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Resonance-induced synchronization in coupled phase oscillators with bimodal
frequency distribution and periodic coupling
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Synchronization behaviors in globally coupled phase oscillators with symmetric bimodal frequency distri-
bution and periodic coupling are studied. It is found that by a proper setting of the frequency of the periodic
coupling, the synchronization propensity of the oscillators can be markedly improved. Specifically, we show that
when the frequency of the periodic coupling matches the distance of the central frequencies in the distribution,
the critical coupling characterizing the onset of synchronization can be substantially decreased. The mechanism
behind the phenomenon of periodic-coupling-enhanced synchronization is analyzed by the methods of Ott-
Antonsen ansatz and synchronization transition tree, and it is revealed that the synchronization enhancement
is attributed to the resonance between the synchronization clusters and the periodic coupling.
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I. INTRODUCTION

The Kuramoto model serves as a simple paradigm for
exploring the synchronization phenomena observed ubiqui-
tously in nature and human-made systems [1–3]. Coined in
1975, the classic Kuramoto model consists of an ensemble
of globally coupled phase oscillators, with the natural fre-
quencies of the oscillators following an unimodal symmetric
distribution [4]. In studying the synchronization behaviors in
the Kuramoto model, one of the central tasks is to find the
critical point where the synchronization is started, namely the
critical coupling strength where the synchronization order pa-
rameter begins to increase from zero [4,5]. By the approach of
mean-field coupling, Kuramoto gave an analytical prediction
for the critical coupling, as well as the behavior of the syn-
chronization order parameter in the vicinity of the onset point.
Over the past half-century, the Kuramoto model and its gen-
eralized forms have been extensively studied by researchers
from different fields, in which plenty of new dynamical phe-
nomena have been reported and the underlying mechanisms
have been unveiled [2,3]. In particular, stimulated by the
blooming of network science, considerable attention has been
paid to the synchronization behaviors in complex network
systems in recent years, where the important roles of network
structures on synchronization have been uncovered [6,7].

Besides the onset point for synchronization, attention
has been also paid to the transition path from desynchro-
nization to global synchronization in Kuromoto-like models
[8–12]. In exploring synchronization transition, one of the
key issues is to characterize the partial synchronization behav-
iors generated at different coupling strengths [2,3]. Roughly,
partial synchronization refers to the coherent motion of a
fraction of the oscillators, which is typically observed at
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intermediate couplings [13–16]. In partial synchronization,
the phase oscillators are self-organized into different groups
(clusters), with the effective frequencies of the oscillators
inside each group approximately the same but are of clear
difference for oscillators from different groups.

The organization of the partial synchronization states can
be affected by several factors. For the classic Kuramoto
model, the grouping of the oscillators is determined solely by
their natural frequencies [15]; for lattice networks, the group-
ing is also influenced by the spatial distances of the oscillators
[17]; for complex networks, the network topology plays an
important role in forming the clusters [9]. Additionally, the
organization of the synchronization clusters is dependent on
the coupling strength. For the classic Kuromoto model, as the
coupling strength increases from the onset point, first a small-
size synchronization cluster will appear (by oscillators whose
natural frequencies are close to the mean frequency), then the
cluster will expand gradually by recruiting more oscillators
and, once all oscillators are synchronized in phase, the system
reaches the global synchronization state [8–11].

Along with the growth of the clusters, the synchronization
order parameter will be increased gradually from zero (at the
onset point) to unity (for the global synchronization state),
presenting a second-order phase transition. This picture of
synchronization transition, however, is dramatically changed
when the natural frequencies of the oscillators are not of
unimodal distribution [18–23], or when the oscillators are
coupled on complex networks [7–11]. For instance, when the
oscillators are coupled through a scale-free complex network
in such a way that their natural frequencies are positively
correlated with their degrees, the synchronization order pa-
rameter might suddenly increase from zero to a large value as
the coupling strength exceeds a critical threshold, showing the
phenomenon of “explosive synchronization” [11].

From the perspective of network control, a question
of broad interest is how the synchronization behaviors of
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coupled oscillators can be manipulated by external drivings.
For biological and neural systems, an issue of particular con-
cern is how the synchronization behaviors respond to the
externally added periodic signals, e.g., the effects of seasonal
variations on ecological processes [24], the influences of cir-
cadian rhythm on neural activities [25], the impacts of diurnal
cycles on gene expressions [26], and the influences of elec-
trical and magnetic stimulations on the electrophysiological
activities of human brain [27]. In particular, with the devel-
opment of modern techniques in medicine and neuroscience
(e.g., transcranial electrical and magnetic stimulations), in
recent years tremendous efforts have been paid to the treat-
ment of neurological disorders, or the improvement of brain
cognitive functions, by noninvasive electrical and magnetic
simulations [28,29]. In these applications, an urgent issue is
to evaluate the efficacy of the external stimulations in manip-
ulating the collective neuronal behaviors.

Typically, external drivings participate in the system dy-
namics through two approaches: acting on the oscillator states
or influencing the oscillator couplings. For the former, the
driving signals can be regarded as released from an external
phase oscillator, and the system responses can be analyzed
under the framework of synchronization (the external os-
cillator is coupled to the internal oscillators in a one-way
fashion) [30–33]. The latter, however, might give rise to very
complicated dynamics whose analysis requires sophisticated
techniques. For instance, it is demonstrated that when the
coupling strength between chaotic oscillators changes pe-
riodically with time, the synchronization propensity of the
oscillators can be significantly improved by a proper setting of
the frequency of the periodic coupling [34–36]. Similar stud-
ies have been also conducted for the classic Kuramoto model
recently, where it is observed that, in contrast to the results of
chaotic oscillators, the adoption of period coupling suppresses
synchronization in general. Specifically, it is shown that with
the decrease of the driving frequency of the periodic coupling,
the synchronization performance is gradually deteriorated
[37]. Given the important implications of the Kuramoto model
to the functionality of a wide range of real-world systems, it is
natural to ask the following questions: Can periodic coupling
enhance synchronization in the Kuramoto model? And, if yes,
when and why?

