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Modulational instability and collapse of internal gravity waves in the atmosphere
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Nonlinear two-dimensional (IGWs) in the atmospheres of the Earth and the Sun are studied. The resulting
two-dimensional nonlinear equation has the form of a generalized nonlinear Schrödinger equation with nonlocal
nonlinearity, that is, when the nonlinear response depends on the wave intensity at some spatial domain. The
modulation instability of IGWs is predicted, and specific cases for the Earth’s atmosphere are considered.
In a number of particular cases, the instability thresholds and instability growth rates are analytically found.
Despite the nonlocal nonlinearity, we demonstrate the possibility of critical collapse of IGWs due to the scale
homogeneity of the nonlinear term in spatial variables.

DOI: 10.1103/PhysRevE.110.024216

I. INTRODUCTION

The spectrum of acoustic-gravity waves in the atmosphere
of planets and the Sun consists of acoustic and internal gravity
waves [1,2], as well as evanescent wave modes [3–5]. Internal
gravity waves, which are the lower branch of acoustic-gravity
atmospheric waves, have been intensively studied in the
physics of the Earth’s and the Sun’s atmosphere for more than
60 years [1,2,6–8]. Space missions have provided an addi-
tional incentive to study these waves also in the atmospheres
of other planets, for example, Mars and Venus [9,10]. Interest
in internal gravity waves (IGWs) is largely due to the impor-
tant contribution that these waves make to the dynamics and
energetics of the atmospheres of planets and the Sun, ensur-
ing effective redistribution of disturbance energy on a global
scale. In the Earth’s atmosphere, these waves can be generated
by various sources of natural and anthropogenic origin. In par-
ticular, IGWs are associated with the sources localized in the
upper atmosphere and on the Sun, for example, precipitation
of charged particles at high latitudes, ionospheric currents,
solar terminator, etc. [11–13]. In addition, IGWs in the upper
atmosphere and ionosphere caused by tropospheric or ground-
based sources are currently being intensively studied [14,15].
The linear theory of IGWs has been developed in great detail
(see, e.g., Ref. [16], reviews [17,18], and references therein).
In particular, the Coriolis force caused by rotation, the pres-
ence of the magnetic field of the Earth and the Sun [19], the
effect of random temperature inhomogeneity [20], etc. were
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taken into account. As IGWs propagate upward in the atmo-
sphere, their amplitudes rapidly increase with altitude due to
an exponential decrease in the background density [1,6,21].
In this connection, when considering such waves, it becomes
necessary to take into account nonlinear effects. Nonlinear
effects during the propagation of IGWs have been studied in
a number of works (see also Ref. [22] and references therein).
In particular, based on fluid equations with a term taking into
account force of gravity and an adiabatic equation of state,
nonlinear equations for IGWs in the atmosphere were derived
in Refs. [23–25]. The three-wave interaction of IGWs and
nonlinear responses were considered in Refs. [26–28]. Inter-
action of atmospheric gravity solitary waves with ion acoustic
solitary waves was studied in Ref. [29]. Nonlinear structures
in the form of convective cells of IGW waves in the Earth’s
atmosphere [30], tripole vortices and vortex chains [31,32],
dust-acoustic gravity vortices [33], and so-called dust devils
(rotating columns of rising dust) [34,35] were considered.
Nonlinear IGWs waves in a weakly ionized atmosphere in
the form of dipole vortices (cyclone-anticyclone pairs) were
found in Refs. [36,37]. In a recent paper [38], nonlinear equa-
tions were obtained to describe the dynamics of IGWs using
the reductive perturbation method. In the one-dimensional
case, the corresponding solutions are presented in the form
of breather solitons, rogue waves, and dark solitons. Some
aspects of nonlinear IGW, including intensive numerical mod-
eling, have also been studied in Refs. [39–42].

In this paper, we study two-dimensional (2D) nonlinear
IGWs based on equations obtained with the aid of the reduc-
tive perturbation method proposed in Ref. [38]. Unlike other
works on nonlinear atmospheric IGWs, we use this method to
derive a 2D nonlinear equation with a nonlocal nonlinearity
when the nonlinear response depends on the wave packet
intensity at some extensive spatial domain. This equation may
be treated as a generalized nonlinear Schrödinger equation,
but the linear part is essentially anisotropic and, moreover,
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the corresponding linear operator can be either elliptic or
hyperbolic. This equation, in contrast to the original fluid
equations describing a stratified atmosphere, is quite ade-
quately amenable to analytical analysis and, despite its model
nature, predicts the modulation instability of IGWs and the
possibility of wave collapse.

