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Kuramoto variables as eigenvalues of unitary matrices
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We generalize the Kuramoto model by interpreting the N variables on the unit circle as eigenvalues of a
N-dimensional unitary matrix U in three versions: general unitary, symmetric unitary, and special orthogonal.
The time evolution is generated by N2 coupled differential equations for the matrix elements of U , and
synchronization happens when U evolves into a multiple of the identity. The Ott-Antonsen ansatz is related
to the Poisson kernels that are so useful in quantum transport, and we prove it in the case of identical natural
frequencies. When the coupling constant is a matrix, we find some surprising new dynamical behaviors.
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I. INTRODUCTION

Several natural and artificial systems rely on the synchro-
nization of their units to function or to respond to external
stimuli. Examples are pacemaker cells in the heart [1], neu-
rons in the brain [2–5], and groups of real [6] and artificial [7]
fireflies. One of the most studied models of synchronization
was proposed by Kuramoto [8], and considers the joint evolu-
tion of N coupled oscillators described only by their phases.

The Kuramoto model has been extended and generalized
in many ways over the years, including different types of
coupling functions [9–11], networks of connections [12,13],
special distributions of natural frequencies leading to explo-
sive synchronization [14,15], external driving forces [16–18],
multidimensional systems [19,20], higher order interactions
[21,22], and complexified oscillators [23].

Here we introduce a further generalization of the Kuramoto
model which is defined in terms of a unitary matrix U . If
U is diagonal, each entry corresponds to a phase and the
original Kuramoto model is recovered. However, for general
matrices the dynamics becomes much richer, especially when
the coupling K is also extended to a matrix.

Each oscillator in the Kuramoto model satisfies the first
order differential equation,

θ̇ j = ω j + K

N

N∑
k=1

sin(θk − θ j ). (1)

Here {ω1, . . . , ωN } are the natural frequencies and K mea-
sures the strength of the coupling. The initial conditions for
the oscillators, {θ1(0), . . . , θN (0)} are usually assumed to be
uniformly distributed in the interval (0, 2π ), while the natural
frequencies are drawn at random from some distribution g(ω).

Synchronization is usually measured by the so-called order
parameter, defined as

Z = reiψ = 1

N

N∑
k=1

eiθk . (2)

The modulus of Z contains the essential information about the
possibility of synchronization. If the phases are approximately

uniformly distributed around the unit circle, then we expect
that |Z| ≈ 1/

√
N , whereas if the phases bunch up and become

all approximately equal, θ j ≈ ψ , then |Z| ≈ 1.
In the limit of infinitely many oscillators, the order param-

eter can be written as the average value

Z (t ) =
∫

eiθρ(θ, t )dθ, (3)

where ρ(θ, t ) is the distribution of phases at time t . This is
like a “circular moment” of this distribution, with the higher
circular moments, also known as Kuramoto-Daido order pa-
rameters [24], being its further Fourier coefficients,

Zn(t ) =
∫

einθρ(θ, t )dθ. (4)

In a very influential paper, Ott and Antonsen suggested the
ansatz [25]

Zn(t ) = (Z (t ))n. (5)

This corresponds to assuming that the distribution ρ(θ, t ) has
the specific form

ρ(θ, t ) = 1

2π

1 − |Z|2
|1 − Z̄eiθ |2 . (6)

Under the Ott-Antonsen ansatz, and assuming a Lorentzian
distribution of the ω′s, with half width �, it can be shown that
the order parameter satisfies the equation of motion

Ż = −�Z + K

2
(1 − |Z|2)Z. (7)

So the dynamics is reduced from a space of real dimension N
to a single complex number.

In this paper we generalize the Kuramoto model for three
classes of unitary matrices, namely general unitary matrices,
symmetric unitary matrices, and real unitary (orthogonal) ma-
trices. The coupling constant is also interpreted as a coupling
matrix, allowing for richer dynamics [26]. Each of these
classes has a reproducing kernel that is the Poisson kernel
of the corresponding matrix space and is the equivalent of
the Ott-Antonsen ansatz. We show numerical simulations of

2470-0045/2024/110(2)/024217(6) 024217-1 ©2024 American Physical Society

https://orcid.org/0000-0002-5694-8875
https://orcid.org/0000-0003-1379-7568
https://ror.org/04x3wvr31
https://ror.org/04wffgt70
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024217&domain=pdf&date_stamp=2024-08-28
https://doi.org/10.1103/PhysRevE.110.024217


MARCEL NOVAES AND MARCUS A. M. DE AGUIAR PHYSICAL REVIEW E 110, 024217 (2024)

synchronization, where the coupling matrix is proportional to
the identity, and more interesting cases using tridiagonal cou-
pling matrices. Finally, we show that, for identical oscillators,
the Ott-Antonsen ansatz does provide exact solutions for the
order parameter.