Intrigued by the above questions, we investigate in the
present work the synchronization behaviors of coupled phase
oscillators under timely periodic couplings, with the natural
frequencies of the oscillators following a bimodal distribution.
Our main findings are as follows: (1) the synchronization
performance of the system can be markedly improved by
a proper setting of the frequency of the periodic coupling,
with the optimal frequency determined by the central frequen-
cies of the bimodal distribution; and (2) under the optimal
driving frequency, the synchronization order parameter is not
increased monotonically with the coupling strength, but show-
ing a crossover in the transition to global synchronization.
By the methods of dimension reduction and synchronization
transition trees, we conduct an analysis on the mechanism
underlying the observed phenomena. It is found that both
phenomena are induced by the resonance between the syn-
chronization clusters and the periodic driving. To be specific,
the improved synchronization performance is due to the

resonance between the synchronization clusters and the pe-
riodic driving under weak couplings, and the crossover of the
synchronization order parameter is due to the newly generated
synchronization clusters induced by the periodic driving under
strong couplings. The findings shed light onto the collec-
tive behaviors of coupled oscillators in response to external
drivings and provide an alternative approach for manipu-
lating the synchronization behaviors in complex dynamical
systems.

II. MODEL AND PHENOMENA

A. Model

Our model of coupled phase oscillators reads

θ̇i = ωi + K (t )

N

N∑
j=1

sin (θ j − θi ), (1)

where i, j = 1, . . . , N are the oscillator indices, N is the sys-
tem size, and θi(t ) is the instant phase of the ith oscillator.
ωi is the natural frequency of the ith oscillator, which follows
the distribution g(ω). K (t ) represents the time-dependent cou-
pling strength.

Different from the classic Kuramoto model in which the
coupling strength is a constant and the natural frequency fol-
lows an unimodal distribution, here we adopt the scheme of
periodic coupling, K (t ), and choose the natural frequencies
from the bimodal Lorentzian (Cauchy) distribution. Specifi-
cally, we set in Eq. (1)

K (t ) = K0[1 + sin(�t )], (2)

and

g(ω) = �

2π

[
1

(ω − ω0)2 + �2
+ 1

(ω + ω0)2 + �2

]
. (3)

In Eq. (2), � and K0 denote, respectively, the frequency and
amplitude of the periodic coupling. We note that the cost
of the periodic coupling (i.e., the time-averaged coupling)
is kept unchanged when varying �, i.e., 〈K (t )〉 = K0. Our
main objective in the present work is to demonstrate and
argue that under the same coupling cost, the synchronization
performance can be improved by a proper setting of �. In
Eq. (3), ±ω0 are the central frequencies of the Lorentzian
distribution (i.e., the locations of the distribution peaks), and
� characterizes the half-width of the peaks. The distance
between the central frequencies therefore is 2ω0. Without the
loss of generality, we set � = 1 and choose g(ω) to be sym-
metric about ω = 0. [If g(ω) is symmetric about the frequency
ω̃ �= 0, we can analyze the synchronization behavior of the
phase oscillators in the rotating frame by replacing θi(t ) with
θi(t ) − ω̃t [3,38]. In the rotating frame, the system dynamics
is still governed by Eq. (1), with the frequency distribution
identical to Eq. (3).] To make the distribution bimodal, we
keep ω0 > �/

√
3 in the current study (the distribution will be

unimodal if this condition is not satisfied). In numerical sim-
ulations, the system size is fixed as N = 2 × 104. The initial
phases of the oscillators are randomly chosen within the range
(0, 2π ), and Eq. (1) is evolved numerically by the fourth-order
Runge–Kutta algorithm with the time step δt = 1 × 10−2.
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FIG. 1. The impacts of periodic coupling on the synchronization performance of N = 2 × 104 globally coupled phase oscillators. (a1)
For ω0 = 1.0, the variation of the synchronization order parameter, R, with respect to the coupling amplitude, K0, under different driving
frequencies, �. The critical coupling is about Kc = 2.6 for � = 1.9, and is about Kc = 3.6 for the other driving frequencies. (a2) For ω0 = 1.0,
R versus � under different coupling amplitudes, K0. The optimal frequency for K0 = 3 is �o ≈ 1.5. [(b1) and (b2)] Results for ω0 = 2.0. For
� = 3.8, the critical coupling in (b1) is about Kc = 2.7. The optimal driving frequency for K0 = 3 in (b2) is about �o ≈ 3.9. Colored symbols
represent the numerical results. Colored lines represent the theoretical predictions of the reduced model.

Following Ref. [4], we characterize the synchronization
performance by the order parameter

R = 〈R(t )〉T =
〈

1

N

∣∣∣∣∣
N∑

j=1

eiθ j

∣∣∣∣∣
〉

T

, (4)

where i = √−1 is the imaginary unit, | · | represents the mod-
ulus function, and 〈·〉 denotes that the result is averaged over
time period T . In calculating R, the system is first evolved for
a transient period T ′ = 200, and then the result is averaged
over a period T = 100. We have R ∈ [0, 1], with R = 0 and 1
corresponding to the complete desynchronization and global
synchronization states, respectively.

