
PHYSICAL REVIEW E 110, 024213 (2024)

Intermediate spectral statistics of rational triangular quantum billiards
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Triangular billiards whose angles are rational multiples of π are one of the simplest examples of pseudo-
integrable models with intriguing classical and quantum properties. We perform an extensive numerical study of
spectral statistics of eight quantized rational triangles, six belonging to the family of right-angled Veech triangles
and two obtuse rational triangles. Large spectral samples of up to one million energy levels were calculated for
each triangle, which permits one to determine their spectral statistics with great accuracy. It is demonstrated that
they are of the intermediate type, sharing some features with chaotic systems, like level repulsion, and some
with integrable systems, like exponential tails of the level spacing distributions. Another distinctive feature of
intermediate spectral statistics is a finite value of the level compressibility. The short-range statistics such as the
level spacing distributions, and long-range statistics such as the number variance and spectral form factors were
analyzed in detail. An excellent agreement between the numerical data and the model of gamma distributions is
revealed.
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I. INTRODUCTION

The study of quantum chaos [1,2] relates concepts of
classical ergodic theory to quantum systems. There are two
main conjectures that connect spectral statistical properties of
quantum systems with classical dynamical features: (1) The
quantum chaos or Bohigas-Giannoni-Schmit conjecture [3,4]
states that generic chaotic quantum systems should have spec-
tral statistics (or quantum statistical properties in general) that
are described by an appropriate ensemble of random matrix
theory (RMT). The appropriate ensemble is determined solely
by unitary and antiunitary (say, time-reversal) symmetries of
the system. (2) The Berry-Tabor conjecture [5] states that
generic integrable systems are described by the Poisson statis-
tics. Both have been tested and corroborated by an extensive
number of examples and form the foundation of quantum
chaos.

However, they do not cover all possible types of dynamical
systems. In this paper, we focus on the so-called pseudo-
integrable models [6]. For simplicity, let us consider only
two-dimensional Hamiltonian systems. Classical integrable
systems of this kind are characterized by the fact that a typi-
cal trajectory will belong to a torus (i.e., a two-dimensional
surface of genus 1). In contrast, the trajectories of chaotic
systems will cover the entire three-dimensional surface of
constant energy. In pseudo-integrable systems, the trajectories
will spread over two-dimensional surfaces of genus higher

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

than 1, which explains their name. Plane polygonal billiards
whose internal angles are rational fractions of π ,

ϕi = n j

mj
π, (1)

with coprime integers n j and mj are a characteristic example
of such a system. It is proven [7] that the genus of the surface
in this case is given by

g = 1 + M

2

∑
j

n j − 1

mj
, (2)

where M is the least common multiple of all the denominators
mj .

In spite of their apparent simplicity, the study of polygonal
billiards is notoriously challenging (see [8,9] and references
therein), and analytical results are usually limited to specific
cases. The mechanisms of defocusing [10] and focusing-
defocusing [11,12] that result in chaotic dynamics in billiards
are well known and require curved boundaries. Because of
this, polygonal billiards are strictly nonchaotic and the well-
developed methods for chaotic systems of ergodic theory do
not apply. For instance, even the general periodic orbit struc-
ture and the existence of periodic orbits (see, e.g., Ref. [13]
for triangles) are hard to prove. The exception are the Veech
polygons [14], which possess the so-called lattice property,
and consequently the properties of the periodic orbits are
known.

Triangular billiards have a rich landscape of distinct dy-
namical regimes in their own right. Based on numerical
evidence, generic triangles (all angles have irrational ratios
with π ) are believed to be strongly mixing [15]. On the
other hand, irrational triangles with one rational angle, such
as right triangles, have weaker ergodic properties [16–18],
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and the most recent numerical evidence suggests they are
not ergodic in the Lebesgue measure [19–21]. The quantum
triangular billiards of these classes have been explored in [22].
Based on relations (1) and (2) rational triangles belong to
the pseudo-integrable regime. Specifically, the list of known
Veech triangles is given in Ref. [23]. In particular, the family
of Veech right triangles with one of the angles equal to π

divided by an integer will be of interest for this paper.
The knowledge of quantum properties of pseudo-integrable

billiards is fragmentary and includes mainly numerical calcu-
lations for billiards of simple shape: rhombus, right triangles,
rectangular billiard with a barrier, etc. [24–30]. The only
quantity that is accessible to analytical derivations is the spec-
tral compressibility χ , which determines the growth of the
variance [31] of the of number of levels in an interval of length
L,

〈(N (L) − L)2〉 ∼
L→∞

χL, (3)

where N (L) is normalized such that its mean value equals
L and the angled brackets denote an averaging over a small
energy window. The compressibility distinguishes between
chaotic χ = 0 and integrable models χ = 1. The calculation
of the compressibility is done by the summation over classical
periodic orbits in the diagonal approximation [31]. In the
particular case of the above-mentioned Veech right triangles
with angles π/m, the compressibility is given by [32]

χ = m + ε(m)

3(m − 2)
, (4)

which depends on the factors of m such that ε(m) = 0 for odd
m, ε(m) = 2 for even m but m �≡ 0 mod 3, and ε(m) = 6 for
m ≡ 0 mod 6. Similarly, analytical results in barrier billiards
show χ = 1/2 regardless of the barrier height [33,34]. As
we see, the spectral properties of pseudo-integrable systems
can subtly depend on structural details. The fact that for
these models 0 < χ < 1 is indicative that spectral statistics
of such billiards are different from those of both chaotic and
integrable models, but share similarities with both. This is
why they are referred to as intermediate spectral statistics.
The best-known example is the semi-Poisson statistics [28],
which may be obtained by taking only every second level
of a Poissonian spectrum. Incidentally, this corresponds to
χ = 1/2.