In Sec. II we introduce a generalization of this model
which is defined in terms of unitary matrices. In Sec. III, we
discuss how a modified Ott-Antonsen ansatz corresponds to
the oscillators being distributed according to Poisson kernels.
In Sec. IV we investigate numerically the onset of synchro-
nization in the generalized model. In Sec. V we prove that the
ansatz is true when all natural frequencies are equal.

II. UNITARY MATRIX EVOLUTION

If we define x j = eiθ j , then the order parameter can be used
to write the dynamics in the form

ẋ j = iω jx j + KZ

2
− KZ̄x2

j

2
. (8)

Notice that the coupling between the different dynamical vari-
ables is induced by the presence of Z in each equation of
motion (Z̄ is the complex conjugate).

We interpret the complex numbers x j , which all have unit
modulus, as the N eigenvalues of a unitary matrix U . This
suggests a generalization of the Kuramoto model in which
the dynamics is not defined in terms of {x1, . . . , xN }, but as
a single equation of motion for U (notice that we are not
introducing a network of many interacting unitary matrices
as in [27–29]).

One natural generalization is

U̇ = i�U + 1
2 KZ − 1

2UK†UZ̄, (9)

where � contains the natural frequencies, the order
parameter is

Z = 1

N
Tr(U ), (10)

and there are several possibilities for the coupling K , which is
now a matrix: for example, it can be a multiple of the identity,
diagonal, real, symmetric, generic, etc. For any K , (9) leads
to U̇U † = −UU̇ †, so the unitarity constraint UU † is satisfied
for all times.

Let U (N ) be the group of complex N-dimensional unitary
matrices. It comes equipped with a natural (Haar) probability
distribution [30], P(U ), which is invariant under left and right
multiplication, P(U ) = P(UV ) = P(VU ). The initial condi-
tion U (0) is drawn at random from this probability space, so
the system has rotation invariance.

Without any loss of generality, we can assume that �

is a diagonal matrix. If K is a multiple of the identity, an
initially diagonal U remains diagonal for all times and this
model reduces exactly to the Kuramoto model. However, the
probability that a random initial U (0) be diagonal is zero, as
the space of diagonal matrices has no measure inside U (N ).
Therefore, for generic initial conditions we have a gener-
alization of the Kuramoto model, consisting of N2 coupled
equations for the complex matrix elements,

U̇jk = i� jUjk + 1
2 KjkZ − 1

2 (UK†U ) jk Z̄. (11)

Unitarity implies that the matrix elements are not indepen-
dent. Instead, it is known that U (N ) has real dimension N2.

Synchronization happens in this model when U (t ) evolves
in time to become not only diagonal, but a multiple of
the identity, so that all eigenvalues approximately coincide,
U (∞) ≈ eiψ1N and |Z (∞)| ≈ 1.

We could also consider U to be symmetric. The space
of unitary symmetric matrices also has a natural invariant
probability measure and is known as the circular orthogonal
ensemble (COE) in the theory of random matrices [30], where
it is used to model quantum propagators and scattering matri-
ces in the presence of time-reversal symmetry. In this case, a
natural generalization is

U̇ = i
�U + U�

2
+ 1

2
KZ − 1

2
UK̄UZ̄, (12)

with K symmetric. It is easy to see that this equation preserves
both unitarity and symmetry. Symmetry obviously reduces di-
mension: the space COE (N ) has real dimension N (N + 1)/2.

U might also be taken real, therefore orthogonal. The space
of special orthogonal matrices, SO(N ), has real dimension
N (N − 1)/2. When N is odd, +1 is a fixed eigenvalue with
no dynamics, so we restrict our attention to even N in this
case. Complex eigenvalues come in conjugate pairs, so the
dynamics displays a Z2 symmetry about the real axis instead
of the usual rotation symmetry. A natural generalization of the
Kuramoto model is

U̇ = �U + 1
2 KZ − 1

2UKT UZ, (13)

with K and Z real, and � block diagonal with 2 × 2 blocks,
i.e.,

� =
⊕

j

(
0 ω j

−ω j 0

)
. (14)

As a consequence of the Z2 symmetry, when the mean natural
frequency is zero, complete phase locking can only happen
around θ = 0 or θ = π . Another possibility is the presence of
two clusters of synchronized oscillators, one around some θ0

and the other around −θ0.
The eigenvalues of random unitary matrices are correlated

and display repulsion. Their joint probability distribution [31]
is proportional to ∏

j<k

|x j − xk|β, (15)

for U (N ) and COE (N ), with β = 2 and β = 1, respectively,
and is proportional to∏

j<k

|Re(x j ) − Re(xk )|2 (16)

for SO(2N ).
These are therefore the eigenvalue distributions of the ini-

tial matrix U (0), depending on the model being used. In all
cases, the density of initial phases is uniform in the interval
(0, 2π ).