B. Numerical results

We start by investigating the impacts of the periodic cou-
pling on the synchronization performance. Setting ω0 = 1 in
the frequency distribution, we plot in Fig. 1(a1) the variation
of R with respect to K0 (the amplitude of the periodic cou-
pling) for different values of � (the frequency of the periodic
coupling). The benchmark results obtained for the constant
coupling (� = 0) are plotted in the figure as the comparison
(the blacked squares), which shows that the onset of syn-
chronization occurs at about Kc = 3.6 and, as K0 increases

from Kc, the value of R is suddenly increased to a large
value (∼0.5) and then is increased monotonically, showing a
first-order phase transition. (The first-order phase transition is
typically observed in Kuramoto-like models with the natural
frequencies of the oscillators following a bimodal distribution,
and the underlying mechanism is normally attributed to the
formation and competition of the synchronization clusters
[18–23].) Changing � to 3.8 (the blue up-triangles), we see
that the critical coupling Kc is almost unchanged, but in the
transition regime (K0 > Kc) the synchronization order param-
eter is clearly below that of constant coupling. Similar results
are also observed for the driving frequency � = 9.0 (the pink
down-triangles). Compared to the results of � = 3.8, we see
that the synchronization performance of � = 9.0 is improved
but is still below the benchmark results of constant coupling.
These results are consistent with the findings in Ref. [37],
where it is shown that periodic coupling deteriorates syn-
chronization in general, and the slower the driving frequency,
the smaller the synchronization order parameter in the transi-
tion regime. However, abnormal synchronization phenomena
are observed for � = 1.9 (the red dots). The anomalies are
manifested in two aspects. First, the critical coupling Kc

is notably decreased. Specifically, the critical coupling is
decreased to Kc ≈ 2.6 for the driving frequency � = 1.9. Sec-
ond, in the transition regime, the value of R is not increased

024219-3



SANSAN LI AND XINGANG WANG PHYSICAL REVIEW E 110, 024219 (2024)

monotonically with K0. To be specific, a crossover is observed
in the variation of R around K0 = 5. Numerical evidence in
Fig. 1(a1) thus suggests that for the bimodal Lorentzian distri-
bution described by Eq. (3), the adoption of periodic coupling
indeed can improve the synchronization performance if the
driving frequency is set properly.

Is there an optimal driving frequency by which the
synchronization performance is maximized, and does the
phenomenon of periodic-coupling-enhanced synchronization
depend on the coupling amplitude K0? To address these
questions, we next check the variation of R with respect to
� for different values of K0 based on simulations. As the
demonstration, we choose the coupling amplitudes as K0 =
(2, 3, 8). The numerical results are presented in Fig. 1(a2).
We see that for K0 = 2 (the black squares), the value of R
is staying always at 0, indicating that the synchronization
performance is not affected by periodic coupling in the case
of weak couplings. However, the results for K0 = 3 show that
the synchronization performance is significantly affected by
tunning the driving frequency (the red dots). Specifically, we
see in the figure that R reaches its maximum at the frequency
�o ≈ 1.5. The variation of R shows new features when K0 = 8
(the blue up-triangles). In this case, the adoption of periodic
coupling always deteriorates the synchronization performance
(R ≈ 0.85 when � = 0) and, interestingly, around the optimal
frequency �o the synchronization performance is the worst.
The results in Fig. 1(a2) confirm the existence of an optimal
frequency in improving synchronization but also point out
that the influence of periodic coupling on synchronization is
dependent on the coupling amplitude, i.e., the synchronization
performance is improved only for the intermediate coupling
amplitudes.

To check the generality of the above phenomena, we set
ω0 = 2 and plot in Fig. 1(b) the variation of R with respect to
K0 and �. We see in Fig. 1(b1) that the critical coupling Kc

characterizing the onset of synchronization is decreased when
the coupling frequency is � = 3.8. Still, it is observed that in
the transition regime, the value of R is first increased and then
decreased, with the crossover appearing at about K0 = 8.4.
Figure 1(b2) shows again that the impact of periodic coupling
on synchronization is dependent on the coupling amplitude.
For the intermediate coupling amplitude K0 = 3, the optimal
frequency is changed to �o ≈ 3.9. The results for ω0 = 2
shown in Fig. 1(b), while confirming the modulating effects
of periodic coupling on synchronization, show also that the
synchronization performance is dependent on the properties
of the frequency distribution (i.e., the parameter ω0).

The new phenomena we have observed in simulations
can be summarized as follows. First, periodic coupling can
improve synchronization, but only under the intermediate
coupling amplitudes. Second, when synchronization is im-
proved by the periodic coupling, the synchronization order
parameter shows a crossover in the transition regime. Third,
the optimal frequency for synchronization is dependent on
the frequency distribution of the oscillators, i.e., the cen-
tral frequencies ±ω0. An exploration of the mechanism
underlying the observed phenomena is our mission in the
next section.

III. MECHANISM ANALYSIS

The mechanism of periodic-coupling-enhanced synchro-
nization is analyzed through two approaches: dimension
reduction and synchronization transition tree. The former fo-
cuses on the macroscopic behaviors of the oscillators, which
will be employed to unveil the improving effect of periodic
coupling on synchronization. The latter focuses on the micro-
scopic behaviors of the oscillators, which will be utilized to
interpret the crossover of the synchronization order parameter
in the transition regime.

A. The approach of dimension reduction

We adopt the method of Ott-Antonsen (OA) ansatz to re-
duce the dimension of the system dynamics [39]. This method
has been adopted widely in the literature for exploring the
collective dynamics of coupled phase oscillators, which is
able to not only predict the onset point for synchronization,
but also estimate the synchronization order parameter in the
transition regime (see Ref. [38] and references therein for
more details). In what follows, we first generalize the OA
method to oscillators with bimodal frequency distribution and
then utilize the generalized method to explore the enhancing
mechanism of periodic coupling on synchronization.

