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Thermodynamics of chaotic relaxation processes
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The established thermodynamic formalism of chaotic dynamics, valid at statistical equilibrium, is here
generalized to systems out of equilibrium that have yet to relax to a steady state. A relation between information,
escape rate, and the phase-space average of an integrated observable (e.g., Lyapunov exponent, diffusion
coefficient) is obtained for finite time. Most notably, the thermodynamic treatment may predict the phase-space
profile of any integrated observable for finite time, from the leading and subleading eigenfunctions of the
Perron-Frobenius or Koopman transfer operator. Examples of that equivalence are shown, and the theory is
tested analytically on the Bernoulli map while numerically on the perturbed cat map, the Hénon map, and the
Ikeda map, all paradigms of chaos.
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I. INTRODUCTION

The exponential stretching and folding of phase-space den-
sities that characterizes chaotic dynamics makes long-time
evolution unpredictable, and with that the problem of motion
intractable. It is then customary to study the statistical proper-
ties of the phase space and, in particular, to aim at estimating
long-time expectation values of relevant observables, under
the assumption of asymptotic relaxation of the system to an
equilibrium or a stationary state.

This framework finds its roots in the thermodynamic for-
malism [1–4], developed from the 1970s on, that is based on
the idea of using large-deviation theory [5] to define a dy-
namical analog of the thermodynamic Gibbs states, which, at
statistical equilibrium, maximize the generating functional of
the desired averages, their fluctuations, and multitime correla-
tion functions. This approach is at the basis of the formulation
of evolution operators and periodic orbit theory [6], and has
more recently been employed to elucidate the relation be-
tween Lyapunov exponents and decay of correlations [7], as
well as to identify dynamical phase transitions in deterministic
chaos [8–10].

This paper aims at extending the thermodynamic for-
malism of chaotic dynamics to out-of-equilibrium systems.
The Gibbs states of the original formulation are here gen-
eralized to include time-dependent weights, later identified
with phase-space densities transported by the transfer oper-
ator (Perron-Frobenius or Koopman) that governs the time
evolution of the system. The so-surmised probabilities for
the dynamical microstates give rise to a time-dependent free
energy (topological pressure) that is related not only to the
finite-time dynamical averages of interest to us, but, crucially,
to the entire phase-space profiles of the relevant observables.

In the remainder of the present section, I will con-
cisely review the fundamentals and the main results of the
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thermodynamic formalism of chaotic systems at statistical
equilibrium. In Sec. II, I shall extend the key definition of
Gibbs probability for an integrated observable on a chaotic
trajectory to a system that has yet to reach equilibrium.
Consequently, I derive an expression for finite time, which
relates the escape rate and Rényi information with free energy
(topological pressure) and a quantity named tilted informa-
tion. This nonequilibrium first law approaches the renowned
Kantz-Grassberger relation [11] as the system relaxes to equi-
librium or a stationary state. Section III contains the main
implications of the out-of-equilibrium thermodynamic for-
malism: any finite-time integrated observable is expressed in
terms of the first two eigenfunctions of the Perron-Frobenius
or Koopman operator in a way that its phase-space profile does
not depend on the choice of the observable. These claims are
validated analytically on the Bernoulli shifts, a paradigm of
chaos (Sec. IV A), and numerically on (i) the perturbed cat
map (Sec. IV B 1), a hyperbolic system defined on a torus,
which has no escape, and whose transient dynamics is entirely
ruled by the second eigenfunction of the transfer operators,
and (ii) the Hamiltonian Hénon map (Sec. IV B 2) with weak
additive noise, whose dynamics is essentially governed by
a chaotic saddle, but also features an isolated, marginally
stable fixed point, which makes the system nonhyperbolic
locally.

While the dependence of the out-of-equilibrium observ-
ables on the first two eigenfunctions of the transport operator
is general, the universality of their profiles breaks down when
squeezing is introduced. It is the case of strange attractors,
where distinct integrated observables exhibit different phase-
space dependence. This is exemplified in Sec. IV B 3 by the
noisy Ikeda attractor.

A. Gibbs states

In the thermodynamics of equilibrium, the entropy S is
maximal when the internal energy E is fixed (microcanonical
ensemble), while the free energy F is minimized when the
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internal energy fluctuates (canonical ensemble):

F = E − kBT S. (1)

The Gibbs (canonical) ensemble is made of a number of
subsystems, each occurring with a probability pj :

E =
∑

j

p j E j, (2)

S = −
∑

j

p j ln p j, (3)

so (β = 1/kBT )

F =
∑

j

p j E j + 1

β

∑
j

p j ln p j . (4)

Using calculus, one can show that the free energy is mini-
mized by choosing [12]

p j = e−β Ej∑
i e−β Ei

. (5)

Here p j is the probability of the subsystem labeled by j to
have energy Ej . At equilibrium,

Fmin = − ln
∑

i

e−β Ei . (6)

The Gibbs formalism has been used to describe chaotic
dynamics of ergodic and mixing systems, which, in general,
do not reach thermodynamic but rather statistical equilibrium,
asymptotically. Here goes a summary of how that works.

B. Thermodynamics of chaos

The analysis that follows is formulated for low-
dimensional chaotic systems, such as expanding maps on the
interval, or hyperbolic axiom A systems, such as the cat map,
whose phase space may be partitioned to a number of dis-
tinct regions, and trajectories can be encoded with symbolic
sequences [6], tracking the regions visited by each orbit at
every instant. In the thermodynamical picture of chaotic dy-
namics, the phase space is the whole (canonical) ensemble,
whose subsystems and Gibbs states are identified with the
single (ergodic) trajectories, the latter thought of as infinite
sequences in the long-time limit.

In the formalism, the Boltzmann constant β becomes a
parameter: Given the map xt+1 = f (xt ), that defines the dy-
namics, identify the energy with the integrated observable

Ej (t ) = At
j =

t−1∑
τ=0

a[ f τ (x0)], (7)

where j tags the symbolic sequence of the trajectory that
starts at x0 and is iterated τ times by f , and a is in general
a function or an operator, for example, the differential, in the
evaluation of the Lyapunov exponents, or the squared position
to yield the diffusion constant as the integrated observable (7).
Assuming that the system reaches equilibrium (or a stationary
state) for t → ∞, it has been proven [1,2] that the Gibbs
probabilities

pj (t ) = e−β Ej (t )∑
i e−β Ei (t )

(8)

minimize the free energy or, equivalently, maximize the
quantity

P (β ) = lim
t→∞

1

t
ln

∑
j

e−β Ej (t ), (9)

which is known as topological pressure [13], although it is,
in fact, a free energy. It has been shown that Eqs. (8) and (9)
imply the relation

hβ = P (β ) + β〈A〉β, (10)

analogous to Eq. (1) for the free energy, where 〈·〉 denotes an
ensemble average, and

hβ = − lim
t→∞

1

t

1

β − 1
ln

r∑
i

pβ
i (t ) (11)

is called Rényi entropy. Equation (10) becomes more familiar
when β = 1, and 〈A〉 is the positive Lyapunov exponent of
the dynamics. In that case, P (1) is (minus) the escape rate γ0,
while

h1 = − lim
t→∞

1

t

r∑
i

pi(t ) ln pi(t ) (12)

is the information entropy. One can then write (10) as
[3,11,14]

h1 = −γ0 + λ, (13)

which relates information entropy, escape rate, and Lyapunov
exponent λ.