Numerical observations of intermediate spectral statistics
have established the following properties: (1) level repul-
sion at small distances, as in the standard random matrix
ensembles; (2) exponential tails of nearest-neighbor spacing
distributions, as in the Poissonian case; (3) nontrivial value of
the spectral compressibility; and (4) multifractal dimensions
of eigenfunctions [35,36]. This type of statistics was first ob-
served at the metal-insulator transition point in the Anderson
model [37,38] and in a variety of other dynamical systems
including the already mentioned billiards, but also in neutrino
billiards [39], quantum maps [40], short-range plasma models
[28,41], and models of structured random matrices [42,43].

The principal results of the paper are the following: (1) the
spectral statistics of rational triangular quantum billiards are
of the intermediate type and (2) the correlation functions are
well described by simple gamma distribution formulas. These

conclusions are based on numerical computations of large
spectra of up to 1 million eigenenergies of eight triangles,
namely, six Veech right triangles and two non-Veech obtuse
triangles, with subsequent analysis of nearest-neighbor and
higher-order level spacing distributions, the number variance,
the spectral form factor, and level compressibility for all these
models.

The plan of the paper is the follows. In Sec. II the quantum
billiard problem, the geometries of the triangular billiards,
and the spectral statistics considered in this study are defined.
In Sec. III the numerical results are presented and analyzed.
In Sec. IV the conclusions are presented and discussed. Ap-
pendix A offers a heuristic explanation for the success of the
gamma distributions by using a toy model. In Appendix B
some more complicated two-parameter fitting distributions
are presented.

II. DEFINITIONS

This section gives all the relevant definitions of the dynam-
ical system, quantities, and their relationships considered in
this paper, and introduces notation.

A. Quantum billiards

Dynamical billiards are archetypical models of both classi-
cal and quantum chaos. In a two-dimensional quantum billiard
problem, one considers a quantum particle trapped inside a
region B ⊂ R2 known as the billiard table. The eigenfuncitons
ψn(x) are given by the solutions of the Helmholtz equation

(∇2 + k2
n

)
ψn(x) = 0 (5)

with certain boundary conditions (BCs). In this study, only
triangular regions and Dirichlet BCs are considered. In means
that ψn|∂B = 0, with eigenenergies En = k2

n , where kn is the
wave number of the nth eigenstate.

The very efficient scaling method, devised by Vergini and
Saraceno [44,45] and extensively studied by Barnett [46],
with a corner adapted Fourier-Bessel basis [47], allows us to
compute very large spectra of the order of 106 states. The
implementation is available as part of [48] and is the same
as used in [22].

The spectral staircase function counts the number of eigen-
states (or modes) up to some energy N (E ) := #{n|En < E}.
The asymptotic mean of the spectral staircase for billiards is
given by the well-known generalized Weyl’s law [49]

NWeyl(E ) = (AE − L
√

E )/4π +
∑

i

π2 − ϕi
2

24πϕi
, (6)

where A is the area of the billiard and L the circumference and
ϕi are the internal angles. To compare the universal statistical
fluctuations for different billiards, it is convenient to unfold
the spectra. This is done by inserting the numerically com-
puted billiard spectrum into Weyl’s formula en := NWeyl(En).
The resulting unfolded spectrum en has a uniform mean level
density equal to one.
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B. Geometry

In this study, the spectra of eight triangular quantum
billiards with all angles having rational ratios with π are
considered. Of these, six were taken from the family of Veech
right triangles, with angles ( π

m , (m−2)π
2m , π

2 ) for m � 4. The
triangles from this group are labeled as Vm. Only six triangles
V5, V7, V8, V9, V10, V18 are investigated. The triangles V4 and V6

are integrable and thus not interesting for this study.
As explained in the introduction, the periodic orbit

structure of the Veech triangles is known, and therefore semi-
classical techniques may be used to gain analytical insight
into their spectral statistics, namely, Eq. (4) for the level
compressibility.

To expand the scope of our study to more general ra-
tional triangles two non-Veech obtuse triangles with angles
( 2π

15 , 4π
15 , 3π

5 ) and ( 2π
25 , 6π

25 , 3π
5 ) are also considered. These tri-

angles are labeled, respectively, by T1 and T2. In these cases,
the classical periodic orbit structure is not known. The height,
measured from the bottom side of the triangles, is fixed to
h = 1 in all cases. As an illustration, Fig. 1 shows typical
eigenstates of the triangles V5 and T2 as well as a superscar
state of V5. For more information about superscars the reader
is referred to Refs. [35,36].