The 2D nonlinear Schrödinger (NLS) equation with non-
local nonlinearity was considered in a number of works. An
important property of spatially nonlocal nonlinear response
is that it prevents a catastrophic collapse of multidimensional
wave packets which usually occurs in local self-focusing me-
dia with a cubic nonlinearity. In particular, a rigorous proof
of absence of collapse in the model of the nonlocal NLS
equation with sufficiently general symmetric real-valued re-
sponse kernel was presented in Refs. [43,44]. It was shown
that nonlocal nonlinearity arrests the collapse and results
in the existence of stable coherent structures, not only the
fundamental soliton (which can collapse in the NLS with
local nonlinearity), but also dipole solitons, the so-called az-
imuthal solitons (azimuthons), and vortex solitons [45–49]. It
is important that in these models the term with nonlocal non-
linearity is not scale homogeneous in spatial variables. This is
precisely the reason for the absence of collapse. Despite the
nonlocal nonlinearity in our model, we predict the possibility
of IGW collapse, similar to the collapse of Langmuir waves
in a plasma [50,51], and self-focusing of nonlinear beams in
optics [52]. Collapse (since the model is two-dimensional,
collapse is critical) is possible due to the fact that the non-
local nonlinearity under consideration is scale homogeneous
in spatial variables. We also study the modulation instability
of IGWs, which is a precursor of collapse that occurs at the
nonlinear stage of instability.

The paper is organized as follows. In Sec. II, the model
two-dimensional nonlinear equations for IGWs are presented.
The modulation instability is studied in Sec. III. In Sec. IV,
we demonstrate the possibility of collapse of IGWs. The con-
clusion is made in Sec. V.

II. MODEL EQUATIONS

2D Stenflo equations [23,25] to govern the dynamics of
nonlinear atmospheric IGWs have the form

∂

∂t

(
�ψ − 1

4H2
ψ

)
+ {ψ,�ψ} + ∂χ

∂x
= 0, (1)

∂χ

∂t
+ {ψ, χ} − ω2

g

∂ψ

∂x
= 0, (2)

where � = ∂2/∂x2 + ∂2/∂z2 is the two-dimensional Lapla-
cian, and the Poisson bracket (Jacobian) { f , g} is defined by

{ f , g} = ∂ f

∂x

∂g

∂z
− ∂ f

∂z

∂g

∂x
. (3)

Here, ψ (x, z) is the velocity stream function, χ (x, z) is the
normalized density perturbation, H is the equivalent atmo-
spheric height, ωg = (g/H )1/2 is the Brunt-Väisälä, and g is
the free fall acceleration. The coordinates x and z correspond
to the horizontal and vertical coordinates, respectively, the
z axis is directed upward against the gravitational acceler-
ation g = −gẑ, ẑ is the unit vector along the z direction,
and the x axis lies in a plane perpendicular to the z axis. In

the linear approximation, taking ψ ∼ exp(iK · x − iωt ) and
χ ∼ exp(iK · x − iωt ), where x = (x, z), ω and K = (Kx, Kz )
are the frequency and wave number respectively, Eqs. (1) and
(2) yield the dispersion relation of the IGWs,

ω2 = ω2
gK2

x

K2 + 1/(4H2)
, (4)

where K2 = K2
x + K2

z . In Eqs. (1) and (2), characteristic fre-
quencies ω � �0 are considered, where �0 is the angular
rotation velocity of the planet, and then the Coriolis force
can be neglected. The Ampère force is also neglected, that
is, the influence of the magnetic field in the ionized atmo-
sphere, which is justified at sufficiently high altitudes [19].
Further, we consider an isothermal atmosphere, that is, Brunt-
Väisälä frequency is assumed to be independent of the vertical
coordinate z. For the Earth’s atmosphere, in particular, this
corresponds to altitudes �200 km. Due to the dissipation of
short-wave harmonics, the lower limit for wavelengths for
IGWs is ∼10 km at altitudes ∼200-300 km, while typical
wavelength values are hundreds of kilometers.