II. FINITE-TIME THERMODYNAMICS

Let us attempt to extend the thermodynamic formalism to
finite time, out of equilibrium. I shall begin with a finite-time
topological pressure, of the type

Pt (β ) = 1

t
ln

∑
j

w j (t )e−β At
j , (14)

which, technically, may no longer be considered a free energy,
since we are now out of equilibrium. The factors w j are in-
cluded in the previous expression for the topological pressure,
so the Gibbs probabilities for every trajectory throughout the
Markov partition are now weighed:

p j (t ) = w j (t )e−βAt
j∑

i wi(t )e−βAt
i
. (15)

At this stage, the previous expression is an ansatz for the prob-
ability of the integrated observable to be At

j in the subsystem
(i.e., symbolic sequence) labeled by j, surmised consistently
with the tilted probability (large-deviation) formalism in a
dynamics context [15,16]. The meaning of Eq. (15) will be-
come clearer later on in this section, when the weights w j (t )
are recognized as phase-space densities transported by the
dynamics via the Perron-Frobenius (Koopman) operator.

In what follows, I distinguish β, inverse temperature,
or more simply a variable of the characteristic (moment-
generating, partition) function Zt (β ) = ∑

j w j (t )e−β Aj (t ),
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from q, order of the Rényi entropy. Then, I use the so-
generalized expression for the topological pressure

Pt (q, β ) = 1

t
ln

∑
j

w
q
j (t )e−qβ At

j , (16)

while it is still understood that Pt (β ) := Pt (q = 1, β ). The
Rényi information is the entropy (11) for finite time:

It (q, β ) = −1

t

1

q − 1
ln

r∑
i

pq
i (t )

= 1

1 − q

1

t
ln

∑
j

w
q
j e

−qβ At
j[∑

i wie−βAt
i

]q

= 1

1 − q

1

t
ln

ePt (q,β )t

Zq
t (β )

= 1

1 − q

[
Pt (q, β ) − 1

t
ln Zq

t (β )

]
. (17)

The previous can be rewritten as

It (q, β ) = 1

1 − q
[Pt (q, β ) − qPt (β )], (18)

keeping in mind that everything is time dependent and out of
equilibrium. In the limit q → 1, we have that

It (1, β ) = Pt (β ) − P ′
t (β )

= 1

t

⎡
⎢⎣ln

∑
j

w je
−β At

j − d

dq
ln

∑
j

w
q
j e

−qβ At
j

∣∣∣∣∣∣
q=1

⎤
⎥⎦,

(19)

where

d

dq
ln

∑
j

w
q
j e

−qβ At
j

∣∣∣∣∣∣
q=1

=
∑

j w je
−β At

j
[
ln w j − βAt

j

]
Zt (β )

.

(20)

We can already spot three terms on the right-hand side of
Eq. (19). The first is simply Pt (β ) with the new definition
of weighted probabilities for the symbolic sequences. The
second is spelled out in Eq. (20),

1

t

∑
j βAt

jw je
−β At

j∑
j w je

−β At
j

= 1

t

∑
j βp j (t )At

j∑
j p j (t )

= β〈At 〉β, (21)

where the average is taken with respect to the definition (15)
of the time-dependent probabilities. In that sense, the previous
is a thermodynamic average. The third term on the right-hand
side of Eq. (19) I also read out of Eq. (20):

1
t

∑
j w j ln w j e−β At

j∑
j w je

−β At
j

≡ St (β )

Zt (β )
. (22)

This quantity is peculiar of the finite-time thermodynamics, as
it was not present in the equilibrium entropy-free-energy rela-
tion. I name the numerator St (β ) of Eq. (22) tilted information.

Now Eq. (19) takes the form

It (1, β ) = Pt (β ) + β〈At 〉β − St (β )

Zt (β )
. (23)

Equation (23) is the first result of this paper: it generalizes
the known asymptotic relation (10) between information en-
tropy, topological pressure, and expectation of an integrated
observable to finite-time chaotic dynamics, out of statistical
equilibrium. Besides the quantities mentioned, the term St

newly appears in the equation: it represents the information
provided by the weights w j , biased by the Gibbs probabilities
e−βAt

j of the integrated observable. This additional term must
be transient, that is, it must vanish as t → ∞, when the whole
expression (23) approaches the equilibrium identity (10), as
shown in Appendix A.

At first sight, Eq. (23) does not bear physical significance
beyond that of its equilibrium counterpart, nor does it have
ostensible implications or use. Yet, all the quantities involved
are now defined in terms of the time-dependent statistical
weights w j that will play a central role in the nonequilibrium
statistics of the integrated observables At , as shown in Sec. III.

Let us now identify the weights w j . This task is best ac-
complished by taking as integrated observable the finite-time
Lyapunov exponent

At = ln ||Jt (x0)|| = ln |�(t )|, (24)

where the Jacobian is defined as

Jt
i j (x) = ∂ f t

i (x)

∂x j
. (25)

The regions of a given partition are evolved by the dynamics,
in such a way that the total probability (measure) is conserved
at every time step:

p j (t ) =
∑

i

pi(t + 1). (26)

Using our hypothesis (15) for the pi’s, the previous identity
would translate to the evolution

w j (t )

|� j (t )|β = e−Pt (β )
∑

i

wi(t + 1)

|�i(t + 1)|β (27)

once we write the probability of every partition element
in terms of the stability exponent as integrated observable
[Eq. (24)]. This evolution can be written in terms of the
Perron-Frobenius operator [7], where we consider the w j’s as
densities. For a one-dimensional map, that reads

ρ ′(x j ) = e−Pt (β )
∑

i

ρ(xi )

| f ′(xi )|β . (28)

That identifies the w j (t )’s with time-varying densities.
Now, look at Eq. (27): going from time t to time t + 1

means extending every interval of a Markov partition by one
symbol. For instance, if the symbolic dynamics is binary, that
is, the phase space is partitioned into two regions coded by
0 and 1, we let t = 3 and, say, j = 001, then t + 1 = 4
and the terms of the summation on the right-hand side are
i = 0010, 0011. In that case, the densities w j’s map forward
as stated by the Perron-Frobenius equation (27). If we decide
to stop at some definite t and identify the set of all the distinct

024215-3



DOMENICO LIPPOLIS PHYSICAL REVIEW E 110, 024215 (2024)

trajectories with a Markov partition, the p j’s are given by
the thermodynamic expression (15), where the w j’s are the
densities in each interval of the partition. Therefore, the w j’s
are the probabilities of the dynamics to visit each region of the
partition or, equivalently, the probabilities of each trajectory,
whereas the p j’s are the probabilities for region (sequence)
j to measure the observable At

j , and, for finite time, they
ought to be weighed by w j , even if the dynamical system f
is ergodic and mixing.

Remarks are in order about the finite-time average and
topological pressure. First, for At = ln |�(t )|, the finite-time
thermodynamic average (21) becomes

〈ln |�(t )|〉β =
∑

j w j (t ) ln � j (t )/�β
j (t )∑

j w j (t )/�β
j (t )

, (29)

which makes sense dynamically, if we recall that the neighbor-
hood of each region of a Markov partition of t regions scales
as 1/|� j (t )|d in a hyperbolic system [3]. That way, Eq. (29)
may be regarded as a weighed average over the partition.

On the other hand, the finite-time topological pressure
may be reconnected to more familiar quantities such as the
moment-generating function in a continuous phase space,
where it is written as

Pt (β ) = 1

t
ln

∑
j

w j (t )e−β At
j → 1

t
ln

∫
dx w(x(t ))e−β At (x)

= 1

t
ln〈e−βAt 〉, (30)

where the first identity holds in the limit of an infinitely fine
partition, with every point in the phase space belonging to
a distinct sequence of t symbols, while the derivatives of
〈e−βAt 〉 with respect to β are the moments of the observable
At weighed by w(x(t )) [6]. One may then rewrite Eq. (23) as

It (1, β ) = 1

t
ln〈e−βA〉 + β〈At 〉β − St (β )

Zt (β )
, (31)

recalling that I1(β ) and the last two terms do carry a prefactor
of 1/t in their definitions.