C. Level spacings

The distributions of level spacings are the most commonly
considered spectral statistics. Let Pn(s) be the nth nearest-
neighbor spacing distribution, that is, the probability density
of the energy distances s between two levels that have n levels
between them. For n = 0 this is the nearest-neighbor level
spacing distribution, which is the most studied. The distribu-
tions follow the normalization conditions∫ ∞

0
Pn(s) ds = 1,

∫ ∞

0
sPn(s) ds = 1 + n. (7)

There are several well-supported conjectures that relate
level spacing distributions of quantum mechanical dynamical
systems to random matrix models. The Bohigas-Giannoni-
Schmit conjecture [3,4] states the spectral statistics of
chaotic models will follow the statistics of Gaussian ran-
dom matrices, and the Berry-Tabor conjecture [50] states that
integrable models follow Poissonian statistics. In chaotic sys-
tems with time-reversal symmetry, the Wigner surmise gives
an excellent approximation for the nearest-neighbor spacing
distribution

PW (s) = π

2
s exp

(
− π

4
s2

)
. (8)

Higher-order spacing surmises are given in [51]. In the inte-
grable (Poissonian) case the distribution is exponential,

PI (s) = exp (−s). (9)

The behavior of P(s) as s → 0 is a notable and distinguishing
feature. We see P(s) ∝ sβ , for small s, with β = 1 in the
chaotic and β = 0 in the integrable case. The energy levels
in the chaotic case tend to form a gap (are repulsed) between
each other, induced by correlations in the energy spectrum.
In the integrable case, the levels are uncorrelated and have no
level repulsion. The exponent β is called the level repulsion

FIG. 1. Examples of eigenstates of rational triangular billiards.
We show the probability distribution |ψn|2 for (a) the Veech trian-
gle V5, generic eigenstate n = 3342 at k = 250.0099, (b) superscar
eigenstate n = 2430 at k = 213.6317, and (c) obtuse triangle T2,
generic eigenstate n = 3624 at k = 250.0095.

exponent. However, interesting dynamical regimes between
chaos and integrability also exist, for instance, dynamical lo-
calization (see, for instance, [52–55]). These can be modeled
by using the Brody distribution [56], which interpolates the
two regimes

PB(s) = asβ exp(−bsβ+1), (10)

where the normalization constants (7) with n = 0 are given
by a = (β + 1)b, and b = [	( β+2

β+1 )]β+1, where 	(x) is the
gamma function. We see that both the level repulsion and the
tail of the distribution change as we interpolate from β = 0
to β = 1. However, as we will later confirm with the numer-
ics, the level spacings of the rational triangles have slightly
different characteristics, namely, (1) level repulsion at small s
and (2) a purely exponential tail at large s. Because they share
characteristics of both chaotic and integrable spectra, they
are known as intermediate spectral statistics. The best-known

024213-3
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example is the semi-Poisson distribution,

PSP(s) = 4s exp (−2s). (11)

The main model for the level spacings of the rational trian-
gles will be a normalized version of the family of gamma
distributions. The probability density function for the nth level
spacing is given by

Pn(s) = ansγn exp (−bns), (12)

where an and bn are obtained from the normalization condi-
tions (7),

an = 1

	(γn + 1)

(
γn + 1

n + 1

)γn+1

, bn = γn + 1

n + 1
. (13)

The parameter γn will depend on the order of the level spacing
n. It appears that a linear dependence

γn = pn + γ0, (14)

where γ0 and p are fitting parameters consistent with the
numerical data. Setting γ0 = 0 and p = 1 corresponds to the
Poisson model and γ0 = 1 and p = 2 to semi-Poisson. The
gamma model is not new and has been used previously to
describe spectra of structured random matrices [43], where
the parameters are related to the “zero modes” of the matri-
ces; that is, the number of parameters whose variation does
not remove the eigenvalue degeneracy. In Appendix A a toy
model that offers a heuristic explanation for the success of the
gamma model is presented.

D. Two-point correlations

The two-point correlation function R2(s) is the probability
that two levels are separated by the distance s. Since there can
be any number of levels in between, it is equal to the sum over
all orders of the spacing distributions

R2(s) =
∞∑

n=0

Pn(s). (15)

Many interesting spectral statistics are related to the two-point
correlation function. In this paper we will focus on the number
variance and the spectral form factor. The number variance is
the local variance of the number of levels in an interval of
length L, given by

�2(L, e) := 〈(N (L, x) − L)2〉e,w L > 0, (16)

where N (L, x) = N (x + L/2) − N (x − L/2) is the number of
unfolded energy levels en in the interval [x − L/2, x + L/2].
The brackets 〈· · · 〉e,w denote a local average around the cen-
tral energy e and window width w, so that x ∈ [e − w/2, e +
w/2]. The number variance is related to the two-point corre-
lations via the integral,

�2(L) = L − 2
∫ L

0
(L − s)[1 − R2(s)] ds. (17)