Let N → ∞ in Eq. (1), the probability density function
p(θ, ω, t ) follows the continuity equation

∂ p(θ, ω, t )

∂t
+ ∂[υθ p(θ, ω, t )]

∂θ
= 0, (5)

with

υθ (θ, ω, t ) = ω + K (t )

2i
[z(t )e−iθ − z∗(t )eiθ ], (6)

and

z(t ) = R(t )eiφ =
∫ 2π

0
dθ

∫ +∞

−∞
p(θ, ω, t )eiθ dω. (7)

Here z∗(t ) denotes the complex conjugate of z(t ), and φ

represents the phase associated with the order parameter R.
Expanding p(θ, ω, t ) with respect to θ by the Fourier series,
we have

p(θ, ω, t ) = g(ω)

2π

[
1 +

∞∑
n=1

pn(ω, t )e−inθ +
∞∑

n=1

p∗
n(ω, t )einθ

]
.

(8)

Using the Ott-Antonsen ansatz [39]

pn(ω, t ) = [a(ω, t )]n, |a(ω, t )| � 1,

and plugging Eq. (8) into Eqs. (5) and (7), we have

∂a

∂t
+ iωa + K (t )

2
[z(t )a2 − z∗(t )] = 0, (9)

and

z∗(t ) =
∫ ∞

−∞
a(ω, t )g(ω)dω. (10)
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For the bimodal Lorentzian distribution described by
Eq. (3), there are two poles in the lower ω-complex plane, ω =
±ω0 − i�. As such, the integration of Eq. (10) gives z(t ) =
[z1(t ) + z2(t )]/2, with z1,2(t ) = a∗(±ω0 − i�, t ) represent-
ing, respectively, the synchronization order parameters of the
two clusters formed by oscillators whose natural frequencies
are close to ω0 and −ω0 [18–23]. Combining Eqs. (9) and
(10), we have the following equations for the time evolution
of z1(t ) and z2(t ):

ż1 = −(� + iω0)z1 + K (t )
[
z1 + z2 − (z∗

1 + z∗
2 )z2

1

]
/4,

ż2 = −(� − iω0)z2 + K (t )
[
z1 + z2 − (z∗

1 + z∗
2 )z2

2

]
/4. (11)

Due to the symmetric distribution of the natural frequencies,
we have |z2| = |z1| = ρ and z2/z1 = eiψ , with ρ the synchro-
nization order parameter of the synchronization clusters and
ψ the phase difference between the two clusters. (Please see
Appendix for the mathematical proof and Ref. [40] for the
numerical verifications.) With this property, Eq. (11) can be
rewritten as

ρ̇ = −�ρ + K (t )ρ(1 − ρ2)(1 + cos ψ )/4,

ψ̇ = 2ω0 − K (t )(1 + ρ2) sin ψ/2. (12)

Compared with the high-dimensional system described by
Eq. (1), we see that the system dynamics is reduced to two
coupled ordinary differential equations, which facilitates our
analysis of the synchronization mechanism under periodic
couplings. Now, to evaluate the synchronization performance,
we only need to find the values of ρ and ψ by solving Eq. (12),
and the synchronization order parameter is expressed as R =
ρ
√

(1 + cos ψ )/2. It is worth mentioning that different from
the existing studies in which bimodal frequency distribution
is adopted [18–23], here K (t ) is varying periodically with
time [see Eq. (2) for the details]. To check the accuracy of
the reduced model, we solve Eq. (12) numerically and plot in
Fig. 1 the variations of R with respect to K0 and �. We see
that the results obtained from the reduced model are in good
agreement with the results obtained from direct simulations in
all the cases we have investigated.

Having justified the accuracy of the reduced model in char-
acterizing the synchronization performance of the original
system, we next employ this model to explore the synchro-
nization mechanism under periodic couplings. For the sake of
simplicity, here we consider the special case of on-off cou-
pling, K (t ) = K0 + K0 sgn[sin(�t )], with sgn[. . .] the sign
function [34,35,37]. That is, the coupling strength is switch-
ing between 0 and 2K0 periodically with the time interval
2π/�. (Despite the simplification, on-off coupling captures
the main features of the interaction between the synchro-
nization dynamics and the periodic coupling. Please see the
Supplemental Material for more details [40].) As ρ = 0 for
the “off” intervals (K = 0), the synchronization order parame-
ter is determined by the “on” intervals (K = 2K0) under on-off
coupling. Further, noticing that Eq. (12) cannot be solved
analytically, we focus on only the steady states of the “on”
intervals in exploring the synchronization mechanism. Setting
ρ̇ = ψ̇ = 0 in Eq. (12), we obtain in total three steady states:
ρ = 0 (the complete desynchronization state), S1 = (ρ1, ψ1)
and S2 = (ρ2, ψ2) (the two partial synchronization states).

FIG. 2. The bifurcation diagram obtained from the reduced
model. The results are obtained by solving Eq. (12) numerically
with K (t ) = 2K0 and ω0 = � = 1. (a) ρ versus K0. The two critical
couplings are Kb

c ≈ 1.81 and K f
c ≈ 1.98. (b) ψ versus K0. ψ is

locked to constant values when K0 > K f
c , and is decreasing gradually

as K0 increases from K f
c .