Expressing the probability weights w as phase-space den-
sities in the continuum limit is central in the evaluation of the
finite-time averages of the integrated observables, as exposed
in what follows.

III. AVERAGES

In this finite-time thermodynamic picture, an average is
taken as in Eq. (21), with the numerator of that expression
being ∑

j

At
jw je

−βAt
j . (32)

The index j refers to a particular orbit, identified with a
symbolic sequence, and thus to a family of trajectories that
share the same itinerary throughout the partition up to time t .
First, recall the definition (7)

At (x) =
t−1∑
τ=0

a[ f τ (x)]. (7)

For a long sequence in a Markov partition, I shall approximate
the sum over sequences with an integral over the phase space,
as seen in Eq. (30). In the phase-space analog of Eq. (32), I
can either choose w to be computed at t = 0, or at a later t . In
the former case, the average may be written∫

dx At (x)w(x)e−βAt (x), (33)

whereas in the latter, the integrated observable follows the
family of trajectories f −t (x) → x [17], so∫

dx At ( f −t (x))e−βAt ( f −t (x))[Ltw](x), (34)

where the Perron-Frobenius evolution operator acts as

(Lt · w)(x) =
∫

dyδ(x − f t (y))w(y)

=
∑

x0= f −t (x)

w(x0)

| det Jt (x0)| . (35)

A. Going forward

Let us first study the average with the weight function
evaluated at time t , as in Eq. (34), while Eq. (33) with the
density evaluated at time zero will be considered in Sec. III C.
Assuming a discrete spectrum for the Perron-Frobenius oper-
ator, the goal is now to express the average

〈At 〉β =
∫

dx At ( f −t (x))e−βAt ( f −t (x))[Ltw](x)∫
dx e−βAt ( f −t (x))[Ltw](x)

(36)

in terms of the leading eigenfunctions of Lt .
In Eq. (34), I now expand Ltw, obtaining∫

dx At ( f −t (x))e−βAt ( f −t (x))[Ltw](x)

=
∞∑
n

bne−γnt
∫

dx φn(x)At ( f −t (x))e−βAt ( f −t (x)), (37)

where e−γnt and φn(x) are, respectively, eigenvalues and eigen-
functions of the Perron-Frobenius operator Lt , while

bn =
∫

w(y)ϕn(y)dy (38)

are the coefficients of the expansion, that depend on the initial
densities w(x) and the eigenfunctions ϕn of the Koopman op-
erator L†

t . Let us then go back to the original thermodynamic
average (36), and rewrite it harnessing the above expansion:

〈At 〉β =
∑∞

n bne−γnt
∫

dx φn(x)At ( f −t (x))e−βAt ( f −t (x))∑∞
n bne−γnt

∫
dx φn(x)e−βAt ( f −t (x))

.

(39)

Now let β = 0:

〈At 〉β=0 =
∑∞

n bne−γnt
∫

dx φn(x)At ( f −t (x))∑∞
n bne−γnt

∫
dx φn(x)

. (40)

It is the expansion of an average, and perhaps that does not say
much per se. However, we may recover the original expression
for At and focus on its phase-space dependence, if we start
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with an initial density of the type w(y) = δ(y − x0), that is
concentrated in one point:

〈At 〉β=0(x0) =
∫

dx At ( f −t (x))
∫

dy δ(x − f t (y))δ(y − x0)∫
dx

∫
dy δ(x − f t (y))δ(y − x0)

= At (x0)

μ(M(t ))
=: Ât (x0), (41)

where μ(M(t )) is the fraction of trajectories that does not
escape after time t , and it equals unity for a closed system.
Concerning the expansion (39), the coefficients bn defined by
Eq. (38) simply equal ϕn(x0) when w(x) = δ(x − x0), and the
integrated observable spells

〈At 〉β=0(x0) = Ât (x0)

=
∑∞

n ϕn(x0)e−γnt
∫

dx φn(x)At ( f −t (x))∑∞
n ϕn(x0)e−γnt

∫
dx φn(x)

. (42)

In the limit t → ∞, only the first term survives,

〈At 〉β=0(x0) →
∫

dx φ0(x)At ( f −t (x))∫
dx φ0(x)

, (43)

that is simply the phase-space average weighed by the in-
variant density φ0(x), as it is known at equilibrium, and the
dependence on x0 has been lost. The interesting timescale in
the present context is rather that of (γ1 − γ0)−1, at which the
expanded average (42) is approximately

Ât (x0) := 〈At 〉β=0(x0) �
∫
M

At ( f −t (x))φ0(x) dx

+ ϕ1(x0)

ϕ0(x0)
e−(γ1−γ0 )t

∫
M

At ( f −t (x))φ1(x) dx. (44)

Now assume that the system has no escape. We may take
the natural measure φ0(x) to be L1 normalized in the phase
space, while the other eigenfunctions of the Perron-Frobenius
operator are such that

∫
dx φn(x) = 0. That way, the previous

expression for the pointwise average becomes

Ât (x0) � 〈At 〉M + ϕ1(x0)e−γ1t
∫

dx φ1(x)At ( f −t (x)), (45)

where 〈At 〉M = ∫
dxφ0(x)At ( f −t (x)). In case of no escape

(γ0 = 0), the ground state of the Koopman operator is a uni-
form distribution, since

L†
t ϕ0(x) = ϕ0( f t (x)) = ϕ0(x) (46)

for every x, hence ϕ0(x) = 1 in Eq. (45).
Equation (45) tells us that the phase-space profile of the

integrated observable At is entirely ruled by the subleading
eigenfunction ϕ1(x) of the Koopman operator at the timescale
1/γ1, which determines Ât (x0) independently of the observ-
able itself.

B. Perron-Frobenius vs Koopman operator

The Perron-Frobenius operator Lt carries a density ρ, sup-
ported on M, forward in time to a density supported on a
subset of f t (M) [18]. In this sense, Lt follows the flow. On
the other hand, the Koopman operator L†

t acts as

L†
t ρ(x) = ρ( f t (x)), (47)

and so

ρ( f t (x)) = 0 if f t (x) /∈ M. (48)

That implies that

L†
t ρ(x) = 0 if x /∈ f −t (M), (49)

meaning that the the Koopman operator is supported on the
preimage of the set M, and thus L†

t may be thought of as
transporting a density supported on M backward in time to a
density supported on f −t (M).