Particular interesting is the long-range limit of the number
variance

�2(L) ∼
L→∞

χL, (18)

where the proportionality coefficient χ is called the level
compressibility. Therefore, the compressibility can be defined
as

χ = lim
L→∞

�2(L)

L
. (19)

This yields χ = 0 for the Gaussian ensembles of random
matrices and χ = 1 in the Poisson case. For the intermediate
spectral statistics, it is argued [37,38] that 0 < χ < 1. Since
the number variance can be expressed from the two-point
correlation function, one may use the relation (15), the model
assumptions (12), and (14) to compute the spectral compress-
ibility for the gamma model (see Ref. [43] for a complete
derivation). The end result is simply

χ = 1

p
. (20)

The spectral form factor (SFF) is the Fourier transform of the
two-point correlation function

K (t ) =
∫ ∞

−∞
R2(s)e2π its ds. (21)

The compressibility may also be expressed as the limit

χ = lim
t→0

K (t ). (22)

The form factor can be expressed formally through the spec-
trum as follows:

K (t ) =
〈∣∣∣∣∣

N∑
n

exp(2π ient )

∣∣∣∣∣
2〉

, (23)

where the sum goes over the unfolded energy levels, and 〈· · · 〉
represents an average over an ensemble of similar systems or a
moving time average as discussed below at the end of the sec-
tion. The form factor is a very sensitive measure of quantum
chaos due to its very distinct behavior in different dynamical
regimes. In the Poissonian (integrable) case K (t ) = 1. In the
chaotic (GOE) case it is given by the formula [57]

KGOE(t ) =
{

2t − t ln(2t + 1) t < 1

2 − t ln
(

2t+1
2t−1

)
t > 1

. (24)

From this expression it follows that KGOE(t → 0) = 0.
In the case of intermediate spectral statistics, we may

expect K (t ) will approach a nontrivial value 0 < χ < 1 as
t → 0. Following Ref. [43], the Fourier transform (21) may
be evaluated by introducing the Laplace transform

K (t ) = 1 + Re g(2π it ), (25)

where g is defined as

g(τ ) =
∞∑

n=0

gn(τ ), (26)

that is, the Laplace transform of the sum (15) and

gn(τ ) =
∫ ∞

0
Pn(s)e−τ s ds. (27)

Using the gamma distributions (12) and the linear de-
pendence (14) a technical derivation (see Ref. [43])
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yields the expression

g(τ ) =
(

1 + τ
p

)p−γ0−1

(
1 + τ

p

)p
− 1

exp

(
−τ (p − γ0 − 1)

p + τ

)
, (28)

which can be used to evaluate (25). Taking the limit t → 0
produces χ = 1/p, which is, of course, consistent with the
derivation from the number variance.

Finally, we shall make a few comments regarding the nu-
merical evaluation of the spectral form factor. It is known the
SFF is not a self-averaging quantity [58] and exhibits erratic
fluctuations with time. This means a separate averaging must
be performed, represented by 〈· · · 〉. This is commonly an
average over different realizations when considering random
matrices or disordered systems. For clean single-body sys-
tems such as billiards, instead it is necessary to perform a
moving time average to smooth out the fluctuations [59,60].
The procedure is exactly as used in previous papers [22,55],
to which we refer the reader for further details. Furthermore,
when considering the t → 0 limit in definitions such as (22)
it is implicitly assumed the limit N → ∞ is taken first, i.e.,
the whole infinite spectrum is considered, which is not pos-
sible in the numerics. Therefore, the limits are necessarily
inverted, and formally the form factor diverges at t = 0. This
can be seen, e.g., by taking Eq. (23) and considering the
limit lim

N→∞
K (0) = N → ∞. This drawback can be avoided by

decomposing the form factor into the connected and discon-
nected parts (stemming from the connected and disconnected
two-point correlation functions). The disconnected part is
given by the diagonal terms from Eq. (23) and depends solely
on the density of states (see Ref. [61] for more details). Con-
sidering only the connected part of the spectral form factor by
subtracting the disconnected part eliminates the divergences
in the numerical calculations. Hence, only the connected
parts of the spectral form factors are shown in the numerical
results.

III. NUMERICAL RESULTS

The spectral samples were produced by the scaling method
as implemented in [48]. The scaling method computes the
states in some small, finite spectral interval. The final spectral
sample is a composite of many small overlapping spectral
samples, where we try to identify which of the levels in the
overlap interval belong to the same eigenstates. Because of
the finite precision and numerical errors in the computation
of the individual levels this is not always possible, and some
levels are missed, while some may be counted twice. To omit
the nonuniversal aspects of the low-lying eigenstates, we start
collecting the levels from the 10 000th onward. The samples
for the Veech triangles contain 106 consecutive levels, the
exception being V18, where we start with the 105-th level
and gather only 8 × 105 levels. The remaining two samples
contain 6 × 105 levels for T1 and 106 levels for T2. The number
of mistakes is less than 100 in all cases, which should have no
significant impact on the results.

FIG. 2. Nearest-neighbor level spacing distributions in triangle
V5. The numerical results are shown in gray. The colored curves show
the model predictions.