The reductive perturbation method (the multiscale expan-
sion method) [53] for Eqs. (1) and (2) to study the behavior
of nonlinear IGWs was elaborated in a recent paper [38]. This
method is often used in the theory of nonlinear waves and
leads to evolution equations, which in many cases turn out
to be more suitable for analysis than the original problem.
Following this technique, the space and time variables were
expanded in Ref. [38] as x = x + εX + · · · and t = t + εT +
ε2τ + · · · , respectively, where X = (X, Z ), and ε is a small
dimensionless parameter that scales weak dispersion and non-
linearity. As was shown, to obtain a nontrivial evolution, it was
enough to restrict ourselves to expanding the time variable up
to the second order and the space variable up to the first order
in ε and, in that case,

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂T
+ ε2 ∂

∂τ
. (5)

In turn, the fields ψ and χ were expanded in powers in ε as

ψ = εψ (1) + ε2ψ (2) + ε3ψ (3) + · · · , (6)

χ = εχ (1) + ε2χ (2) + ε3χ (3) + · · · , (7)

where ψ (1) = ψ̃ (1) + ψ̄ , χ (1) = χ̃ (1) + χ̄ ,

ψ̃ (1) = 
(X, T, τ )eiK·x−iωt + c.c., (8)

χ̃ (1) = �(X, T, τ )eiK·x−iωt + c.c.. (9)

Secondary mean flows ψ̄ and χ̄ depend only on slow variables
X, T , and τ . As a result, using the standard procedure for
eliminating secular terms, the following system of nonlinear
equations for the envelope 
 and the secondary mean flow ψ̄

was obtained in Ref. [38]:

L̂
 + Kz

(
Kx

ω2
g

vgx
− ωK2 − K2

x ω2
g

ω

)



∂ψ̄

∂X

+ Kx

(
ωK2 + K2

x ω2
g

ω

)



∂ψ̄

∂Z
= 0, (10)
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where

L̂ = 2ω

(
K2 + 1

4H2

)(
i

∂

∂τ
+ 1

2

∂2ω

∂K2
x

∂2

∂X 2
+ 1

2

∂2ω

∂K2
z

∂2

∂Z2

+ ∂2ω

∂Kx∂Kz

∂2

∂X∂Z

)
, (11)

ω2
g

∂2ψ̄

∂X 2
− 1

4H2

(
v2

gx

∂2ψ̄

∂X 2
+ v2

gz

∂2ψ̄

∂Z2

)

=
(

ωK2 + K2
x ω2

g

ω

)(
Kz

∂|
|2
∂X

− Kx
∂|
|2
∂Z

)
, (12)

and for the group velocities vgx = ∂ω/∂Kx and vgz = ∂ω/∂Kz

we have

vgx = ωg
(
K2

z + 1/4H2
)

(K2 + 1/4H2)3/2
, vgz = − ωgKxKz

(K2 + 1/4H2)3/2
.

(13)

In Ref. [38], only the one-dimensional case was studied, when
the system (10) and (12) was reduced to either the focusing or
defocusing one-dimensional NLS equation. In the presented
paper, we consider the two-dimensional system.

We introduce dimensionless variables τ ′, x, z, 
 ′ and ψ̄ ′
by

τ ′ =ωgτ, x = X

H
, z = Z

H
, 
 ′ = 


ωgH2
, ψ̄ ′ = ψ̄

ωgH2
,

(14)

and further the primes are omitted. Inserting Eq. (14) into
Eqs. (10) and (12) yields

i
∂


∂τ
+ A

∂2


∂x2
+ B

∂2


∂z2
+ 2C

∂2


∂x∂z
+ D


∂ψ̄

∂x

+ E

∂ψ̄

∂z
= 0, (15)

F
∂2ψ̄

∂x2
− G

∂2ψ̄

∂z2
= M

(
qz

∂|
|2
∂x

− qx
∂|
|2

∂z

)
, (16)

where qx = KxH , qz = KzH , and the coefficients A, B, C, D,
E , F , G, and M are determined in the Appendix. Note that the
coefficients E , F, G, and M are positive, A is negative, while
B, C, and D are of indefinite sign and their sign depends on
the specific values of qx and qz. The properties of solutions to
the system of nonlinear equations (15) and (16) largely depend
on the linear part of Eq. (15). The corresponding linear partial
differential equation with constant coefficients A, B, and C has
elliptic type if

C2 − AB < 0, (17)

and hyperbolic type if

C2 − AB > 0. (18)

In case

C2 − AB = 0, (19)

the equation is of parabolic type. Note that the classification
of equation types depends only on the coefficients of the
second derivatives and the sign of the first term in Eq. (15)
does not affect it [54]. As is known, the elliptic type of

FIG. 1. The contour plot of the function Q(qx, qz ) in Eq. (20).
Negative Q corresponds to the elliptic operator in the linear part of
Eq. (15).