C. Going backward: A matter of pinning

But why is the field profile of the integrated observable At

governed by the eigenfunctions of the Koopman operator, and
not by those of its adjoint, the Perron-Frobenius operator? The
reason is that in Eq. (34) x is the final point of the density
w and of the integrated observable At . If, on the contrary, I
had chosen to pinpoint density and observable by their values
at the initial point of the trajectory originally labeled by the
symbolic sequence j in the discretized state space, I could
have written w as an evolution by the Koopman operator:

w( f t (x)) =
∫

dyδ(y − f t (x))w(y). (50)

Then, the course of action leading to the expansion of the
average (39) is adjointed. Let us use the definition (7) for
the integrated observable as a function of x0 that is the initial
point, and rewrite Eq. (33) with observable and density still a
function of the initial point x:∫

dx At (x)e−βAt (x)[L†
t w](x)

=
∫

dx e−βAt (x)At (x)
∫

dyδ(y − f t (x))w(y). (51)

The density evolution on the left-hand side of (51) is then
expanded in terms of the eigenspectrum of the Koopman
operator L†

t , as done in Eq. (37) for the Perron-Frobenius
operator. As imaginable, the average of At is now dual to the
expression (39), with the eigenfunctions ϕ j of the Koopman
operator replacing those of the Perron-Frobenius operator.
Subsequently, I pin the initial density w(x) = δ(x − xt ) at the
arrival point of the trajectory f −t (xt ) → xt , to finally obtain
the quantity Â−t (xt ) (details in Appendix B) in terms of the
first two eigenfunctions φ0 and φ1 of the Perron-Frobenius
operator:

Â−t (xt ) := At ( f −t (xt ))

μ(M(t ))| det Jt ( f −t (xt ))| �
∫
M

At (x)ϕ0(x) dx

+ φ1(xt )

φ0(xt )
e−(γ1−γ0 )t

∫
M

At (x)ϕ1(x) dx. (52)

The previous expression is akin to Eq. (44), and it only but
importantly differs in the variable of our choice [the arrival
point of each phase-space trajectory, as opposed to the starting
point in Eq. (44)], as well as in the eigenfunctions of Lt , rather
than those of L†

t .
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D. Evolution on the manifold

An argument was presented in Refs. [19,20] to show that
the evolution of a density by the Perron-Frobenius opera-
tor along the unstable manifold of an area-preserving, fully
chaotic map leads to the following result: the distribution of
the finite-time Lyapunov exponents in the phase space (the
unit torus) follows the pattern of the second eigenfunction
of the Perron-Frobenius operator at a suitable timescale. The
idea is that, on the unstable manifold, the Perron-Frobenius
operator acts on a density as

Ltw(x) = e−t�( f −t (x),t )w( f −t (x)), (53)

where the Lyapunov trajectory begins at f −t (x) and runs for
time t up to x. On the other hand, as seen, the action of
the Perron-Frobenius operator on the same density may be
expanded and truncated as (assuming no escape)

Ltw(x) = c0 + c1e−γ1tφ1(x) + O(e−γ2t ). (54)

Then, the phase-space profile of the evolution Ltw(x) should
follow φ1(x) at a time scale set by γ −1

1 , and, along the unstable
manifold, it does not depend on w(x), but only on the finite-
time Lyapunov exponent e−�( f −t (x),t ):

e−t�( f −t (x),t ) ∝ φ1(x)e−γ1t , (55)

meaning that the second eigenfunction of the Perron-
Frobenius operator rules the distribution of the finite-time
Lyapunov exponents pinned at the final point of each tra-
jectory. That is consistent with Eq. (52), which generalizes
the theory to an arbitrary observable [one would use Eq. (44)
when pinning the observable at the initial point of each iter-
ated trajectory instead].

E. Noise

The finite-time thermodynamic formalism exposed in the
previous section may also describe a chaotic system with
background noise, according to the evolution

xt+1 = f (xt ) + η(t ) := fη(xt ), (56)

with random force η(t ). The integrated observable (7) would
now take the form

At
σ 2 (x0) =

〈
t−1∑
τ=0

a
(

f τ
η (x0)

)〉
σ 2

, (57)

where 〈·〉σ 2 denotes an ensemble average over noisy trajec-
tories f t

η (x), with isotropic noise of amplitude 2σ 2. In this
setting, phase-space densities are transported by an evolution
operator with a noisy kernel, for example, the Fokker-Planck
operator [21], applied at each iteration:

[Lσ 2 w](x) = 1√
4πσ 2

∫
dx e−(y− f (x))2/4σ 2

w(x). (58)

With that change, Eq. (42) would become, in the noisy
phase space:

〈At 〉β=0(x0) = At
σ 2 (x0)

|Mσ 2 (t )|

=
∑∞

n ϕn(x0)e−γnt
∫

dxφn(x)At
σ 2 ( f −t (x))∑∞

n ϕn(x0)e−γnt
.

(59)

Now φ and ϕ are, respectively, right and left eigenfunctions of
the Fokker-Planck operator (58) that retain the spectral gap of
the Perron-Frobenius operator under the same assumptions as
in the deterministic picture.

IV. VALIDATION

The above predictions are now tested on different models
of chaos, namely, the Bernoulli map, the perturbed cat map,
the noisy Hamiltonian Hénon map, and the noisy Ikeda map.

A. Bernoulli map

It is defined as

f (x) = 2x mod 1 =
{

2x 0 � x < 1
2

2x − 1 1
2 � x < 1.

(60)

This one-dimensional, noninvertible map features chaos ev-
erywhere on the unit interval, no escape, and it has a constant
Lyapunov exponent equal to ln 2.

The spectra of both the Perron-Frobenius and the Koopman
operators are discrete with L2 as function space [22], and
available analytically. The Perron-Frobenius operator acts on
a density at each time step as

Lρ(x) = 1

2

[
ρ
( x

2

)
+ ρ

(
x + 1

2

)]
, (61)

and it has the Bernoulli polynomials

φ0(x) = 1, (62)

φ1(x) = x − 1
2 , (63)

φ2(x) = x2 − x + 1
6 ,

. . . (64)

as eigenfunctions of eigenvalues γn = 2−n. The one-
dimensional nature of the phase space makes the forward
action (61) all expanding, while the backward, Koopman
operator [23]

L†ρ(x) = ρ(2x)�
(

1
2 − x

) + ρ(2x − 1)�
(
x − 1

2

)
(65)

is everywhere squeezing (here � is the Heaviside step func-
tion). Its leading eigenfunction ϕ0(x) = 1 is again uniform on
the unit interval, while the rest of the spectrum is made of the
generalized functions

ϕ j (x) = (−1) j−1

j!
[δ j−1

− (x − 1) − δ
j−1
+ (x)] (66)

for j � 1, that is, combinations of Dirac delta functions and
their derivatives. This behavior is peculiar to one-dimensional
chaotic maps. Due to the result (66), we may not apply the
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(a) (b)

FIG. 1. Test observables mapped by the Perron-Frobenius oper-
ator and time integrated: (a) a1 = x2 (blue, solid line) and successive
Â−t

1 (x) (solid lines in color) with t = 3, t = 5, t = 8, t = 10, t = 15
approaching a straight line (for increasing t), plotted above (dashed
line) for comparison; (b) a2 = x + sin 20x (blue, solid line) and suc-
cessive Â−t

2 (x) (solid lines in color) with t = 8, t = 15 approaching
a straight line (dashed line).

expansion (44) that yields an integrated observable Ât (x) in
terms of the first two eigenfunctions ϕ0 and ϕ1 of the Koop-
man operator, since the present theory assumes the ϕi’s to be
smooth. Instead, we may test the validity of the expression
(52) that relates the polynomial eigenfunctions (64) to the
integrated observable Â−t (x), pinned by the final points of the
orbits f −t (x) → x.

I shall now take two test observables, a1(x) = x2, and
a2(x) = x + sin 20x, apply the Perron-Frobenius operator
(61), and integrate the outcomes over a finite time interval.
Applying Lt has the effect of progressively smoothing observ-
ables as t increases, e.g.,

[Lt=5a1](x) = 0.3 + 0.06x + 0.004x2, (67)

or

[Lt=5a2](x) = 0.46 + 0.14x + 0.002x2 + O(x3), (68)

when expanding the closed-form expression of [Lt=5a2](x)
in a power series. As a consequence, the mapping of both
a1, a2 produces curves that are approximately straight and, at
a longer timescale, the corresponding integrated observables
Â−t

1 , Â−t
2 also approach the functional form of the second

eigenfunction of the Perron-Frobenius spectrum (Fig. 1),
φ1(x) = x − 1

2 . Specifically, Eq. (52) predicts that Â−t (x) ∼
φ1(x)/φ0(x), where φ0(x) = 1 in this case, while the propor-
tionality factor (slope of the line) depends on the observable.