It is straightforward to find that the desynchronization state
becomes unstable when K0 > K f

c = 2�. The synchronization
order parameter, ρ1, of the steady state S1 is determined by
the equation

−� + K0

2

(
1 − ρ2

1

)⎡
⎣1 +

√√√√1 − 4ω2
0

K2
0

(
1 + ρ2

1

)2

⎤
⎦ = 0,

which has a solution when K0 > Kb
c = 2�/(1 + cos ψ1),

with ψ1 = arcsin[2ω0/(K0(1 + ρ2
1 ))]. Linear stability analy-

sis shows that once it appears, the steady state S1 will be
always locally stable. The synchronization order parameter,
ρ2, of the steady state S2 is determined by the equation

−� + K0

2

(
1 − ρ2

2

)⎡
⎣1 −

√√√√1 − 4ω2
0

K2
0

(
1 + ρ2

2

)2

⎤
⎦ = 0,

which has no solution for ρ � 1 and therefore should be
discarded. Theoretical analysis thus suggests that ρ = 0 for
K0 < K f

c and ρ = ρ1 for K0 > Kb
c . As K f

c > Kb
c , the desyn-

chronization state (ρ = 0) and the parital synchronization
state S1 coexist in the region (Kb

c , K f
c ). The above analysis

is validated by numerical simulations, as depicted in Fig. 2(a).
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FIG. 3. The synchronization mechanism revealed by the ap-
proach of dimension reduction with “on-off” couplings. The left
column shows the time evolution of the local synchronization or-
der parameter, ρ, under different driving frequencies, �. The right
column shows the trajectory of the system dynamics in the polar
coordinates. The desynchronization state (ρ = 0) and the partial
synchronization state (S1) are marked by the black and red discs,
respectively. (a) K0 = 2. (b) K0 = 3. (c) K0 = 5.

Shown in Fig. 2(b) is the variation of the phase difference,
ψ , with respect to K0. We see that the phase difference ψ is
locked for K0 > K f

c and, as K0 increases from K f
c , the value

of ψ is gradually decreased, signifying the improved syn-
chronization at large K0. (Besides the steady states, the order
parameter ρ might also oscillate periodically with time under
constant couplings, namely the standing-wave state [20]. The
standing-wave state is observable in the multistable region
(Kb

c , K f
c ) when ω0 is large enough [40].)

B. The macroscopic mechanism revealed by the reduced model

We move on to analyze the dynamical behavior of the syn-
chronization order parameter, ρ, under the “on-off” couplings.
In this scenario, the coupling strength will be alternating be-
tween 0 and 2K0 periodically and, as a consequence, the order
parameter will oscillate with time. Setting K0 = 2, we plot
in Fig. 3(a1) the time evolution of ρ under different driving
frequencies, � = (1.0, 1.9, 3.8, 9.0). The results are obtained
by solving Eq. (12) numerically, with the initial conditions
being chosen as (ρ1/2, ψ1/2). We see that ρ approaches 0 in
all cases. Shown in Fig. 3(a2) is the trajectory of the system
dynamics in the polar coordinates, in which the desynchro-
nization state (ρ = 0) and the steady state S1 are marked

as black and red discs, respectively. We see that, though the
trajectory is evolving toward S1 during the “on” episodes, it is
the desynchronization state that wins out over the competition
eventually. That is, for small values of K0, the desynchroniza-
tion state is more stable than the steady state S1. This result is
consistent with the results shown in Fig. 1(a1) (where R ≈ 0
for K0 < 2.6) and Fig. 1(a2) (where R is staying at 0 despite
the change of �).

Plotted in Fig. 3(b) are the results for K0 = 3. Interestingly,
we see in Fig. 3(b1) that ρ is approaching 0 for the driving
frequencies � = 3.8 and 9.0, but is oscillating peridically
between a large value (∼0.8) and a small but nonzero value
(∼0.1) for the driving frequencies � = 1.0 and � = 1.9.
Specifically, the time-averaged synchronization order param-
eter is about 〈ρ(t )〉 = 0.45 for � = 1.9 and 〈ρ(t )〉 = 0.42
for � = 1.0. The trajectories of the system dynamics are
plotted in Fig. 3(b2), where it is seen that the trajectory is
swinging between the desynchronization state and the steady
state S1 under the frequencies � = 1.0 and 1.9. As the natural
frequency of ρ is 2ω0 = 2.0 [as depicted in Eq. (12)], the
large-amplitude oscillations of ρ therefore are attributed to
the resonance between the driving signals (� = 1 and 1.9)
and the dynamics of ρ. These results are consistent with
the results shown in Fig. 1(a), too, where it is observed
that the synchronization performance is significantly affected
by the driving frequency � only for the intermediate coupling
strength (e.g., K0 = 3).

Shown in Fig. 3(c) are the results for K0 = 5. We see in
Fig. 3(c1) that ρ is oscillating with time for all the driving
frequencies but with different amplitudes. Specifically, with
the increase of �, the mean value of ρ is increased while the
oscillating amplitude is decreased. (The time-averaged syn-
chronization order parameters for � = 1.0, 1.9, 3.8, and 9.0
are about 0.4, 0.6, 0.7, and 0.75, respectively.) The trajectories
of the system dynamics in the polar coordinates are plotted
in Fig. 3(c). We see that when � is large (e.g., � = 9), the
trajectory is oscillating around the steady state S1 with small
amplitudes. However, for the resonant frequencies � = 1.0
and 1.9, the trajectory is able to visit the desynchronization
state during the “off” episodes, resulting in the decreased syn-
chronization order parameter. This explains the behavior of R
for the parameter K0 = 8 plotted in Fig. 1(a2), where it is seen
that R reaches the minima around the resonant frequencies.