III. OTT-ANTONSEN ANSATZ AND POISSON KERNELS

The initial values of the circular moments are all equal
to zero when the variables x j have the joint distributions
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discussed in the previous section, Zn>0(0) = 0. At time t , the
Ott-Antonsen ansatz can be written as

1

N
Tr(U n) =

(
1

N
Tr(U )

)n

= Zn. (17)

Since the dynamics of our model is not identical to the
Kuramoto model, it is not obvious that this ansatz is still valid,
but we will check it numerically in the next section and prove
it in a special case in Sec. V.

If we introduce Z̃ as a multiple of the identity,

Z̃ = Z1N , (18)

then we can write (17) as Tr(U n) = Tr(Z̃n). Therefore, the
ansatz amounts to saying that, even though U (t ) is not in
general a multiple of the identity, it behaves like one as far
as traces of powers are concerned.

This corresponds to a very specific joint probability distri-
bution for the eigenvalues of U , known as the Poisson kernel.
For U (N ) and COE (N ), a very complete theory can be found
in Hua [32]. For the special orthogonal group, it was derived
much more recently in [33], because of a physical motiva-
tion: different Poisson kernels describe the distribution of the
scattering matrix of quantum systems in different symmetry
classes, when the contact points with the external world are
not perfectly transparent (see [34–38]).

In all cases of interest to us, the kernel ρ(Z̃,U ) satisfies the
reproducing property∫

dUρ(Z̃,U )Tr(U n) = Tr(Z̃n). (19)

For the matrix ensembles we are considering, it is given by

ρU (N )(Z̃,U ) = det(1N − Z̃Z̃†)N

det(1N − UZ̃†)2N
, (20)

ρCOE (N )(Z̃,U ) = det(1N − Z̃Z̃†)(N+1)/2

det(1N − UZ̃†)N+1
, (21)

and

ρSO(2N )(Z̃,U ) = det(1N − Z̃Z̃T )2N−1

det(1N − UZ̃T )2N−1
. (22)

In the particular case that Z̃ = Z1N is a multiple of the
identity, it can be written directly in terms of the eigenvalues
(in the following expressions it must be remembered that
Z = 1

N

∑
j x j). For U (N ), this is

N∏
j=1

(1 − |Z|2)N

|1 − Z̄x j |2N

∏
j<k

|x j − xk|2, (23)

while for COE (N ) it is

N∏
j=1

(1 − |Z|2)(N+1)/2

|1 − Z̄x j |N+1

∏
j<k

|x j − xk|, (24)

and for SO(2N ) it is

N∏
j=1

(1 − Z2)2N−1

|1 − Zx j |2N−1

∏
j<k

|Re(x j ) − Re(xk )|2, (25)

all of which can be seen as generalizations of (6).
Under the OA ansatz, as the matrix U evolves under

Eqs. (9), (12), or (13), its eigenvalues are distributed, for all
times, according to the corresponding Poisson kernel, namely
(23), (24), and (25), with time dependence coming from the
parameter Z (t ).

In physics and in random matrix theory, Poisson kernels are
used to model matrix ensembles, i.e., situations in which U
may be thought of as being a random variable. In our present
approach to Kuramoto models, only U (0) is chosen at random
(from Haar measure, which is a Poisson kernel with Z = 0),
while the time evolution is deterministic. Nevertheless, when
N is large the eigenvalues of U (t ) can still be described by a
distribution.

Since the kernel in question is determined only by the
symmetries imposed on U and Z (t ), the system’s dynamics
is effectively reduced from a space of large dimension, com-
prising all matrix elements of U , to a single complex variable.
As we have seen, the dynamics of the system takes place in
real dimension N2, N (N + 1)/2, and N (N − 1)/2 depending
if U is general unitary, symmetric, or special orthogonal, so
this dimensional reduction to a single complex number is even
more dramatic than in the usual Kuramoto model.

