panels (b)–(d): PDF histograms of events’ intensities for ε =
−0.30, ε = −0.36, and ε = −0.42 corresponding to the different
parts of the range from the top panel. Vertical lines indicate threshold
values as defined by two criteria.

corresponds to the highest probability of EE occurrence,
therefore requiring less computing power and time to acquire
reasonable number of event for statistics. Visualization of
these traces can be seen in Fig. 5: it can be noted from
Figs. 5(a)–5(b) that traces of all EEs follow almost identical
trajectory, except for having small phase shifts with respect
to each other. It should be noted once again that these fig-
ures should be read from right to left due to the negative filter
detuning direction.

FIG. 5. Examples of (a) 25 intensity trajectories of various EEs
and (b) their logarithms for ε = −0.36 case plotted by solid dark
gray lines. Trajectories’ logarithms for 15 non-EE cases are shown
in (c). The traces should be read from right to left as denoted by the
arrow due to the negative sweep direction. Other notations are as in
Fig. 1: red dashed lines correspond to unstable state-state solutions,
blue (yellow) lines to the extrema intensity of stable (unstable) re-
gions of bridge solutions, and purple (orange) lines to the extrema
intensity of stable (unstable) regions of isola. Note the bistability
between TB and BB branches of stable periodic solutions.
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The extreme events (which in this case have to exceed
threshold value IEE � Ithr ≈ 0.4515) appear in a single well-
localized range of detunings in between −π and −1.25π as
a visit of the stable part of the bridge of periodic solutions
indicated by the blue color in the figure. This also implies
that their maximum intensity is bound by the corresponding
bridge solution intensity. Extreme events may be followed by
a secondary (or even higher-order, depending on the sweep
rate) peaks, which are always of smaller intensity due to the
structure of the bridge and do not qualify as EE according
to the defined threshold intensity. It should be noted that
trajectories for the gain value G in case of EE also exhibit
the same high degree of localization and similarity to each
other. In filter detuning cycles where EEs are not present,
the trajectories do not exhibit high localization, and do not
visit this high-intensity stable part of the bridge, drifting along
lower intensity branches [see Fig. 5(c)]. In such non-EE case,
the trajectory is also being attracted by the small low-intensity
stable bridge region, preventing any occasional deviations and
returns to the high-intensity part. To better illustrate these two
scenarios, we complement Fig. 5 with Supplemental Material
showing the movement of the trajectories in φ-intensity-G
phase space [44]. In general, overall dynamics of intensity is
governed by an itinerary of a complex set of various periodic
attractors. Importantly, in our case the behavior of trajecto-
ries can be well described by attractors of the static system
(ε = 0), unlike other works with system parameter sweeps
(e.g., pump modulation), where EEs result from the switches
between the attractors generated by modulation [42].

First, the trajectory passes the isola, being attracted by one
or another stable limit cycles. After the isola, the trajectory
goes in one of the two ways, being attracted to one of the
two loci of the stable periodic solutions on the bridge. The
attraction to the top branch of the bridge (TB) results in EEs
with nearly identical well-formed pulse profiles, while the at-
traction to the stable periodic solution at the bottom branch of
the bridge (BB) produces events of much smaller amplitudes
without specific shape. The random selection between the two
ways is justified by the statistical analysis, but is not depended
on noise: it results from high complexity of periodic orbit
manifolds of the system, including stable and saddle orbits.
This also clearly demonstrates the existing difference between
the typical median events and extreme events, which exhibit
distinct dynamics in phase space.

As a last step, we analyze the time intervals between the
EEs: a histogram representing statistics for the same ε =
−0.36 case is provided in Fig. 6. The time intervals are ex-
pressed in the units of filter cycles (filter detunings of 2π ) and
recorded occurrences of corresponding time intervals between
consequent EEs are counted. This approach is chosen as we
previously noted that EEs appear only in a highly localized
range of detunings within a filter cycle and have high degree
of localization with respect to each other. As can be seen from
Fig. 6(a), which represents a histogram with integer binning,
the recorded intervals range from 2 to above 350 with a fast
decay in occurrence rate. For increased visibility, the same
data are plotted as PDF in logarithmic scale in Fig. 6(b),
with slightly more coarse binning and two lines indicating a
good match with exponential and stretched-exponential (with
stretching exponent β = 0.98 shown for comparison) fits [45],