C. The approach of synchronization transition tree

The approach of dimension reduction reveals only the
collective behaviors of the oscillators at the macroscopic
level (i.e., the dynamics of the synchronization order pa-
rameter), which does not provide information about the
microscopic state of the oscillators. For instance, we observe
in Fig. 1(a1) that the synchronization order parameter under-
goes a crossover in the transition regime (at about K0 = 5)
under the resonant frequency � = 1.9, yet the underlying
mechanism remains not clear. To explore the microscopic
state of the oscillators, as well as to deepen our understand-
ing of the influence of periodic coupling on synchronization
performance, we finally investigate the synchronization tran-
sition by the approach of effective frequencies (transition
tree) [11,17].
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FIG. 4. The impact of coupling frequency on synchronization transition tree. (a)ω0 = 2.0. (b)ω0 = 3.0. To better demonstrate the bifurca-
tions, only 2000 oscillators are sampled and the effective frequencies ω̃ of the oscillators are restricted to be within the range [−10, 10]. Dotted
vertical lines denote the critical couplings for synchronization. Kc: The critical coupling characterizing the onset of synchronization. K ′

c: The
critical coupling where the clusters are broken. K ′′

c : The critical coupling whether the oscillators are reorganized into new clusters.

The effective frequencies of the phase oscillators are de-
fined as [11,17]

ω̃i = 1

T

∫ τ+T

τ

θ̇i(t )dt, (13)

where θ̇i(t ) is the instant frequency of oscillator i, τ is the
transient period and T is the time period over which the result
is averaged. If oscillators i and j are locked in phase, then we
have ω̃i = ω̃ j , otherwise ω̃i �= ω̃ j . In general, the closer the
effective frequencies between two oscillators, the higher the
synchronization degree between them. By tracing the varia-
tion of the effective frequencies of all oscillators, we are able
to portray the tree-structure bifurcations in the transition from

desynchronization to global synchronization. In simulations,
we obtain the transition tree by solving Eq. (1) numerically,
while setting τ = 200 and T = 100 in calculating the ef-
fective frequencies. Fixing ω0 = 2, we plot in Fig. 4(a) the
transition trees generated by different driving frequencies,
� = (0, 3.8, 9.0). The results of constant coupling are shown
in Fig. 4(a1) for comparison purposes. We see in Fig. 4(a1)
that with the increase of K0, first the effective frequencies
around the central frequencies ±ω0 become identical (at about
Kc ≈ 4.0), forming two small-size synchronization clusters.
Then, as K0 increases from Kc, the two clusters are gradually
combined into a single cluster centered at ω̃ = 0. As K0 in-
creases further, the cluster is expanding in size by recruiting
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more oscillators by the ascending sequence of their natural
frequencies.

The results for � = 3.8 are plotted in Fig. 4(a2). As
ω0 = 2, we have � ≈ 2ω0 in this case, i.e., the coupling
frequency is close to the intrinsic frequency of the local
synchronization parameter ρ. Figure 4(a2) shows that two
clusters are formed at about Kc = 2.7, with the effective fre-
quencies of the clusters being about ±ω0. In addition to this,
four small-size clusters are also generated at Kc. The central
frequencies of these smaller clusters are located at about ±5.7
and ±9.5. As K0 increases from Kc, all six clusters are grow-
ing in size. The growth of the clusters, however, is stopped
at about K ′

c = 7.5, where the clusters are broken. As a con-
sequence, the synchronization order parameter is decreased at
this point. At about K ′′

c = 8.9, the oscillators are reorganized
into five new clusters, with the central frequencies of the clus-
ters being around 0, ±3.8 and ±7.6. After that, as K0 increases
from K ′′

c further, the sizes of the new clusters grow grad-
ually, resulting in the increase of the synchronization order
parameter. It is just the reorganization of the clusters during
the interval K0 ∈ (K ′

c, K ′′
c ) that generates the crossover of the

synchronization order parameter in the transition regime [i.e.,
the crossover at about K0 = 8.4 for the results of � = 3.8
shown in Fig. 1(b1)]. As the effective frequencies of the new
clusters are resonant with the driving frequency of the periodic
coupling, the crossover phenomenon thus lies in the reso-
nance between the synchronization clusters and the periodic
coupling.

New features appear in the synchronization transition tree
when the driving frequency is large. Shown in Fig. 4(a3) is
the transition tree for � = 9.0. In this case, two clusters are
formed around ±ω0 at about Kc = 4.0 [which is the same
as the case of constant coupling shown in Fig. 4(a1)]. At
about K ′

c = 6.1, the two clusters are merged into a single
one whose effective frequency is ω̃ = 0. In addition to this,
two small-size clusters are also formed at K ′

c, with their ef-
fective frequencies located at about ω̃ = ±9.0. Still, the two
small-size clusters are induced by periodic couplings, which
happens when K0 is large enough. After that, as K0 increases
further, the sizes of the three clusters grow gradually, with
most oscillators being attracted to the central cluster. As the
clusters are not reorganized in this case, the phenomenon of
synchronization crossover is absent in the transition regime.