IV. NUMERICAL SIMULATIONS

If the equations of motion (9), (12), and (13) could be
integrated with infinite precision, the unitarity of U would
be guaranteed for all times. However, numerical integration
requires small but finite time steps, and unitarity may degrade
with time (in other words, the matrix spaces we consider are
curved subspaces of the space of all matrices, and numerical
integration does not exactly account for the curvature). We
use a fourth order Runge-Kutta method and, at intermediate
times, when we have U †U = 1 + A with A very small, we
renormalize

U �→ U (1 + A)−1/2 ≈ U (1 − A/2), (26)

thereby imposing unitarity.
In Fig. 1, we show the results of numerical simulation, as

functions of time, for a single random initial condition, with
natural frequencies drawn from a normal distribution with
zero mean and unit variance.

Panel (a) shows the modulus of all matrix elements of
U , for N = 10 and the scalar coupling K = 5. The 90 off-
diagonal ones die down to zero, while the ten diagonal ones
tend to the unit circle. So the time evolution effectively di-
agonalizes U . More than that, we have synchronization: all
eigenvalues become approximately equal, as can be appreci-
ated in panel (b), because |Z (t )| tends to one. We also plot the
quantities |Tr(U n)|1/n for 1 � n � 5. The ansatz (17) being
true implies that all these curves should lie on top of each
other, and we see that this is a good approximation.

To show that the behavior of this model can be very dif-
ferent from the usual Kuramoto model, we consider vanishing
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FIG. 1. Numerical simulation, as functions of time, with natural frequencies drawn at random from a normal distribution. (a) Modulus of
the matrix elements of U , for N = 10 and K = 5. The off-diagonal ones tend to zero, and the diagonal ones tend to the unit circle. (b) Modulus
of the first few (1 � n � 5) traces of powers of U , for N = 100 and K = 10, rescaled by raising them to 1/n. After an initial transient, they lie
approximately on top of each other, corroborating the Ott-Antonsen ansatz.

natural frequencies, � = 0, but a coupling K which is a tridi-
agonal matrix, with diagonal and upper diagonal elements
equal to 1, and lower diagonal elements equal to −1, i.e.,

K =

⎛
⎜⎜⎝

1 1 0 · · ·
−1 1 1
0 −1 1
...

. . .

⎞
⎟⎟⎠. (27)

We choose this coupling because the result is surprising. The
eigenvalues of U converge in time to a stationary state, which
is regular but not synchronized. They are in fact given by

x j = eiφ k j

|k j | , (28)

where k j are the eigenvalues of K and φ depends on the
initial condition U (0). Since K is tridiagonal and Toeplitz, its
eigenvalues can be obtained exactly:

k j = 1 − 2i cos

(
j

N + 1

)
. (29)

The spectral evolution of U can be seen in Fig. 2, where we
plot the results for N = 40, with φ moved to zero for clarity.
In this case U does not diagonalize with time, but becomes
banded, as we can see in Fig. 3. A rigorous proof of this is a
challenge. Notice that when K is real, positive, and diagonal,
a relation like (28) would be equivalent to synchronization, so
the behavior we observe for (27) can be seen as a generaliza-
tion of the concept of synchronization.

Another surprise was found when we simulated the model
based on SO(2N ) with identical oscillators with ω j = 2, and

K of the form 1N ⊗ ( a b
−b a). For example, we show in Fig. 4

how the eigenvalues evolve, after an initial transient, into a
nice and intricate periodic pattern, obtained with a = 6 and
b = 16, for N = 20. Again, a detailed understanding of such
patterns is a challenge.

V. IDENTICAL NATURAL FREQUENCIES

In this section we consider the special case when all natural
frequencies are equal, and show that the OA ansatz is indeed
true because of an underlying geometrical dynamics governed
by linear fractional transformations, as has been demonstrated
for the usual Kuramoto model [39–41], except in the present
case the variables are matrix valued.

If all natural frequencies are equal, � = ω1N , we can
write U = U ′eiωt and the equation of motion becomes U̇ ′ =
1
2 KZ ′ − 1

2U ′K†U ′Z̄ ′, where Z ′ = 1
N TrU ′. So we might as well

change to a rotating reference frame, or choose � = 0.
Let BN be the matrix unit ball defined by 1 − XX † >

0. Its boundary is nothing but U (N ). The linear fractional

0 5 10 15 20

-3

-1

1

3

FIG. 2. Numerical simulation for N = 40 with � = 0 and K
the nontrivial matrix in (27). The asymptotic eigenvalues of U are
determined by those of K , except for their midpoint.
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FIG. 3. Numerical simulation, with the same parameters as
Fig. 2, of |Ujk |(t ), with white being zero. In this case U does not
diagonalize with time, but becomes banded.

transformation

MY (X ) = (X + Y )(1 + Y †X )−1 (30)

maps BN into itself. Notice that MY (0) = Y, expand for small
Y t to get

MY t (X ) ≈ X + Y t − XY †Xt . (31)

The derivative with respect to t at t = 0 is the generator of
the transformation, and this is precisely in the form of our
equation of motion, (9).