equation corresponds to the boundary value problem, the hy-
perbolic type to the wave equation, and the parabolic type to
the diffusion problem. In this paper, we restrict ourselves to
the case (17), that is, an elliptic operator in the linear part of
the equation (15). The parabolic case (19) is not considered
due to restrictions on the relationship between qx and qz,
which greatly limits its practical significance. The hyperbolic
case (18) is expected to be considered in the future. Using
explicit expressions for A, B, and C, conditions (17)–(19) can
be rewritten in equivalent forms Q < 0, Q > 0 and Q = 0,
respectively, where the function Q(qx, qz ) is determined by

Q(qx, qz ) = q2
z

(
8q2

x − 4q2
z − 1

)2 − 3q2
x

(
1 + 4q2

z

)
× (

8q2
z − 4q2

x − 1
)
. (20)

The contour plot of the function Q(qx, qz ) on the plane (qx, qz )
is shown in Fig. 1. By introducing the angle α between the
vector q = (qx, qz ) and the vector qxx̂, where x̂ is a unit
vector in the horizontal direction, one can also define another
function Q̃(qx, α) with the same sign as Q(qx, qz ) by

Q̃(qx, α) = 16q4
x tan2 α(tan4 α − 10 tan2 α + 7)

+ 4q2
x (2 tan4 α − 7 tan2 α + 3) + 3. (21)

The curve Q̃(qx, α) = 0 separating the plane (qx, α) into
the elliptic and hyperbolic regions of the linear operator in
Eq. (15) is shown in Fig. 2. The ellipticity region of the linear
operator in Eq. (15) is visible from Figs. 1 and 2. Note that
since A < 0, it follows from (17) that B < 0.

Using the convolution identity,

( f g)p,ω =
∫

fp1,ω1 gp2,ω2δ(p − p1 − p2)δ(ω − ω1 − ω2)

× dp1dp2dω1dω2, (22)

connecting the Fourier transforms of the product of ar-
bitrary functions f (r, t ) and g(r, t ) expressed in physical
space with the corresponding Fourier transforms of these
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FIG. 2. The regions of ellipticity and hyperbolicity in Eq. (15) on
the plane (qx, α). These areas are separated by the curve determined
by the equation Q̃(qx, α) = 0.

functions,

fp,ω =
∫

f (r, t )e−ip·r+iωt dpdω, (23)

gp,ω =
∫

g(r, t )e−ip·r+iωt dpdω, (24)

where δ(x) is the Dirac delta function, we can rewrite
Eqs. (15) and (16) in Fourier space as

(ω − ωp)
p = − i
∫

(Dp2x + E p2z )
p1ψ̄p2δ

× (p − p1 − p2)d p1d p2, (25)

where

ωp = Ap2
x + Bp2

z + 2C px pz (26)

and

ψ̄p = iM(qz px − qx pz )

Gp2
z − F p2

x

∫

p1


∗
p2

δ(p − p1 − p2)d p1d p2,

(27)

respectively. Here and below, we use the shorthand notation
p ≡ (p, ω), so

δ(p − p1 − p2) ≡ δ(p − p1 − p2)δ(ω − ω1 − ω2), (28)

and d p1d p2 ≡ dp1dp2dω1dω2. Note that from Eq. (17), it
follows that ωp is a negative definite quadratic form (despite
the fact that the coefficient C is indefinite in sign), that is,
ωp < 0. Substituting Eq. (27) into Eq. (25), we have one
equation for the Fourier transform 
p,

(ω − ωp)
p =
∫

V (p, p1, p2, p3)
p1
p2

∗
p3

d p1d p2d p3,

(29)

where the interaction matrix element V (p, p1, p2, p3) is deter-
mined by

V (p, p1, p2, p3) = M

2

[(
Dp1x + E p1z

)(
qz p1x − qx p1z

)
Gp2

1z − F p2
1x

+
(
Dp2x + E p2z

)(
qz p2x − qx p2z

)
Gp2

2z − F p2
2x

]

× δ(p − p1 − p2 − p3), (30)

and symmetrization in p1 and p1 is taken into account.
The system of nonlinear equations (15) and (16), to the
best of our knowledge, has apparently never been consid-
ered in problems in nonlinear physics before. In appearance
(and physical meaning), this system resembles the Zakharov
equations (and their generalizations) describing the interac-
tion of high-frequency and low-frequency waves in plasma
[48,50,55,56] and the equations for the interaction of short-
wave and long-wave disturbances on the surface of shallow
water [57–59]. The system (15) and (16) is, however, much
more difficult to analyze than the analogues mentioned above.