With the synchronization transition trees, we now can
interpret the synchronization behaviors observed in direct
simulations from a new perspective. In what follows, we take
the results of � = 3.8 shown in Fig. 1(b) as the example to
analyze the influence of periodic coupling on synchronization.
First, the enhanced synchronization (showing as the decreased
critical coupling for the onset of synchronization) by the
periodic coupling (� = 3.8) is due to the early formation
of the synchronization clusters around the central frequen-
cies ±ω0, which is induced by the resonance between the
periodic driving and the clusters, as depicted in Fig. 4(a2).
Second, the crossover of the synchronization order parameter
in the transition regime for the driving frequency � = 3.8
is due to the reorganization of the synchronization clusters.
Before the reorganization, there are 6 small-size clusters.
At the crossover point [K0 ≈ 8.4 in Fig. 1(b1)], the clus-
ters are reorganized into 5 large-size clusters whose effective

frequencies are completely different from the former clusters.
Third, the suppressing effect of periodic coupling on synchro-
nization under strong couplings (K0 > 10) is rooted again in
the resonance between the synchronization clusters and the
periodic drivings. For the specific results of � = 3.8 shown in
Fig. 4(a2), 5 clusters are generated at large K0; for the results
of � = 9.0 shown in Fig. 4(a3), 3 clusters are generated. As
more synchronization clusters mean less coherent motions,
synchronization therefore is suppressed by periodic couplings
under strong couplings.

To check the generality of the synchronization scenarios
revealed above, we plot in Fig. 4(b) the transition trees for
the parameter ω0 = 3. We see that the synchronization sce-
narios are essentially the same as that of ω0 = 2. In specific,
Figure 4(b2) shows that under the resonant frequency � =
6.0, the oscillators around the effective frequencies ±ω0 and
±3ω0 are synchronized into four small-size clusters at Kc ≈
2.7. The clusters are growing in size as K0 increases from Kc

to K ′
c ≈ 8.8, and are broken and reorganized into three new

clusters at K ′′
c ≈ 11.5. Again, we see that the onset point for

synchronization is advanced and the synchronization degree
experiences a crossover in the transition regime due to the
reorganization of the clusters.

IV. DISCUSSIONS AND CONCLUSIONS

The key to understanding the impact of periodic coupling
on synchronization lies in the way how the oscillators are
organized into clusters. As depicted in Fig. 4, a distinctive
feature of the synchronization transition trees under the res-
onant frequencies is the reorganization of the clusters in the
transition to global synchronization. Taking the results shown
in Fig. 4(a2) as an example, we see in this figure that as K0

increases from Kc ≈ 2.7, 6 small-size synchronization clus-
ters are generated first, with the effective frequencies of the
clusters being around ±ω0, ±3ω0 and ±5ω0. As K0 increases
from Kc to K ′

c ≈ 7.5, the clusters are growing in size but the
effective frequencies of the clusters are kept unchanged. The
clusters, however, are broken and reorganized into five new
clusters as K0 increases from K ′

c to K ′′
c ≈ 8.9. The effective

frequencies of the new clusters are at about 0, ±� and ±2�.
Compared to the results of the nonresonant frequencies [e.g.,
the Figs. 4(a1) and 4(a3)], the impact of the resonant coupling
thus is featured by the range K0 ∈ (Kc, K ′

c): the smaller the
value of Kc, the earlier the onset of synchronization; the larger
the value of K ′

c, the later the crossover of the synchronization
order parameter appeared in the synchronization transition. To
have a global picture on the dependence of this resonant range
on the driving frequency, we plot in Fig. 5 the heat map of
the synchronization order parameter in the two-dimensional
parameter space (�, K0). The results are obtained by direct
simulations of Eq. (1), which involves massive computing
resources. Three cases of frequency distribution have been
considered in our simulations, ω0 = (1.0, 2.0, 3.0). We see
that (1) the critical coupling Kc is markedly decreased around
the resonant frequency � = 2ω0 (the red, vertical dotted lines)
and (2) a resonant tongue appears in the variation of the
critical coupling K ′

c (the black, dotted curves). We also see that
by increasing the coupling amplitude K0, the resonant tongue
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FIG. 5. Heat maps of the synchronization order parameter, R, on
the parameter space (�, K0). (a)ω0 = 1.0. (b)ω0 = 2.0. (a)ω0 = 3.0.
Vertical dotted lines denote the resonant frequency � = 2ω0. Dotted
curves denote the critical coupling, K ′

c, characterizing the crossover
point in the synchronization transition.

is shifted leftward slightly, indicating that the crossover point
is delayed as � deviates from the resonant frequency.

Our studies extend the current knowledge on the syn-
chronization behaviors of coupled phase oscillators in two
aspects. First, our studies show that the adoption of peri-
odic coupling can improve the synchronization performance
of coupled phase oscillators. Two conditions are identified
as necessary for improving the synchronization performance:
(1) the natural frequency of the oscillators should follow a
bimodal distribution and (2) the driving frequency of the pe-
riodic coupling should be close to the distance of the central
frequencies in the distribution. The improving effect of peri-
odic coupling on synchronization is reflected in the decreased
critical coupling for the onset of synchronization, which is

rooted in the resonance between the periodic coupling and the
synchronization clusters formed by oscillators whose natural
frequencies are around the central frequencies. This finding is
in contrast to the results obtained in coupled phase oscillators
with unimodal frequency distributions, where it is shown that
the adoption of periodic coupling always suppresses synchro-
nization [37]. Second, our studies demonstrate that in the
transition to the global synchronization state, the synchro-
nization order parameter of the system undergoes a crossover
at some critical coupling. In exploring the synchronization
transition of Kuramoto-like models, a common observation
is that after the onset of synchronization, the synchronization
order parameter is increased monotonically with the increase
of the coupling strength [8–12]. Our studies based on syn-
chronization transition trees reveal that the crossover of the
synchronization order parameter is due to the reorganization
of the synchronization clusters. Before the crossover point,
the synchronization clusters are organized mainly around the
central frequencies of the bimodal distribution, while after that
the clusters are organized around the harmonic frequencies
of the periodic coupling. It is just the competition between
the two clustering mechanisms that lead to the crossover
phenomenon.