A. Level spacings

We will start with examining the level spacing distribu-
tions. In Fig. 2 we show the nearest-neighbor level spacings
for the Veech triangle V5 compared to the analytical models in
the linear (top) and log-linear scales. As expected, we observe
intermediate spectral statistics, as neither the Poissonian (9)
nor Wigner-Dyson (8) models fit the data. The Brody dis-
tribution (10) is better and captures the level repulsion, but
clearly misses the top and the tail of the distribution. The
gamma distribution fit is clearly the best and fits the data
nearly perfectly. It is evident from the log-linear plot that the
tail of the distribution is indeed exponential. In Fig. 3 we
show the level spacings for order up to n = 7 in the same
triangle V5. We compare the data with the best fitting gamma
distribution for each order. Again, the distributions fit the data

FIG. 3. Level spacing distributions up to order n = 7 for the tri-
angle V5. The numerical data are shown in gray. The dashed colored
curves show the fitted gamma distributions (12). The insert shows the
linear dependence of the fitted parameters γn together with the best
fitting line (14).
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FIG. 4. Same as Fig. 3, but for the obtuse triangle T1.

extremely well. The insert shows the values of the fitted γn

as a function of n. A linear dependence of type (14) with
parameters γ0 = 0.75 and p = 2.91 approximates the data
well. In Fig. 4 the same quantities for the rational triangle
T1 are shown. The fits are of similar quality with γ0 = 1.14
and p = 4.62. We repeat the procedure (the best fitting γn for
n � 4 is given in Table I) for the other triangles, and then
obtain values for γ0 and p from the linear fits. In Fig. 5 we
show Pn(s) up to n = 4 in the log-linear scale, for all the
triangles considered in this study. Instead of fitting the gamma
distribution for each order separately, we use the parameters
γ0 and p extracted from the previous step and use the linear
relationship to determine the next γn in the sequence. Compar-
ing the data to the model curves, we see very good agreement
between the model and the numerics. The largest deviations
occur in the tails of nearest-neighbor spacings, P0(s), since the
fitted linear sequence sometimes slightly underestimates the
value of γ0 compared to the best fitting parameter. These small
deviations would hardly be visible in the linear plot, and we

TABLE I. The best fitting parameters γn for the gamma distribu-
tions describing the level spacing distributions Pn(s) up to n = 4.

Label γ0 γ1 γ2 γ3 γ4

V5 0.84 2.86 4.97 7.17 9.46
V7 1.12 3.66 6.41 9.31 12.35
V8 0.82 3.66 6.41 6.96 9.10
V9 1.29 4.20 7.38 10.74 14.26
V10 0.92 3.10 5.47 7.93 10.52
V18 1.27 4.07 7.07 10.25 13.53
T1 1.36 4.50 7.88 11.51 15.27
T2 1.69 5.64 9.95 14.52 19.18

may conclude the model is a very good approximation despite
its simplicity. Some more complicated two-parameter exten-
sions for fitting distributions are explored in Appendix B. It is
interesting that the gamma model works equally well for the
Veech triangles and the other two rational triangles T1 and T2,
so it might be expected that it holds for a typical rational trian-
gle billiard, and, conjecturally, for pseudo-integrable systems
in general. The slopes of the fitted lines give an estimate of the
compressibility as χγ = 1/p. The values are given in Table II
and compared with the other methods of estimation.

B. Two-point correlations

This section is devoted to the discussion of the results for
the number variance and spectral form factors. Let us first
examine the number variance. Figure 6 shows the number
variance for each triangular billiard. The qualitative behavior
is similar in all cases, and the number variance reaches a
seemingly linear regime at L ≈ 10. This corroborates with
the expectations of intermediate-type statistics in rational
billiards. The fit of straight lines permits to determine the
slopes which determine the compressibility χ�2 . The results

FIG. 5. Level spacing distributions in the decadic logarithmic scale logPn(s) up to order n = 4, for all triangles considered in the study.
The numerical data are shown in gray and the dashed colored curves show the gamma distributions (10) with parameters γn given by the linear
relation (14). The linear parameters are obtained by fitting the line as shown in Fig. 3 and noted at the top right of each panel. The panels show
the triangles (a) V5, (b) V7, (c) V8, (d) V9, (e) V10, (f) V18, (g) T1, (h) T2.
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FIG. 6. The number variance �2(L) for all triangles considered in the study. The data are shown in gray. The black dashed line shows the
slope that best fits the data, giving the compressibility χ . The sequence of triangles is the same as in Fig. 5.

are given in Table II. Since the spectra are finite, the number
variance will eventually saturate and oscillate around the sat-
uration plateau (see [62] and references therein). Because of
this, it is not easy to extrapolate if the asymptotic regime has
been reached. The extracted compressibilities are therefore
less reliable and may be seen as only a rough estimate.