B. Two-dimensional maps

The strategy is to numerically compute the first two
eigenfunctions of the Perron-Frobenius and of the Koopman
spectrum and compare their ratio with the phase-space profiles
of different integrated observables for finite time.

The leading- and subleading eigenfunctions of the Perron-
Frobenius (Koopman) operator are first computed as follows.
The transfer operator is projected onto a finite-dimensional
vector space, and thus implemented as a matrix, as it is by now
common when solving flow (e.g., Liouville [24]) equations.
Previous literature warns us that the choice of the discretiza-
tion is crucial [25], and may deeply affect the eigenspectrum
beyond the leading eigenvalue [26]. It has been established,
on the other hand, that nonlinear perturbations to linear
maps on a torus increase the robustness of the numerically
evaluated spectrum under certain conditions [27]. The sim-

FIG. 2. First subleading eigenfunctions of the (a) Perron-
Frobenius and (b) Koopman operator for the perturbed cat map. The
Ulam matrix has size 214 × 214.

plest discretization scheme is Ulam’s method [28], which
amounts to subdividing the phase space into N intervals Mi of
equal area. The evolution operator is thus approximated with
a N × N transfer matrix whose entries Li j are the transition
probabilities from Mi to M j ,

Li j = μ(Mi
⋂

f t (M j ))

μ(Mi )
, (69)

in one time step, where μ is the Lebesgue measure. I use
a known Monte Carlo method [29] to estimate the nonsym-
metric transfer matrix Li j that consists of iterating random
initial conditions from each cell Mi and counting which
fraction lands in each M j . A thorough study of stability and
convergence of discretization algorithms has been reported
elsewhere by the author and coworkers [20], among others.

1. Perturbed cat map

The first two-dimensional model considered is the per-
turbed cat map f (x) = Tε ◦ T [x], with x = (q, p):

T

(
q
p

)
=

(
1 1
1 2

)(
q
p

)
mod 1 (70)

and

Tε

(
q
p

)
=

(
q − ε sin 2π p

p

)
mod 1. (71)

This system is strongly chaotic and hyperbolic, that is, corre-
lations decay exponentially fast with time [30]. It possesses an
infinite number of unstable periodic orbits and, specifically, a
fixed point at the origin. The phase space is a 2-torus, there is
no escape, and areas are preserved by the time evolution, so
the determinant of the Jacobian matrix of every trajectory is
equal to unity. I set the parameter ε = 0.1 in what follows, a
small enough value for the topology of the phase space to be
preserved, yet large enough for the nonlinearity (71) to make
the Ulam discretization robust.

The leading eigenfunctions of the transfer operators for
the cat map are uniform distributions, and therefore they
will not affect the predictions of the present theory out of
equilibrium. Instead, the subleading eigenfunctions of the
Perron-Frobenius and Koopman operators, computed with the
Ulam method, are shown in Fig. 2.
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FIG. 3. Phase-space density plots (214 points, each averaged over 104 trajectories) of (a) the finite-time Lyapunov exponents, (b) the
integrated kinetic energy, and (c) the average diffusion of the perturbed cat map having the (q, p) coordinates as initial points. The map is
iterated until time t = 15.

Here, I first verify prediction (45) for an integrated observ-
able pinned by its initial point in the phase space, At (x0). The
observables employed here are

(1) The finite-time Lyapunov exponent (24) of the cat
map.

(2) The average diffusion

D
t
(x) = 1

t

t−1∑
τ=0

q2( f τ (x)), (72)

with t ∼ γ −1
1 .

(3) The average kinetic energy

K
t
(x) = 1

t

t−1∑
τ=0

p2( f τ (x))

2
, (73)

again with t ∼ γ −1
1 .

The desired finite-time density plots are obtained by iterat-
ing some 108 randomly chosen, uniformly distributed initial
conditions until a time t before relaxation. The outcomes
are shown in Fig. 3: all the observables are striated along
the stable manifold and, in particular, their profiles are all
alike, and their features echo with those of the first sub-
leading eigenfunction of the Koopman operator [Fig. 2(b)].
Enhancement (scar) of the latter [19] corresponds to sup-
pression (antiscar) of the integrated observable, which is
ascribed to the second term of Eq. (45): it is found that ei-
ther ϕ1(x0) < 0 and maximally negative at the scar with the
integral

∫
dx φ1(x)At ( f −t )(x)) > 0 (from numerics) or vice

versa [31], and so the pointwise value of the integrated observ-
able Ât is approximately given by a constant (its phase-space
average) minus something proportional to the second eigen-
function of the Koopman operator. As a result, a scar in the
second eigenfunction produces an antiscar in the density plots
of all integrated observables at timescale γ −1

1 , as apparent in
Fig. 3.

Let me now proceed specularly with the validation of the
prediction (52) of an integrated observable pinned by its final
point (iteration at time t) in the phase space, Â−t (xt ). The
tested observables are once again the finite-time Lyapunov
exponent, the average diffusion, and the kinetic energy. The
results are displayed in Fig. 4 and are analogous to that seen
with the initial-point pinning, except that all the profiles are
striated along the unstable manifold of the map and follow
the second eigenfunction of the Perron-Frobenius operator

[Fig. 2(a)], here denoted by φ1(x). The equivalence between
eigenfunction enhancement and observable suppression is still
verified in this case, as one can infer from Eq. (52).

To quantify the similarities between distinct finite-time
observables, Fig. 5 portrays the density plot of the logarithmic
ratio

r(x0, t ) = ln

∣∣∣∣ ln |�(x0, t )| − 〈ln |λ(x, t )|〉M
D(x0, t ) − 〈D(x, t )|〉M

∣∣∣∣ (74)

between the diffusion and the Lyapunov exponent, scaled by
their mean values, both in the Perron-Frobenius and in the
Koopman pictures of pinpointing. If the present theory holds,
we should expect r(x, t ) to be a uniform distribution plus or
minus fluctuations, and indeed the plots give that indication.

2. Hamiltonian Hénon map

The next model to test the theory on is the Hamiltonian
Hénon map

q′ = 1 − αq2 + βp,

p′ = q, (75)

with α = 1.4 and β = −1. This choice of the parameters
avoids dissipation in the dynamics (|β| = 1), but it offers
another scenario to validate the present theory, due to (i)
escape to infinity from the neighborhood of the hyperbolic
fixed point xp � (−1.1,−1.89) that generates a chaotic sad-
dle through its stable and unstable manifolds [the latter is
portrayed in Fig. 6(a)] and (ii) a not-everywhere chaotic but
rather mixed phase space, given the presence of a second
fixed point, xc � (0.39, 0.39), that is marginally stable, and
surrounded by a small non-hyperbolic region [Fig. 6(b)]. To
kick the dynamics out of the latter nonchaotic region and into
the chaotic phase, weak noise is added to the map (75) of an
amplitude comparable to the size of the stability island per
unit time.