Equation (29) has an exact solution in the form of a
monochromatic plane wave,


p = 
0V (p, p0, p0,−p0), (31)

where

V (p, p0, p0,−p0) = Sk0 |
0|2δ(p − k0)δ(ω − ω0), (32)

and we have introduced the notation

Sk0 = M
(
Dk0x + Ek0z

)(
qzk0x − qxk0z

)
Gk2

0z − Fk2
0x

. (33)

In physical space, this corresponds to the solution


(r, t ) = 
0 exp(ik0 · r − iω0t ), (34)

with a frequency depending on the amplitude 
0,

ω0 = ωk0 − Sk0 |
0|2, (35)

where

ωk0 = Ak2
0x + Bk2

0z + 2Ck0xk0z. (36)

In the next section, we consider the stability of such a plane
wave.

III. NONLINEAR DISPERSION RELATION AND
MODULATIONAL INSTABILITY

The perturbed plane wave solution in physical space has
the form


 = (
0 + δ
) exp(ik0 · r − iω0t ), (37)

where

δ
 = 
+eik·r−i�t + 
−e−ik·r+i�t (38)

is a linear modulation with the frequency � and the wave
vector k. In Fourier space, Eqs. (37) and (38) correspond to


p = (
0 + δ
p)δ(p − p0), (39)
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and

δ
p = 
+δ(p − k)δ(ω − �) + 
−δ(p + k)δ(ω + �),
(40)

respectively. Linearizing Eq. (29) in δ
p, we get the nonlinear
dispersion relation:

1 − |
0|2
[

Sk0+k

ωk0+k − ωk0 − �
+ Sk0−k

ωk0−k − ωk0 + �

]
= 0.

(41)

Equation (41) is a quadratic equation in �,

�2 + �
[
ωk0−k − ωk0+k + (

Sk0+k − Sk0−k
)|
0|2

]
+ [

Sk0+k
(
ωk0−k − ωk0

) + Sk0−k
(
ωk0+k − ωk0

)]|
0|2

− (
ωk0+k − ωk0

)(
ωk0−k − ωk0

) = 0, (42)

and it can be easily solved. The negativity of the discriminant
of the equation corresponds to instability with the growth
rate γ = |Im �|. It can also be seen that the instability has
a threshold character with respect to the amplitude 
0. As
noted above, the coefficients C and D are indefinite in sign
and their sign depends on the specific values of qx and qz. In
the general case, the dependence of the instability growth rate
on the wave vector of a plane wave k0, the wave vector of
perturbations k, and the values of qx and qz is quite complex.
Equation (42) is greatly simplified in a number of important
limiting cases. In the limit of long-wave modulations k � k0,
using

ωk0±k ∼ ωk0 ± ∂ωk0

∂k0
· k + 1

2

∂2ωk0

∂k2
0

k2, (43)

from Eq. (42) we obtain

(� − vg · k)2 = 1
4

(
ω′′

k0

)2
k4 − ω′′

k0
k2Sk0 |
0|2, (44)

where vg = ∂ωk0/∂k0 and ω′′
k0

= ∂2ωk0/∂k2
0. Since ωk0 < 0,

then if Sk0 < 0 and the amplitude threshold is exceeded,

4
∣∣Sk0

∣∣|
0|2 >
∣∣ω′′

k0

∣∣k2, (45)

Equation (44) corresponds to convective instability when
growing disturbances are carried away with the group velocity
vg, and the instability growth rate is given by

γ = k
√

4
∣∣Sk0

∣∣∣∣ω′′
k0

∣∣|
0|2 − (
ω′′

k0

)2
k2. (46)

Note that in this case the instability with respect to the wave
numbers of perturbations kx and kz is isotropic.

More interesting is the opposite case of short-wave modu-
lations k � k0. This instability is an instability of a uniform
field (in the limit k0 → 0) leading to the splitting of this
field into clumps, which ultimately results in the emergence
of coherent structures at the nonlinear stage, which generally
speaking can be both nonstationary (collapsing cavitons) [50]
and stationary (stable solitons). Then, taking into account that
ωk and Sk are even functions, Eq. (42) becomes

�2 = ωk(ωk − 2Sk|
0|2). (47)

Since ωk < 0, then Eq. (47) predicts a purely growing insta-
bility (modulational instability) if Sk < 0 and if the amplitude

threshold is exceeded:

2|Sk||
0|2 > |ωk|. (48)

The instability growth rate γ is given by

γ =
√

2|Sk||ωk||
0|2 − ω2
k. (49)