The connected spectral form factors (see discussion at the
end of Sec. II) are plotted in Fig. 7. It is again evident that
the spectral statistics are of the intermediate type as K (t )
approaches a finite value as t → 0, in all triangles under
consideration. The numerical results are compared to the an-
alytical curves obtained by inserting the Laplace transform
of the correlation function based on the gamma model (28)
into Eq. (25). The function has two parameters p and γ0 that
are given by the slope and the intercept of the linear relation
(14). In order to check the consistency of the model, the
parameters to the numerical form factors are not fitted but
instead the parameters obtained in fitting the level spacing
distributions, given in Table II, are used. We see the analytical

TABLE II. Model parameters and spectral compressibilities for
all triangles. The linear gamma model parameters Eq. (14) are the
intercept γ0 and slope p. The compressibilites are obtained from the
spectral form factor χK (coinciding with χγ = 1/p; Fig. 7), the slope
of the number variance χ�2 (Fig. 6), and the semiclassical periodic
orbit computation (only for the Veech triangles) (4).

Label γ0 p χK χ�2 χPO

V5 0.75 2.15 0.46 0.35 0.55
V7 0.95 2.81 0.36 0.28 0.47
V8 0.76 2.07 0.48 0.36 0.55
V9 1.08 3.25 0.31 0.25 0.43
V10 0.78 2.40 0.42 0.29 0.50
V18 1.10 3.07 0.33 0.26 0.50
T1 1.14 3.48 0.29 0.20 N/A
T2 1.42 4.39 0.23 0.19 N/A

curves fit the data quite well, confirming that the parameters
give consistent results. The insets show the small-t behavior,
where we observe an oscillation resulting in a sudden drop,
as t → 0 in the numerical data. Very similar behavior was
observed for generic right triangles in Ref. [22]. This is likely
a consequence of the finite size of the spectral sample, as the
sudden drop tends to move further towards 0 as the sample
size is increased and can be considered a finite-size effect.
Since the analytical curves are based on the same fitting
parameters as the level spacing distributions, they imply the
same values for the compressibility, namely, χ = 1/p.

The complete results for the compressibilities are gathered
in Table II. We observe the values, extracted from the level
spacings (equivalently spectral form factors) and the ones
extracted from the number variances do not correspond ex-
actly (generally χ�2 < χK ). However, they are approximately
proportional when considering them as a property of each
triangle. We expect further increasing the number of levels
for the computation of the number variance, thereby allowing
us to get closer to the asymptotic regime, would bring the two
values closer together. Let us further compare the analytical
results for the Veech triangles with the numerics. In general,
we see the values from the numerics are slightly smaller than
the analytical results. This is not entirely unexpected, since
the analytical periodic orbit calculations take into account
only the diagonal approximation [32] and higher orders in
the asymptotic expansion and contributions from diffractive
orbits are not analytically available. The triangles V5 and V7

consistently give similar values of the compressibility (and
have similar spectral statistics in general), while the numerics
show quite distinct spectral statistics for V10 and V18.

IV. CONCLUSIONS AND DISCUSSION

The paper presents the detailed analysis of the spec-
tral statistics of high excited energy levels of eight rational
triangular quantum billiards belonging to the class of pseudo-
integrable dynamical systems. The principal result is that the
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FIG. 7. Connected spectral form factors K (t ), for all triangles considered in the study. The data are shown in gray. The black dashed curve
shows the model obtained by inserting the expression (28) into Eq. (25). The parameters p and γ0 are the same as in Fig. 5. The sequence of
triangles is the same as in Fig. 5.

level spacing statistics of such billiards are of the intermediate
type and rather accurately described by the model of gamma
distributions.

The characteristic features of observed statistics are the
following: (1) The level spacing distributions exhibit level re-
pulsion and have exponential tails. (2) The shape parameter of
the higher order level spacings γn is linearly dependent on the
order. (3) The level compressibility is nontrivial 0 < χ < 1,
as seen in the linear regime of the number variance and the
spectral form factor at the origin. and (4) The compressibil-
ity and proportionality coefficient of the level spacing shape
parameter are approximately related by χ = 1/p.

The normalized gamma distributions (12) provide a nearly
perfect fit to the level spacing data. Thus, one can interpret
them as a Wigner-type surmise that is a quite close approx-
imation to the underlying analytically unknown probability
distribution. The linear relation of the shape parameters and
order of the level spacings (10) are consistent with previ-
ous results from structured random matrices and short-range
plasma models [43]; however, the slope is not universal for
all triangles. Since the level spacing distributions are easy to
compute in contrast to the spectral form factors (or even the
number variance) this provides an easily accessible way of
determining the compressibility directly from the slope. The
numerical results for the spectral form factor show a good
agreement with the analytical expression (28) derived from
the gamma distributions. The results for the more general
obtuse triangles show that the special lattice property of the
Veech triangles seems to be not essential for the applicability
of the gamma model, which may indicate that it is relevant for
general pseudo-integrable systems.
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APPENDIX A: TOY MODEL

In this paper it has been observed that the simple gamma
fit (12) describes the nth nearest-neighbor distributions for
all considered triangular billiards quite well. The choice of
such a fitting function is not based on profound theoretical
grounds. It is just a simple function which tends to zero at
small x to describe the level repulsion and has an exponential
tail at large argument, which is a characteristic feature of the
intermediate statistics. In addition, models exist where such a
type of functions is exact [63].