Strictly speaking, the nonhyperbolicity of the resulting
noisy system should introduce a continuous component in
the spectrum of the transport operators and thus break the
assumption of a solely discrete spectrum. However, if we in-
vestigate timescales of the order of or shorter than the inverse
escape rate from the region of the chaotic saddle, when the
discrete part of the spectrum is dominant, the contribution
of the continuous part of the spectrum may be ignored, due
to the smallness of the stability island. Unlike for the cat
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FIG. 4. Same as Fig. 3, but here (q, p) are the coordinates of the final points.

map, the leading eigenfunctions of the transfer operators for
the Hamiltonian Hénon map are not uniform distributions
[Figs. 7(a) and 7(b)] and, due to the finite escape rate, they
are conditionally invariant densities. As a consequence, we
should expect from the predictions (44) and (52) that the
nonequilibrium profiles of integrated observables follow the
ratio of the first subleading to the leading eigenfunction of Lt

(L†
t ).
The theory is tested for two observables, that is, the finite-

time Lyapunov exponent, as well as the diffusivity:

D̂t (x) = 1

t

t−1∑
τ=0

[q2( f τ (x)) + p2( f τ (x))]. (76)

The density plots in Fig. 8 corroborate the expectations for
the two integrated observables to be supported on the stable
manifold of the map when pinned by the initial points of
the iteration x0 → f t (x0) plus weak noise, and to mimic the
ratio between the second and the first eigenfunction of the
Koopman operator.

On the other hand, the same observables pinned by the
final points of each phase-space trajectory f −t (xt ) → xt plus
weak noise are supported on the unstable manifold of the map
(Fig. 9) and behave similarly to the ratio of the second to the
first eigenfunction of the Perron-Frobenius operator. In both
forward and backward pictures, the strongly chaotic phase
(in orange) is distinguishable from the nonhyperbolic, weakly
chaotic phase (in blue) of a three-lobed shape with tapered
ends, due to a period-three unstable periodic orbit that rules
the dynamics just outside the stability island [Fig. 6(b)].

Figures 8(a) and 8(b) and 9(a) and 9(b) show that the phase-
space profiles of the two observables are nearly identical, and

FIG. 5. The logarithmic ratio (74) between (214 points) the finite-
time Lyapunov exponents and the integrated kinetic energy for the
perturbed cat map having the (q, p) coordinates as (a) initial- and
(b) final points. The map is iterated until time t = 15.

their ratios [Figs. 8(d) and 9(d)] are very close to be uniform,
except for deviations visible in the nonhyperbolic region.

The white color in Figs. 8(a) and 8(b) and 9(a) and 9(b)
indicates the region of the phase space where forward (Fig. 8)
or backward (Fig. 9) trajectories escape from the domain
examined before the time t of integration. In Figs. 8–9(c),
instead, the ratio between the eigenfunctions is not defined
in the blank region, where the leading eigenfunction vanishes.

The density plots of the leading and subleading eigenfunc-
tions of the transport operators (Fig. 7), taken separately, bear
significant differences from those of the observables: the first
eigenfunctions clearly describe a longer timescale than that
of the observables profiles, at which noisy trajectories have
mostly left the hyperbolic region, while they only survive
in and around the stability island; the second eigenfunctions
alone are more resemblant of the finite-time integrated observ-
ables, except they are suppressed on a ring around the stability
island. That pattern is not detected in the density plots of the
observables. Therefore, it does appear as though the latter are
best described by the ratio φ1/φ0 (ϕ1/ϕ0).

3. Ikeda map

Let me now consider the Ikeda map

q′ = c0 + c2q cos θ − c2 p sin θ,

p′ = c2q sin θ + c2 p cos θ, (77)

with θ = c1 − c3
1+q2+p2 , while the parameters are set to c0 = 1,

c1 = 0.4, c2 = 0.9, c3 = 6. The Ikeda map with these param-
eters features a strange attractor, that is, the closure of the
unstable manifold of the fixed point at xs � (0.5228, 0.2469)

FIG. 6. (a) Unstable manifold emanating from the hyperbolic
fixed point of the map (75), obtained by forward iteration of 106

initial conditions until time t = 15. (b) Marginally stable fixed point,
surrounded by a stability island, triangularly shaped by an outer
period-three unstable periodic orbit (blue points).
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FIG. 7. (a), (b) Leading eigenfunctions of the (a) Perron-Frobenius and (b) Koopman operator for the Hénon map. (c), (d) First subleading
eigenfunctions of the same operators, respectively. The Ulam matrix has size 214 × 214.

FIG. 8. (a) Phase-space density plot (214 points, each averaged over 104 trajectories) of the diffusivity (76) for the Hénon map, pinned by
the initial points, after t = 10 iterations of the map. (b) The finite-time Lyapunov exponents, t = 10. (c) Ratio of the first subleading to the
leading eigenfunction of the Koopman operator for the same map. (d) Ratio of (a) to (b), as defined in (74).
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FIG. 9. (a) Phase-space density plot (214 points, each averaged over 104 trajectories) of the diffusivity (76) for the Hénon map, pinned
by the final points, after t = 10 iterations of the map. (b) Distribution of the finite-time Lyapunov exponents, t = 10. (c) Ratio of the first
subleading to the leading eigenfunction of the Perron-Frobenius operator for the same map. (d) Ratio of (a) to (b), as defined in (74).

(inverse saddle). The basin of attraction of the strange attrac-
tor is bounded by the stable and unstable manifolds of the
hyperbolic fixed point xh � (1.1142,−2.2857) [32].

The Ikeda map is dissipative, and thus it does not preserve
areas in the phase space, which are instead shrunk by the
evolution. This phenomenon is known as squeezing, and it
adds to the stretching and folding already seen in the previous
Hamiltonian examples, but now plays a central role.

The first consequence of squeezing would be a strange
attractor with a nonsmooth measure that emerges at long
times. To avoid fractal measures in the phase space that would
prevent the present theory from applying, uniform, uncorre-
lated, and isotropic noise of amplitude 2σ 2 = 10−3 is added
to the dynamics (77) (The first eigenfunctions of the transport
operators are portrayed in Fig. 10). Collaterally, some noisy
orbits may now cross the stable manifold of the fixed point xh

and exit the region of the strange attractor, which produces a
tiny but nonzero escape rate.

The second effect of squeezing is a complex-conjugate
pair of second eigenvalues for the transport operators instead
of the real and isolated single eigenvalue encountered in the
previous Hamiltonian models. The second eigenvalue of the
Perron-Frobenius operator yields the decay rate of any initial
density to the natural measure of the phase space, which can
be estimated from the autocorrelation function

C(t ) =
∫

w(x)[Ltw](x)∫
w2(x)

. (78)

Here C(t ) is computed for an initial Gaussian density centered
at the fixed point of the map, transported by the Ulam matrix
Lt , which approximates Lt , and plotted as a function of time

in Fig. 11(f), where it can be clearly seen to oscillate while
decaying. A nontrivial imaginary part of the first subleading
eigenvalue of the Perron-Frobenius (Koopman) operator sig-
nals oscillations in the decay of correlations, produced by the
alternate effects of stretching, folding, and especially squeez-
ing [Figs. 11(a)–11(e)] that creates accumulation regions,
unlike in the previous Hamiltonian models, where correlations
decay monotonically [Fig. 11(f)].

With that observation, let us look once more at the first non-
trivial term in the expansion (44) of the integrated observable
At (x0),

ϕ1(x0)

ϕ0(x0)
e−(γ1−γ0 )t

∫
M

At ( f −t (x))φ1(x) dx, (79)

FIG. 10. First eigenfunctions of the (a) Perron-Frobenius and
(b) Koopman operator for the Ikeda map with additive noise of
amplitude 2σ 2 = 10−3. The Ulam matrix has size 214 × 214.