FIG. 6. (a) Histogram with integer binning showing statistics for
delay between two consequent EEs in units of filter detuning cycles.
The inset shows a zoom-in view at the left part of the histogram:
there are no EEs within the same or in consequent filter cycles, which
would correspond to the bins with a value of 0 and 1, respectively.
(b) PDF representation of the same data in logarithmic scale. More
coarse binning is used and lines corresponding to exponential (or-
ange dashed) and stretched-exponential (yellow dash-dotted) fits are
shown.

which is in line with observations in [5,20]. The inset in
the figure shows the zoom-in version of the left part of the
histogram with integer binning: it is important to note that bins
with 0 (several EEs within the same filter cycle) and 1 (EEs in
consequent filter cycles) are empty. While the former can be
justified by the intensity limitations implied by the bridge that
we discussed before, we attribute the latter fact to the deep
dive of the intensity that is present in every trajectory after
EE peaks: EE peak intensities deplete the gain, leading to a
fast and deep drop in intensity down to −3 dB or lower in
[−1.8π,−2π ] detuning range, which can be clearly seen in
logarithmic scale in Fig. 5(b). This puts the trajectory too far
from any attractors, which form the EE dynamics, and, taking
into account the sweep rate, there is not enough time for the
trajectory to reach them before or within the next cycle. It
also can be seen from the same figure that there is no such
characteristic dip before EEs (on the right from φ = 0).

IV. CONCLUSION

We demonstrate, analyze and explain the appearance of
extreme events in a delay differential equation model for a
frequency-swept semiconductor laser system with a narrow-
band filter. A strongly asymmetric fold over of the continuous
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wave solution in our system allows coexistence of multiple
bifurcation branches and the sweep-induced hopping effects
between them. We analyze the identified events and show
that they appear in a narrow range of sweep rates and their
probability is highly dependent on this parameter. We also
show that they appear in absence of any noise in the system
and are robust to its addition. The bifurcation structure of the
static system is characterized by multiple folding branches,
including the bridge and isola of the periodic solutions, which
appearance is attributed to the phase-amplitude coupling in
the semiconductor gain medium and the narrow-band filter-

FIG. 7. The extended view of the periodic isola solutions: loga-
rithm of intensity extrema of periodic isola solutions for static φ =
φ0, including primary solutions, bifurcation points, secondary and
tertiary period-doubling branches. Primary stable (unstable) regions
are represented by blue (yellow) lines. Secondary branches born from
period-doubling bifurcations are denoted by purple (orange) lines for
stable (unstable) regions, while tertiary stable (unstable regions) by
green (red orange). The points of the stable region bifurcations are
denoted by triangles (fold), squares (period doubling), and diamonds
(torus), while colors indicate which stable branch the bifurcation
point belongs to.

ing. In this structure, we identify three key contributing loci of
the stable solutions that form a scenario for extreme events in
the frequency-swept system with the negative frequency filter
detuning sweep via random choice of the trajectory passage
itinerary from isola to either top (large amplitude periodic so-
lutions) or bottom (small amplitude periodic solutions) bridge
region.
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FIG. 8. (a) Overlay of intensity logarithm trajectories with CW
and periodic solutions of the static system, illustrating 25 trajectories
for various EEs (ε = −0.36 case) plotted by solid dark gray lines,
and (b) zoom-in on the extended isola region, where trajectories
pass through or along it. Trajectories and notations are preserved
from Fig. 5(b) and extended with detailed representation of isola.
Notations for the extended isola are as in Fig. 7.
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APPENDIX: DETAILED ISOLA
OF PERIODIC SOLUTIONS

This section provides more detailed view on the structure
of isola solutions. Even though, as outlined in the main text,
these details may not be necessary for understanding of the
paper and description of the intensity trajectory dynamics, we
would like to emphasize the complexity of these solutions.

For this purpose, besides the structures showed in Fig. 1
with the bifurcation points (positions and types), we addi-
tionally indicate the secondary and tertiary period-doubling

solutions arising from them in Fig. 7. Figure 8(a) shows
the EE dynamics [same as Fig. 5(b)] with the detailed isola
representation, and Fig. 8(b) is a zoom-in on one of the isola
regions, where intensity trajectories pass through or along the
secondary isola branches. Scattered short regions of stable
solutions of these secondary branches may affect the dynam-
ics, but do not allow to reliably identify their particular roles:
this also does not deviate or contradict to the observations,
descriptions and statements provided in the main text of the
paper.
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