This means that if X (t ) ∈ BN satisfies

Ẋ = iωX + 1
2 KZ − 1

2 XK†XZ̄, (32)

0 5 10 15
0

1

2

3

4

5

6

FIG. 4. Numerical simulation of the SO(2N ) model, for pa-
rameters given in the text. After some transient oscillations, the
eigenvalues display intricate periodic behavior. Notice the Z2 sym-
metry of this model.

then it must be of the form

X (t ) = MY (t )(ξ (t )X0), (33)

for some time-dependent matrix parameters, a rotation ξ (t ) ∈
U (N ) and a centroid Y (t ) ∈ BN . In particular, Y (t ) is the orbit
of the origin and therefore satisfies itself as the equation of
motion,

Ẏ = 1
2 KZ − 1

2Y K†Y Z̄. (34)

Notice that Y (0) is diagonal, being the zero matrix, and Y (t )
remains so for all times when K is also diagonal. Moreover, if
K is a multiple of the identity, then so is Y .

The group generated by (Y, ξ ) acts transitively on BN and,
instead of evolving points in time, we can evolve probability
distributions. In other words, we can consider the pushforward
of the initial Haar measure. Because of rotation invariance,
the action of ξ is irrelevant. On the other hand, the linear
fractional transformations take the Haar measure precisely
into the Poisson kernel [32].

Therefore, the order parameter becomes the trace of the
centroid, Z (t ) = 1

N Tr(Y (t )), and the higher circular moments
likewise satisfy Zn(t ) = 1

N Tr((Y (t ))n). We see that if Y is a
multiple of the identity, then the OA ansatz is indeed true.

If K is a multiple of the identity, complete dimensional
reduction is accomplished and a single differential equa-
tion determines the evolution of the scalar order parameter:

Ż = KZ

2
− K̄Z̄Z2

2
. (35)

If K is real, we get back to (7). If K = Kr + iKi has real and
imaginary parts, the equations of motion for the modulus and
phase of the order parameter become

ṙ = Krr

2
(1 − r2), (36)

and

ψ̇ = Ki

2
(1 + r2). (37)

In a slightly more generic case when K is diagonal, the
OA ansatz is no longer true for arbitray time (once synchro-
nization is achieved, U becomes a multiple of the identity
and then the OA ansatz is trivially true), but we still have
partial dimensional reduction, with N (coupled) equations for
the evolution of the N complex elements of Y ,

Ẏj = 1
2 KjZ − 1

2 KjY
2
j Z̄. (38)

We can still have synchronization in this case, depending
on the values of the Kj . However, if K is a more general
real symmetric matrix there is no dimensional reduction, and
typically no synchronization, as we have seen in the previous
section.

The calculations for COE (N ) and SO(2N ) are very similar.
They are boundaries of matrix balls invariant under linear
fractional transforms and rotations, the generators of which
coincide with our equations of motion (12) and (13). The
pushforwards of the corresponding Haar measure are the Pois-
son kernels (24) and (25). When K is a multiple of the identity,
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complete dimensional reduction takes place and the dynamics
of the order parameter is again governed by (35).

If the natural frequencies are not all equal, the Poisson
kernels can still be used as an approximation, but synchro-
nization no longer happens for any K . Instead, just like for the
ordinary Kuramoto model, there is typically a critical value Kc

associated with a phase transition. Indeed, as the eigenvalue
density corresponding to all three kernels is nothing but (6),
the original calculation by Ott and Antonsen can be repeated
for a Lorentzian distribution of the ω′s, with half width �, and
leads to Kc = 2�.

VI. CONCLUSIONS

We have generalized the Kuramoto model to the evolution
of the eigenvalues of a unitary matrix U in such a way that
the system is described by either a single matrix equation or
by N2 coupled scalar equations. By choosing U to be sym-
metric, or real, different variants can be produced. We have
related the Ott-Antonsen ansatz to matrix Poisson kernels,

and showed that it is exact when the natural frequencies are
identical.

This matrix version of the problem naturally admits a ma-
trix valued coupling constant K . We have found numerically
that, especially for nonsymmetric couplings, this may lead
to surprising dynamical behaviors, including, for example,
an equilibrium state in which U is banded with its spectrum
being a renormalized version of the spectrum of K , or intricate
periodic evolution for the eigenvalues, when U is orthogonal.

These new dynamics suggest that matrix Kuramoto models
may have very rich mathematical structures that are only being
hinted at here and deserve further study.
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