024215-11



DOMENICO LIPPOLIS PHYSICAL REVIEW E 110, 024215 (2024)

FIG. 11. Snapshots of the evolution of the initial Gaussian density centered at the fixed point xs � (0.533, 0.247), portayed in (a), by the
Ulam matrix of the Ikeda map with noise of amplitude 2σ 2 = 4 × 10−4, given by the resolution of the discretization; (b) t = 5; (c) t = 9;
(d) t = 11; (e) t = 25. (f) (purple) Autocorrelation function of the initial density in (a) with the iterates at an intermediate timescale; (green)
autocorrelation function of a density initially centered at the fixed point of the perturbed cat map for comparison. The Ulam matrix has size
212 × 212.

is now made of three complex factors and adds up to a real
number with the mirror term of ϕ∗

1 (x0) and φ∗
1 (x0). In that

process, the combination of ϕ1(x0) and ϕ∗
1 (x0) gets to depend

on
∫

dx φ1(x)At ( f −t (x)) and its complex conjugate, which are
observable specific. That, in fact, determines the breakdown
of the universal behavior of the finite-time integrated observ-
ables predicted by the theory and exemplified in the previous
models. For the Ikeda map, one should not expect distinct
observables to share the same profile, as they are supposed to
follow different linear combinations of the real and imaginary
parts of the first subleading eigenfunctions (divided by the
natural measure), all observable dependent.

To verify that, the density plots in Figs. 12(a) and 12(b)
and 13(a) and 13(b) compare two distinct integrated observ-
ables, that is, the diffusivity D̂t (x) defined as in Eq. (76), and
the finite time Lyapunov exponent defined in Eq. (24). This
time, the directly computed observables are both supported on
and striated along the unstable (Fig. 12) and stable (Fig. 13)
manifolds, respectively, but they share limited similarities. In
particular, certain features that belong now to the real- now to
the imaginary part of the second eigenfunction [divided by
the first, which is real valued, Figs. 12(d) and 12(e) and 13(d)
and 13(e)] may be visible in the profiles of either observable
[Figs. 12(a) and 12(b) and 13(a) and 13(b)], but not in a
consistent manner, as seen for the nondissipative models of
the previous sections.

The ratios r(x, t ), as defined in (74), between the two
integrated observables [Figs. 12(c) and 13(c)] are also striated
along the manifolds, meaning that they are no longer uniform

distributions with fluctuations. That indeed gives an additional
indication that distinct integrated observables produce differ-
ent phase-space profiles.

V. SUMMARY

I have carried out an attempt to take the thermodynamic
formalism of chaotic dynamics out of statistical equilibrium.
The time evolution of the phase space is treated as a thermo-
dynamic ensemble, and the single chaotic trajectories as its
susbsystems. The probability for the value of a given observ-
able on a trajectory follows the usual Gibbs expression, which
however, now includes a time-dependent statistical weight for
each orbit.

With those premises, the familiar expressions relating
Rényi (e.g., information) entropy, a free energy (topological
pressure), and ensemble averages, are extended to chaotic
processes that have yet to relax to statistical equilibrium.

The most notable byproduct of the present construction
emerges from the evaluation of the ensemble average of an
integrated observable. According to the theory, every such
expectation value does depend explicitly on a phase-space
weight distribution, which in turn depends both on time and,
crucially, on the initial conditions. That makes average and
higher moments not so meaningful by themselves, and so one
rather studies the behavior of the full phase-space profiles of
an integrated observable, which are found to be determined by
the first two eigenfunctions of the transport (Perron-Frobenius
or Koopman) operator, at an intermediate timescale during
relaxation. This outcome, and the prediction of a universal
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FIG. 12. (a) Density plot (214 points, each averaged over 104 trajectories) of the diffusivity for the Ikeda map with noise of amplitude
2σ 2 = 10−3, pinned by the final points, after t = 8 iterations of the map. (b) Distribution of the finite-time Lyapunov exponents, t = 8.
(c) Ratio of (b) to (a), as defined in (74). (d), (e) Real and imaginary parts, respectively, of the second eigenfunction of the Perron-Frobenius
operator, divided by the first eigenfunction.

FIG. 13. (a) Density plot (214 points, each averaged over 104 trajectories) of the diffusivity for the Ikeda map with noise, pinned by the
initial points, after t = 8 iterations of the map. (b) Distribution of the finite-time Lyapunov exponents, t = 8. (c) Ratio of (b) to (a), as defined
in (74). (d), (e) Real and imaginary parts, respectively, of the second eigenfunction of the Koopman operator, divided by the first eigenfunction.
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behavior for the profile, is obtained with an alternative ap-
proach to that of dynamical averages, used for both pointwise
and integrated observables in a recent report [33], and thus
independently confirms the conclusions of the present paper.

However, the present results are subject to a number
of assumptions, and thus limitations. First, the theory is
here formulated in discrete time, and thus an extension to
continuous-time flows is in order. Secondly, for the obser-
vations on the eigenfunctions to apply, the dynamics must
allow for a transport operator with a discrete spectrum, and
a spectral gap. Typically, that occurs with a strongly chaotic
(hyperbolic) phase space or, as seen for the Hamiltonian
Hénon map, a chaotic repeller bearing a small stability island,
and an appropriate choice of the functional space. Finally,
the universality of the observable phase-space profiles breaks
down when the second eigenvalue of the transport operator is a
complex conjugate pair instead of a real-valued singlet. This is
ascribed to the phase-space squeezing caused by dissipation,
manifest, for example, in strange attractors.

The present approach to finite-time thermodynamic for-
malism proves self-consistent when I formally identify the
weights of the out-of-equilibrium Gibbs probabilities with
phase-space densities, which are pushed forward or pulled
back by well-known transport operators. Moreover, physi-
cally meaningful expressions for the ensemble averages are
recovered, and the predictions for the observables in the phase
space are corroborated by numerics. Yet, I did not provide a
mathematically rigorous theory akin to that already existing
for chaotic systems at statistical equilibrium, where, for in-
stance, it is proved that the conventional Gibbs probabilities
extremize the topological pressure. Future developments of
the present theory should then move in that direction, possibly
leveraging variational principles for systems out of equilib-
rium, such as maximum caliber [34], besides the mentioned
need for a continuous-time formulation.

APPENDIX A: ASYMPTOTIC LIMIT FOR THE It,Pt, 〈At〉
THERMODYNAMIC RELATION

Let us retrieve Eq. (10), relating information entropy,
topological pressure, and expectation value of an integrated
observable at equilibrium, from the limit t → ∞ of its finite-
time, nonequilibrium counterpart (23) derived in Sec. II.

An argument may be used from Ref. [2] to help determine
the asymptotic behavior of our finite-time thermodynamic
relation connecting Shannon information, Gibbs average,
and topological pressure. Take as integrated observable
At = ln |�(t )|, the finite-time Lyapunov exponent, as defined
in Sec. II, Eq. (24). Consider the partition function

Zt (β ) = −
∑

j

w j (t )

|� j (t )|β . (A1)

Assume that all the weights w j are bounded by positive con-
stants c1, and c2 as

c1 � w j � c2. (A2)

That is reasonable if the map in question is expanding or
hyperbolic, since in that case the dynamics is everywhere
unstable and no trajectory or sequence may ever carry infi-

nite statistical weight. We may then sandwich the partition
function (A1) as

c1

∑
j

1

|� j (t )|β �
∑

j

w j (t )

|� j (t )|β � c2

∑
j

1

|� j (t )|β , (A3)

and hence

1

t
ln c1

∑
j

1

|� j (t )|β � 1

t
ln

∑
j

w j (t )

|� j (t )|β

� 1

t
ln c2

∑
j

1

|� j (t )|β

1

t
ln c1 + 1

t
ln

∑
j

1

|� j (t )|β � 1

t
ln

∑
j

w j (t )

|� j (t )|β

� 1

t
ln c2 + 1

t
ln

∑
j

1

|� j (t )|β ,

(A4)

so, when t → ∞, both inequalities saturate to yield the same
expression:

lim
t→∞

1

t
ln

∑
j

1

|� j (t )|β = P (β ). (A5)

This is the topological pressure defined at equilibrium with the
unweighed Gibbs probabilities, whose ensemble constitutes
the pointwise natural measure of the dynamical system at
hand [3]. Besides retrieving P (β ) from the t → ∞ limit of
Pt (1, β ), the previous analysis tells us that the quantity Zt (β )
given by Eq. (A1) is also bounded as, say, c′

1 � Zt (β ) � c′
2.