To understand the accuracy of gamma fits, it is instructive
to consider the following toy model. Let M be a 2 × 2 random
symmetric matrix

M =
(

e v

v −e

)
, (A1)

where e > 0 and v > 0 are real random variables with proba-
bility densities R(e) and Q(v),∫ ∞

0
R(e) de = 1,

∫ ∞

0
Q(v) dv = 1. (A2)

Notice that the distributions are normalized over the interval
[0,∞). When distributions are symmetric, this is a matter of
convention.

The eigenvalues of this matrix are λ1,2 = ±√
e2 + v2, and

the distribution of the spacing is

P(s) =
∫

δ(s − 2
√

e2 + v2)R(e)Q(v) de dv

= s

4

∫ π/2

0
R[s cos(φ)/2]Q[s sin(φ)/2] dφ. (A3)

When R(e) and Q(v) are the Gaussians with zero mean and
equal variance, one gets the usual GOE Wigner surmise.
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FIG. 8. Toy model distribution (A5) for different values of ν.
Green line: ν = −1/2, yellow line: ν = 0, blue line: ν = 4. Dashed
lines of the same color indicate the gamma distribution (12) with
γ = 1/2, 1, 5, respectively. All distributions are normalized on the
unit first momentum. Insert: The differences between the toy model
distributions and the corresponding gamma distributions.

Let us assume that R(e) is the exponential function (to
mimic the Poisson distribution) but off-diagonal variable v is
distributed according to a gamma distribution Q(v),

P(e) = exp(−e), Q(v) = vν

	(ν + 1)
exp(−v). (A4)

After a rescaling, the spacing distribution in such a case is

P(toy model)(s) = λν+2sν+1

2ν+2	(ν + 1)

∫ π/2

0
sinν (φ)

× exp

(
−λs

2
[cos(φ) + sin(φ)]

)
dφ, (A5)

where λ is fixed by the normalization of the first moment

(n + 1)λ =
∫ ∞

0
ds

sν+2

2ν+2	(ν + 1)

∫ π/2

0
sinν (φ)

FIG. 9. Differences between toy model distribution (A5) with
ν = 4 and different fits �P(s) = P(toy model)(s) − P(model)(s). Blue
line: gamma distribution with γ = 5; yellow line: gamma distribu-
tion with fitted γ = 4.660; green line: the first correction to the
gamma distribution (A9) with γ = 5 and ε = 0.218; magenta line:
two-parameter fit of (A9) with γ = 4.934 and ε = 0.181. Insert: The
same magenta line as in the main figure but in a finer scale.

× exp

(
− s

2
[cos(φ) + sin(φ)]

)
dφ

= 2(ν + 2)(ν + 1)
∫ π/2

0

sinν (φ) dφ

[cos(φ) + sin(φ)]ν+3
.

(A6)

These integrals, in general, cannot be expressed in terms of
known functions. In Fig. 8 this distribution computed numeri-
cally is plotted by solid color curves for three different values
of ν = −1/2, 0, 4. The dashed lines of the corresponding
color indicate the gamma distributions (12) with γ = ν + 1,
i.e., which have the same power of s at small argument as
P(toy model)(s). It is clearly seen that these simple formulas are
in a good agreement with numerical calculated distributions
without any fits. For ν = 0 this fact was mentioned in [64].

The gamma distributions are not exact and small deviations
are, of course, present. In the insert of Fig. 8 the differences
between P(toy model)(s) and the indicated gamma distributions
are plotted. For small ν the difference is of the order of 0.01
but for ν = 4 it is around 0.03. To get a better approximation,
it is natural to fit the parameter γ in (12) from the data and/or
to propose another fitting distributions.

At Fig. 9 the differences between P(toy model)(s) with ν = 4
and different fits are shown. The blue line is the same as in the
insert of Fig. 8 where the gamma distribution with γ = 5 was
used. The yellow line corresponds to the gamma distribution
(12) but with the fitted value of γ . It is the same procedure
which used in the main text. The fit gives γ ≈ 4.66. The use
of a fitted γ roughly speaking reduces the discrepancy twice
with respect to γ = 5. Though such simple approximation is
enough for practical purposes, one may be interested in better
estimations. The usual way of fitting unknown distributions
consists in expanding them in a series of suitable functions. As
the gamma distribution by itself is a good first approximation
one can, e.g., use the following series:

P(s) = P(gamma)(s)

⎛
⎝1 +

∑
j=2

ε j p j (s)

⎞
⎠, (A7)

where ε j are arbitrary constants and p j (s) are polynomials of
order j orthogonal with respect to P(gamma)(s):∫ ∞

0
P(gamma)(s)p j (s)pk (s) ds = h jδ jk . (A8)

For P(gamma)(s) such polynomials are known as the general-
ized Laguerre polynomials (see, e.g., [65]). The sum starts
with the polynomial of the second degree to get the imposed
normalizations unchanged. The first correction term corre-
sponds to the following expression:

P(s) = λγ+1

	(γ + 1)
sγ e−λs

{
1 + ε

[
1 − 2λs

γ + 1

+ λ2s2

(γ + 2)(γ + 1)

]}
. (A9)

This function depends on two independent parameters γ

and ε. In Fig. 9 the yellow line is the difference between
the numerically computed toy model distribution with ν = 4
and function (A9) with fixed γ = 5 and fitted ε. The one-
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FIG. 10. Comparison of the differences of the nearest neighbor level spacing distributions �P(s) = P(data)(s) − P(model)(s) for several
triangular billiards and the refined two-parameter gamma models using the correction given by Eq. (A9). The tow row shows just the best
fitted gamma model without correction terms, setting ε = 0, and the bottom row shows the correction with fitted ε. The data are taken from
the spectra of triangles (a) V10, (b) V18, (c) T1, (d) T2. The colored lines show the averages over 10 points to more easily identify the trends in
the data.

parameter fit gives ε ≈ 0.218. The amplitude of remaining
deviations is smaller than 0.003. One can also fit the data by
(A9) considered as a function of two fitted parameters γ and
ε. The fit gives γ = 4.934 and ε = 0.181. The difference from
the toy model distribution with these two parameters fitted is
indicated in Fig. 9 by the magenta line. This difference is so
small (less than 0.0004) that it is almost invisible in the scale
of the figure. The same difference but at much finer scale is
shown in the insert of the same figure.

Of course, one could invent many different formulas to
fit an unknown distribution. Beside many of them, a simple
gamma fit gives a rather accurate approximation (in many
cases less than 0.01) and has an additional advantage that
all its moments can easily be calculated in a closed form. If
necessary, higher order approximations can be used to find a
more refined approximation.

APPENDIX B: TWO-PARAMETER FITS

It is plain that better approximations can also be developed
for level distributions of triangular billiards. Consider, for
example, the nearest-neighbor distributions for the right tri-
angles with angles π/10 and π/18. In Fig. 10 the differences
between numerical data and the gamma fits are presented in
the top row [Figs. 10(a) and 10(b)]. Though the gamma fits
give quite good results, small regular deviations (similar to the
toy model) are clearly visible in these figures. The same may
be seen for the two obtuse triangles [Figs. 10(c) and 10(d)].
The bottom row shows the two-parameter fit (A9) with fitted
values of γ and ε. This helps to reduce the difference between
the data. The same is true for the obtuse triangles presented
in Figs. 10(c) and 10(d). The fit is especially good for the
triangle V10 [see Fig. 10(a)] as it seems to be structureless and
random.

FIG. 11. Comparison of the differences of the nearest-neighbor level spacing distributions �P(s) = P(data)(s) − P(Besselfit)(s) for all trian-
gular billiards and the two-parameter Bessel models using the correction given by Eq. (B1). The panels show the triangles (a) V5, (b) V7, (c) V8,
(d) V9, (e) V10, (f) V18, (g) T1, (h) T2. The colored lines show the averages over 10 points to more easily identify the trends in the data.
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TABLE III. Best fitting parameters for the expanded gamma
model (A9) and Bessel fit (B1), fitted to the nearest-neighbor level
spacing distributions of the triangular billiards.

Label γ ε α β

V5 0.854 0.012 1.309 0.42
V7 1.064 −0.057 1.825 0.892
V8 0.848 0.029 1.243 0.289
V9 1.147 −0.132 2.366 1.447
V10 0.848 −0.069 1.64 0.903
V18 1.131 −0.123 2.314 1.409
T1 1.225 −0.121 2.4 1.416
T2 1.300 −0.315 4.64 3.688

Let us consider, for diversity, a different kind of two-
parameter fit,

P(Bessel fit)
n (s) = c qα+1 sα Kβ (qs), (B1)

where Kβ (x) is the modified Bessel function of the third kind.
Constants c ≡ c(α, β ), and q ≡ q(α, β, n) are determined

from the normalization conditions

c(α, β )={2α−1	[(α−β+1)/2]	[(α + β + 1)/2]}−1, (B2)

q(α, β, n) = 2	[(α − β )/2 + 1]	[(α + β )/2 + 1]

(n + 1)	[(α − β + 1)/2]	[(α + β + 1)/2]
.

(B3)

This function has two independent parameters: α and β.
Such a function but with β = α − 1 has been proposed in
[66] to approximate the nearest-neighbor distribution for a
quantum limaçon billiard with mixed phase space.

Following the known asymptotic behaviors of Kβ (x), the
Bessel fit (B1) has power asymptotics at small s and exponen-
tial at large s. But contrary to the gamma fit, the powers at
small and large s may be different. For half-integer β, Kβ (x)
is expressed through elementary functions. In particular, for
β = 1/2 the Bessel fit coincides with the gamma fit. In Fig. 11
the difference between the nearest-neighbor level spacing
distributions for all triangles and the Bessel fits is shown.
The resulting oscillations are small and in some cases appear
purely random. As expected, two-parameter fits give better ap-
proximations but are more complicated and less transparent.
The best fitting parameters are presented in Table III.
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