From Eqs. (33) and (36) in which k0 is replaced by k, it is
evident that instability has a substantially anisotropic charac-
ter and, depending on the relationship between kx and kz, the
mode of modulation instability can change (longitudinal or
transverse instability of the envelope wave packets). More-
over, it follows from Eq. (33) that the parametric coupling
is nonlocal. By introducing the angle β between the vector
k = (kx, kz ) and the vector kxx̂, where x̂ is a unit vector in the
x direction, one can rewrite Sk in Eq. (33) as

Sk = M(D + E tan β )(qz − qx tan β )

F (ε tan2 β − 1)
, (50)

where ε = G/F and for typical values of carrier wave num-
bers qx and qz we have ε � 1. Equation (50) is not valid for
ε tan2 β ∼ 1 (in this case, the conditions for deriving Eq. (16)
are violated). First, we consider the angles β satisfying con-
dition ε tan2 β � 1. Note that this case corresponds to both
longitudinal kx � kz and transverse kz � kx modulation in-
stability, except for very small longitudinal wave numbers
kx corresponding to angles β � arctan(

√
1/ε). The stability

region with respect to the wave numbers of perturbations and
the amplitude of the plane wave depends on the sign of the
function Q(kx, β ) defined by

Q(kx, β ) = 2|
0|2M(D + E tan β )(qx tan β − qz )/F

+ k2
x (A + B tan2 β + 2C tan β ). (51)

The curves Q(kx, β ) = 0, dividing the plane (kx, β ) into stable
and unstable regions for different values of the plane-wave
amplitude 
0 and for specific values of the carrier wave num-
bers qx = 1 and qz = 1.5 are shown in Fig. 3. The picture
does not qualitatively depend on the specific values of the
carrier wave numbers qx and qz (in the considered region of
ellipticity) and the amplitude 
0. It is evident from Fig. 3
that the instability is anisotropic, and a mode of change of
modulation instability from longitudinal to transverse is pos-
sible. In the case ε tan2 β � 1, the modulation instability is
only transverse. It can be seen that Sk does not depend on k
for perturbations with kz � kx (pure longitudinal instability)
or kz � kx (pure transverse instability). In these cases, the
expression for Sk is reduced to S1 and S2, defined as

S1 = −MDqz

F
, S2 = −MEqx

G
. (52)

In the ellipticity region, we have D > 0, and all other co-
efficients in Eq. (52) are always positive, so the necessary
conditions for instability S1 < 0 and S2 < 0 are satisfied. Then
the longitudinal and transverse instability growth rates are
obtained from Eq. (49), and have the form, respectively,

γ =
√

2S1Ak2
x |
0|2 − A2k4

x , if kz � kx (53)

and

γ =
√

2S2Bk2
z |
0|2 − B2k4

z , if kz � kx. (54)
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321

FIG. 3. Stability and instability regions on the plane (kx, β ) for
different amplitude values 
0. The outer regions to the right of
the curves correspond to the stability regions. The numbers near
the curves correspond to different amplitudes: 1: 
0 = 0.003, 2:

0 = 0.006, and 3: 
0 = 0.01.

The optimal horizontal and vertical wave numbers of per-
turbations corresponding to the maximum instability growth
rates in (53) and (54) are

kx,opt = |
0|
√

S1

|A| and kz,opt = |
0|
√

S2

|B| , (55)

respectively. It is at such scales that instability most con-
tributes to the emergence of coherent nonlinear entities
(stationary or nonstationary). In fact, just on such scales a
two-dimensional soliton (which apparently turns out to be
unstable) or a collapsing caviton can arise. The dependence
of the instability growth rate γ on the vertical wave number
of perturbations kz in the case kz � kx for different ampli-
tude values 
0 and for specific values qx = 1 and qz = 1.5
is shown in Fig. 4. For example, in the Earth’s atmosphere,

0 0.2 0.4 0.6 0.8
0

0.5

1.

1.5
×10−2

kz

γ
3

2

1

FIG. 4. Dependence of the instability growth rate γ on the ver-
tical wave number kz in the case kz � kx for different amplitude
values 
0. The numbers under the curves correspond to different
amplitudes: 1: 
0 = 0.004, 2: 
0 = 0.005, and 3: 
0 = 0.006.

the equivalent atmospheric height at the altitudes �200 km
(i.e., for an isothermal atmosphere) is H ∼ 40 km, that is,
the values of qx and qz correspond to horizontal and vertical
wavelengths ∼40 km and ∼30 km, respectively. Note that the
wave numbers of perturbation (envelope) are much less than
the characteristic wave numbers of the IGW (carrier). For
the value 
0 = 0.004, which corresponds to the perturbation
velocity ∼10 m/s, the optimal values kz,opt = 0.3 correspond
to the characteristic vertical size of the perturbation region
∼130 km.