As the final remark, we note that depending on the system
parameters (ω0,�, K0,�), the reduced model as described by
Eq. (12) can present a variety of dynamics, including steady
states, periodic states, and chaotic states [20,41]. In particular,
when the amplitude of the periodic coupling, K0, is moderate,
the behavior of the order parameter, ρ, could be chaotic. The
chaotic states are sparse in the parameter space (�, K0) and
are mainly distributed in the resonant regions. The emergence
of chaos might be attributed to the competition of the synchro-
nization clusters in the process of cluster reorganization [40].

To summarize, inspired by the facts that the natural fre-
quencies of the dynamical units in complex systems might
not follow the unimodal distribution and the coupling strength
between the units might change with time, we have investi-
gated the synchronization behaviors of globally coupled phase
oscillators, with the natural frequencies of the oscillators fol-
lowing the bimodal Lorentzian frequency and the coupling
strength is changing with time periodically. It is found that the
synchronization performance of the oscillators can be signif-
icantly affected by adopting periodic couplings. Specifically,
for weak couplings, the critical coupling for the onset of syn-
chronization can be markedly decreased by a proper setting of
the coupling frequency; for strong couplings, the synchroniza-
tion order parameter undergoes a crossover in the transition to
global synchronization. The mechanisms underlying the ob-
served phenomena have been investigated by the approaches
of dimension reduction and synchronization transition tree. It
is revealed that the advanced synchronization onset is induced
by the resonance between the periodic coupling and the syn-
chronization clusters, and the crossover of the synchronization
order parameter is due to the reorganization of the synchro-
nization clusters in the transition to global synchronization.
Our studies give a glimpse into the rich dynamics induced by
the resonance between synchronization clusters and periodic
coupling in coupled phase oscillators, and many intriguing
phenomena (questions) remain to be explored (addressed)
in the future, e.g, the adoptions of multimodal frequency
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distributions, the cases of complex networks, and the situa-
tions of quasiperiodic or stochastic couplings. We hope the
present work could be the starting point for a new direction
in exploring the synchronization behaviors in Kuramoto-like
models.
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APPENDIX: SYMMETRY OF CLUSTER-BASED
SYNCHRONIZATION ORDER PARAMETERS

IN THE REDUCED MODEL

In obtaining the reduced model [see Eq. (12)] from
Eq. (11), we have assumed that the synchronization order pa-
rameters of the two clusters are identical, i.e., ρ1(t ) = ρ2(t ) =
ρ(t ). We now justify this assumption by providing mathemati-
cal proof (the numerical evidence is given in the Supplemental
Material [40]). As the local stability of this symmetric solution
has been analyzed in Ref. [20], here we focus on only the
uniqueness of this solution. That is, we are going to prove that
the symmetric solution ρ1(t ) = ρ2(t ) is the unique solution of
Eq. (11).

We analyze first the symmetry of the synchronization order
parameters for the incoherent states observed in the range
K0 ∈ [0, Kc). As R =

√
ρ2

1 + ρ2
2 + 2ρ1ρ2 cos ψ = 0 and ψ is

time-dependent, we have ρ1 = ρ2 = 0 in this case, which
satisfies the symmetric condition.

We next analyze the symmetry of the synchronization or-
der parameters for the partially coherent states generated for

K0 > Kc. Setting z1,2 = ρ1,2eiφ1,2 in Eq. (11), we have

ρ̇1 = −�ρ1 + K (t )
(
1 − ρ2

1

)
(ρ1 + ρ2 cos ψ )/4,

ρ̇2 = −�ρ2 + K (t )
(
1 − ρ2

2

)
(ρ2 + ρ1 cos ψ )/4,

ψ̇ = 2ω0 − K (t )
(
ρ2

1 + ρ2
2 + 2ρ2

1ρ2
2

)
sin ψ/(4ρ1ρ2), (A1)

with ψ = φ2 − φ1 the phase difference between the synchro-
nization order parameters of the clusters. The general solution
of Eq. (A1) is ρ2(t ) = α(t )ρ1(t ), with α(t ) positively defined.
Inserting this solution into Eq. (A1) (only for the equations of
ρ1 and ρ2) and after some algebra, we have

α̇(t ) + K (t )

4
[α2(t ) − 1](cos ψ + ρ1ρ2) = 0. (A2)

One solution of Eq. (A2) is α(t ) = 1, i.e., ρ1(t ) = ρ2(t ).
Assume that Eq. (A2) has other solution with α(t ) �= 1, the
integration of Eq. (A2) gives

ln

∣∣∣∣1 + α(t )

1 − α(t )

∣∣∣∣ =
∫

K (t )

2
(cos ψ + ρ1ρ2)dt . (A3)

We see that if α(t ) = ρ2(t )/ρ1(t ) is a solution of Eq. (A3),
then 1/α(t ) = ρ1(t )/ρ2(t ) must be also a solution of the equa-
tion. Inserting the new solution 1/α(t ) into Eq. (A2), we have
the equation

K (t )(cos ψ + ρ1ρ2)

[
1

α2(t )
− α2(t )

]
= 0,

which has only one solution, α(t ) = 1 (please note that
α(t ) is positively defined). As this solution is obtained with
the assumption α(t ) �= 1, the contradiction therefore leads
to the conclusion that the symmetric solution with α(t ) = 1
is the only solution of Eq. (A1). This completes the proof.

Numerical simulations have been conducted to check the
uniqueness and stability of the symmetric solution, which
confirm that the symmetric solution is unique and globally
attractive for the dynamics described by Eq. (11) [40].
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