Let us now apply the same idea as in (A3) to the tilted infor-
mation St (β ): Let

χ1 � w j ln w j � χ2, (A6)

for some χ1, χ2, and so

χ1

∑
j

1

|� j (t )|β �
∑

j

w j (t ) ln w j (t )

|� j (t )|β � χ2

∑
j

1

|� j (t )|β ,

(A7)

that also results in upper and lower bounds for t St (β ). Then
we may also sandwich the ratio t St (β )/Zt (β ) we have en-
countered in Eq. (23),

χ ′
1

c′
2

�
∑

j
w j (t ) ln w j (t )

|� j (t )|β∑
j

w j (t )
|� j (t )|β

� χ ′
2

c′
1

, (A8)

with the assumption that w j (t ) > 0. The previous bounds
are constant in time, and thus, including the factor of 1/t
originally in Eq. (23), we have that

lim
t→∞

St (β )

Zt (β )
= lim

t→∞
1

t

∑
j

w j (t ) ln w j (t )
|� j (t )|β∑

j
w j (t )

|� j (t )|β
= 0, (A9)

and Eq. (23) does reduce to the steady-state thermodynamic
relation (13) linking information entropy, Lyapunov exponent,
and escape rate (for β = 1).
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APPENDIX B: EIGENFUNCTION EXPANSION
FOR BACKWARD EVOLUTION

Let me here provide the intermediate steps leading from
Eq. (51) to Eq. (52). First, on the left-hand side of Eq. (51),
I expand [L†

t w](x) in terms of the eigenspectrum of the
Koopman operator to obtain for the expectation 〈At 〉:

〈At 〉β =
∑∞

n b̃ne−γnt
∫

dx ϕn(x)At (x)e−βAt (x)∑∞
n b̃ne−γnt

∫
dx ϕn(x)e−βAt (x)

, (B1)

with

b̃n =
∫

dy w(y)φn(y). (B2)

As before with the ϕn(x), this time the eigenfunctions φn(x)
of the Perron-Frobenius operator are hidden in the coeffi-
cients b̃n of the expansion, and yet they come out when we
take a density pinned at a definite point, w(x) = δ (x − xt ).
Then the average of the integrated observable becomes the

phase-space function:

〈At 〉β=0(xt ) =
∫

dx At (x)
∫

dy δ(y − f t (x))δ(y − xt )∫
dx

∫
dy δ(y − f t (x))δ(y − xt )

= At ( f −t (xt ))

|det Jt ( f −t (xt ))| μ(M(t ))
. (B3)

Specularly to Eq. (42), I obtain for Ât ( f −t (xt )) in terms of the
spectral expansion:

Â−t (xt ) := 〈At 〉β=0(xt ) =
∑∞

n φn(xt )e−γnt
∫

dx ϕn(x)At (x)∑∞
n φn(xt )e−γnt

∫
dx ϕn(x)

.

(B4)

The meaning of the previous expression is that the pointwise
expectation of any integrated observable pinned by the arrival
point xt in the phase space is a superposition of eigenfunctions
of the Perron-Frobenius operator. The truncation (44) to the
second eigenfunction may also be applied here to Eq. (B4), for
timescales of the order (γ1 − γ0)−1, and it results in Eq. (52).
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[21] P. Cvitanović and D. Lippolis, Knowing when to stop: How
noise frees us from determinism, AIP Conf. Proc. 1468, 82
(2012).

[22] D. J. Driebe, Fully Chaotic Maps and Broken Time Symmetry
(Springer, Dodrecht, 1999).

[23] R. F. Fox, Construction of the Jordan basis for the Baker map,
Chaos 7, 254 (1997).

[24] D. J. Chappell and G. Tanner, Solving the stationary Liouville
equation via a boundary element method, J. Comput. Phys. 234,
487 (2013).

[25] G. Froyland, On Ulam approximation of the isolated spectrum
and eigenfunctions of hyperbolic maps, Discr. Cont. Dyn. Syst.
17, 671 (2007).

[26] F. Brini, S. Siboni, G. Turchetti, and S. Vaienti, Decay of corre-
lations for the automorphism of the torus T2, Nonlinearity 10,
1257 (1997).

[27] M. Blank, G. Keller, and C. Liverani, Ruelle-Perron-Frobenius
spectrum for Anosov maps, Nonlinearity 15, 1905 (2002).

[28] S. M. Ulam, A Collection of Mathematical Problems
(Interscience, New York, 1960).

[29] L. Ermann and D. L. Shepelyansky, The Arnold cat map,
the Ulam method, and time reversal, Physica D 241, 514
(2012).

024215-15

https://doi.org/10.1016/j.physrep.2009.05.002
https://nbi.ku.dk/bibliotek/noter-og-undervisningsmateriale-i-fysik/chaos---classical-and-quantum/Chaos_-_Classical_and_Quantum.pdf
https://doi.org/10.1088/1751-8113/46/7/075101
https://doi.org/10.1103/PhysRevE.106.L042202
https://doi.org/10.1103/PhysRevLett.131.227201
https://doi.org/10.1088/1742-5468/ad1bdc
https://doi.org/10.1016/0167-2789(85)90135-6
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/PhysRevLett.111.120601
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1103/PhysRevE.103.L050202
https://doi.org/10.1088/1751-8121/ac02b7
https://doi.org/10.1063/1.4745574
https://doi.org/10.1063/1.166226
https://doi.org/10.1016/j.jcp.2012.10.002
https://doi.org/10.3934/dcds.2007.17.671
https://doi.org/10.1088/0951-7715/10/5/012
https://doi.org/10.1088/0951-7715/15/6/309
https://doi.org/10.1016/j.physd.2011.11.012


DOMENICO LIPPOLIS PHYSICAL REVIEW E 110, 024215 (2024)

[30] V. I. Arnold and A. Avez, Erogdic Problems of Classical Me-
chanics (Benjiamin, New York, 1968).

[31] Here the evolution operators are approximated with matrices,
meaning that the numerically computed normalized eigenvec-
tors are determined up to a sign. In any case, the ϕn must be
biorthogonal to φn, while the At ( f −t (x)) considered here are
positive definite, hence the sign of ϕn determines the sign of the
integral

∫
dxφn(x)At ( f −t (x)) as well.

[32] G. Osipenko, Dynamical Systems, Graphs, and Algorithms
(Springer, Berlin - Heidelberg, 2007).

[33] D. Lippolis, Chaotic fields behave universally out of equilib-
rium, arXiv:2402.11976.

[34] P. D. Dixit, J. Wagoner, C. Weistuch, S. Pressé, K. Ghosh, and
K. A. Dill, Perspective: Maximum caliber is a general vari-
ational principle for dynamical systems, J. Chem. Phys. 148,
010901 (2018).

024215-16

https://arxiv.org/abs/2402.11976
https://doi.org/10.1063/1.5012990