IV. COLLAPSE OF INTERNAL GRAVITY WAVES

The system of Eqs. (15) and (16) can be written in the form
of the generalized nonlinear Schrödinger equation with the
nonlocal nonlinearity,

i
∂


∂τ
+ A

∂2


∂x2
+ B

∂2


∂z2
+ 2C

∂2


∂x∂z

+ 


∫
R(r − r′)M

(
qz

∂

∂x
− qx

∂

∂z

)
|
(r′)|2d2r′ = 0,

(56)

where the kernel R(r) is the Green’s function of the equation(
F

∂2

∂x2
− G

∂2

∂z2

)
R(r − r′) = δ(r − r′), (57)

that in Fourier space corresponds to

Rk = 1

Gk2
z − Fk2

x

. (58)

Equation (56) conserves the 2D norm

N =
∫

|
|2d2r, (59)

and Hamiltonian

H =
∫ {

A

∣∣∣∣∂


∂x

∣∣∣∣
2

+ B

∣∣∣∣∂


∂z

∣∣∣∣
2

+ C

2

(
∂


∂x

∂
∗

∂z
+ ∂


∂z

∂
∗

∂x

)

− |
|2
2

∫
R(r−r′)M

(
qz

∂

∂x
−qx

∂

∂z

)
|
(r′)|2d2r′

}
d2r,

(60)

and can be written in the Hamiltonian form

i
∂


∂t
= δH

δ
∗ . (61)

The nonlinear term in Eq. (56) is somewhat reminiscent of
the nonlocal nonlinearity in previously studied models with a
kernel depending on the difference in spatial coordinates. The
expressions for the kernels R(r) in these models were dictated
by the corresponding physical problems and were quite dif-
ferent from each other. For example, in Ref. [46] the kernel
has the form of a quadratic exponential, in Ref. [47] a Hankel
function of the first kind of zero order, and in Ref. [49] it
contains the complementary error function. In all these cases,
the nonlocal nonlinearity was scale inhomogeneous in spatial
variables, and this is what resulted in the absence of collapse
and the existence of stable coherent structures in the form of
not only the 2D fundamental soliton (the ground state), but
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also in the form of a dipole soliton, rotating multisolitons and
vortex solitons.

The key point for further analysis is the scale homogene-
ity of Eq. (56) in spatial variables, which is easily seen
from Eq. (58), and, as a consequence, the Hamiltonian H.
The stationary solution of Eq. (56) in the form of 
(r, t ) =
�(r) exp(iλ2t ) corresponds to a stationary point of the Hamil-
tonian H for a fixed 2D norm N and resolves the variational
problem δS[�] = 0 for the functional

S[�] = H + λ2N . (62)

Solving this variational problem is equivalent to finding a
solution of the stationary equation:

− λ2� + A
∂2�

∂x2
+ B

∂2�

∂z2
+ 2C

∂2�

∂x∂z

+ �

∫
R(r − r′)M

(
qz

∂

∂x
− qx

∂

∂z

)
|�(r′)|2d2r′ = 0.

(63)

Multiplying Eq. (63) by �∗, and then integrating over the
whole space (taking into account zero boundary conditions at
infinity), we obtain

−λ2N − I1 + I2 = 0, (64)

where

I1 = A

∣∣∣∣∂�

∂x

∣∣∣∣
2

+ B

∣∣∣∣∂�

∂z

∣∣∣∣
2

+ C

2

(
∂�

∂x

∂�∗

∂z
+ ∂�

∂z

∂�∗

∂x

)
(65)

and

I2 = |�|2
∫

R(r − r′)M
(

qz
∂

∂x
− qx

∂

∂z

)
|�(r′)|2d2r′d2r.

(66)

On the other hand, one can write

H = I1 − I2

2
. (67)

With the scale homogeneity in mind, we consider an N -
preserving scaling transformation �(α) = �(αr) and obtain
for the corresponding values:

N (α) = α2N , I (α)
1 = I1, I (α)

2 = α2I2. (68)

We use the approach developed by Hobart and Derrick [60,61]
(see also further development in Ref. [62]). For the functional
V [φ] of the form

V [φ] =
n2∑

ν=−n1

V (ν)(α), (69)

where V (ν)(α) is a homogeneous function of the scale param-
eter α of degree ν, and with a stationary point φ = u(r), that
is, δV [u] = 0, with a scale transformation φα = u(αr), the
following equality

δV [u]

δα
=

n2∑
ν=−n1

∂V (ν)

∂α

∣∣∣∣
α=1

=
n2∑

ν=−n1

νV (ν)

∣∣∣∣
α=1

= 0 (70)

is true (the so-called virial theorem). Since the functional S
is scale homogeneous in spatial variables, from the Hobart-
Derrick virial theorem, we can immediately write

∂

∂α
(H(α) + λ2N (α) )

∣∣∣∣
α=1

= 0, (71)

and then from Eqs. (68) and (71) we have an additional re-
striction for the stationary states:

2λ2N + I2 = 0. (72)

Combining Eqs. (64), (67), and (72), one can obtain that
H = 0. Thus, the Hamiltonian at any stationary solution is
equal to zero. This fact in the model under consideration is not
accidental. This is typical for the 2D models with a cubic local
nonlinearity and scale homogeneity in both spatial variables.
Then, one can conclude that an arbitrary initial localized field
distribution with H 
= 0 never reaches a stationary state in the
course of evolution, that is, either spreads out or collapses.
Collapse in the model of the two-dimensional NLS equation is
usually called critical, since (unlike the three-dimensional
case) it occurs when the 2D norm of the wave field ex-
ceeds a certain critical value (in this case, the Hamiltonian
is negative) [63]. The same is true for our model. By analogy
with the two-dimensional NLS equation, one can expect for
the critical value Nc = ∫

�2
0d2r, where �0(r) is a nodeless

solution (ground state) of Eq. (63). Thus, a sufficiently in-
tense disturbance results in the collapse of internal gravity
waves.

V. CONCLUSION

We have studied the dynamics of 2D nonlinear IGWs. The
analysis was carried out on the basis of a system of 2D nonlin-
ear equations for the velocity stream function and secondary
mean flow, obtained with the aid of the reductive perturbation
method in Ref. [38]. We have obtained one equation for the
envelope in the form of 2D generalized nonlinear Schrödinger
equation with nonlocal nonlinearity when the nonlinear re-
sponse depends on the wave intensity at some spatial domain.
Only the elliptic type of this equation has been considered.
The instability of a monochromatic plane wave, which is an
exact solution of the corresponding equation, has been stud-
ied, and a nonlinear dispersion equation has been found. In
the limit of long-wave modulations, when the wave vector of
modulations can be neglected compared to the wave vector of
the plane wave, the instability is of a convective type. In the
opposite case of short-wave modulations, we have a purely
growing instability (modulation instability). In both cases,
the corresponding instability thresholds and instability growth
rates have been found. Numerical estimates for a characteris-
tic region of localization of unstable perturbations, consistent
with the results of possible predictions of experimental ob-
servations on nonlinear IGWs, are given for the real Earth’s
atmosphere. It is usually believed that modulation instability
at the nonlinear stage results in the formation of a soliton or
collapsing caviton. We have shown that, due to scaling homo-
geneity in spatial variables, the Hamiltonian of the resulting
nonlinear equation with nonlocal nonlinearity is equal to zero,
which leads to the critical collapse of atmospheric IGWs. In
reality, no singularity occurs and the collapse arrests due to
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the dissipation of short-wave harmonics corresponding to the
lower limit of wavelengths for IGWs (�10 km for the Earth’s
atmosphere at altitudes ∼200 km).

APPENDIX

In this Appendix, we write the explicit expressions for the
coefficients A, B, C, D, E , F , G, and M in Eqs. (15) and (16):

A = −12qx
(
1 + 4q2

z

)
(1 + 4q2)5/2

, B = −4qx
(
8q2

z − 4q2
x − 1

)
(1 + 4q2)5/2

, (A1)

C = 4qz
(
8q2

x − 4q2
z − 1

)
(1 + 4q2)5/2

, D = 2qz
(
4q4

x − 4q4
z − q2

z

)
(
1 + 4q2

z

)
(1 + 4q2)

,

(A2)

E = qx(1 + 8q2)

2(1 + 4q2)
, F =

[
1 −

(
1 + 4q2

z

)2

(1 + 4q2)3

]
, (A3)

G = 16q2
x q2

z

(1 + 4q2)3
, M = qx(1 + 8q2)

2(1 + 4q2)1/2
. (A4)
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