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Theoretical velocity of an object frictionally coupled to a two-mode vibrating plate
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Net velocity has been demonstrated for objects frictionally coupled to a flat plate that oscillates periodically in-
plane with two frequencies, provided plate displacement is nonantiperiodic: the ratio of frequencies γ cannot be
the ratio of two odd integers. We give a mathematical derivation of the experimentally determined dependence of
mean velocity on the relative amplitudes of the two frequency modes, and the phase lag between the modes, when
γ = 2, and when the magnitude of plate acceleration is much larger than the magnitude of acceleration by static
friction. The approach uses an analysis of the symmetry properties of the roots of trigonometric polynomials,
without explicit determination of those roots. The behavior when γ = 1/2, and specific phase lags that inhibit
net velocity for general γ , are also determined.
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I. INTRODUCTION

As reviewed by Denisov et al. [1], the nonantiperiodic [2]
excitation of nonlinear systems is a ratchetlike mechanism
for promoting transport. This concept has been applied to
microscopic, optical, and quantum systems [3–14], and also
to macroscopic objects [15–24], where it has application to
material handling. Vidybida and Serikov developed a predic-
tive analysis of general induced motion when the nonlinear
restorative force is Lipschitz continuous [25]. In this paper,
we analyze frictional coupling, where the restorative force
lacks this continuity. Umbanhowar and Lynch [23] devel-
oped and validated an analytical model for frictional motion
induced by a discontinuously accelerated surface. Here we
prove an experimentally validated [18] simple closed-form
analytical solution to the harmonic two-mode continuously
driven friction problem for certain ranges of parameters in an
easily accessible regime. Our proof provides a firm theoretical
foundation for the predictive design of new processes for
the transport of solids, including the use of solid reagents in
so-called laboratory-on-a-chip devices.

We are concerned with the vibratory motion of a horizontal
flat surface, displaced in-plane in one dimension with two
frequencies of ratio γ ,

x(t ) = A sin(ωt ) + B sin(γωt + φ),

and a single object sitting on the surface, accelerated by static
and kinetic friction,

v̇ =
{

ẍ, v = ẋ and |ẍ| < μsg (sticking)

μkg sgn(ẋ − v) otherwise (sliding).

Here, v is the velocity of the object, μs is the coefficient
of static friction, μk is the coefficient of kinetic friction, g
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is gravitational acceleration, and sgn is the signum function
[sgn(0) = 0, otherwise sgn(x) = x/|x| = ±1]. Figure 1 illus-
trates how this can be achieved with consumer-grade audio
equipment. See Hui et al. [18] for experimental details.

In dimensionless variables,

s(τ ) = sin(τ ) + β sin(γ τ + φ),

u̇(τ ) =
{

s̈, u = ṡ and |s̈| < 1
Frs

(sticking)
sgn(ṡ−u)

Frk
otherwise (sliding),

(1)

where s = x/A, β = B/A, τ = ωt , u = v/(Aω), and
Frs = Aω2/(μsg) is the “static friction number,” which
characterizes the relative magnitudes of the driving and
static frictional accelerations acting on the object, and
Frk = Aω2/(μkg) is the kinetic friction number.

II. RESULTS

The system has spatial symmetry: the ordinary differential
equation (ODE) is invariant with respect to any in-plane trans-
lation. If s(τ ) had only a single frequency (i.e., β = 0), there
would be a temporal symmetry too and there would be no
net motion (〈u〉 = 0). When there are two driving frequencies
(β �= 0), Hashemi et al. [17] proved that s(τ ) is antiperiodic
[2] if γ is the ratio of two odd integers. When this temporal
symmetry applies, again there is no net motion. However, if γ

can be reduced to being even/odd or odd/even, antiperiodicity
is lost: the symmetry constraint is broken and net motion may
occur if β �= 0. The system then acts as a sort of temporal
ratchet [26].

If β �= 0 and γ is irrational, then s(τ ) is not periodic. The
sliding object may be observed to have either net positive or
net negative motion, depending on the observation window.

When Frs is large, the dynamics (1) converge to a unique
limit cycle (for constant γ , β, φ), which collapses to a fixed
point in the (u, u̇) phase space when Frs → ∞.

With forcing s(τ ) being periodic, the response u(τ ) will
also be periodic at the steady state, 〈u̇〉 = 0, and therefore if
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FIG. 1. A horizontal surface (blue) is attached to a stationary
audio speaker driven with a two-frequency ac signal. The surface
vibrates (displacement x) but has no net motion. An object placed on
the platform (magenta) is accelerated by frictional coupling. Its mean
velocity 〈v〉 may be nonzero.

sticking does not occur,∫ T

0
sgn [ṡ(τ ) − u(τ )]dτ = 0,

where T is the dimensionless period. Sticking does not occur,
or has a negligible effect, when Frs → ∞ because the fraction
of the period when |s̈| < 1/Frs is vanishingly small. Recalling
that Frk > Frs because μs > μk , in the large-Frs limit, |u̇| will
also be negligible, u → 〈u〉. In this limit, the average velocity
〈u〉 is determined by setting to zero the mean acceleration by
kinetic friction. Then, 〈u〉 is the zero of the function

f (〈u〉) =
∫ T

0
sgn [ṡ(τ ) − 〈u〉]dτ. (2)

When (2) is zero, ṡ > 〈u〉 over half the period and ṡ < 〈u〉 over
the other half. For continuous ṡ, f is strictly monotonically
decreasing in the range of ṡ. Surprisingly, the mean velocity
predicted by (2) is independent of all frictional properties of
the system.

Numerical determination of the root of (2) uses Newton’s
method with bisection as a fallback. The integral is evaluated
by first finding all points τi that satisfy

〈u〉 = ṡ(τi ), (3)

using bracketing and iterative refinement, then summing the
signed distances between these points.

When Frs is finite, a different numerical solution may
be constructed by solving the dynamical equations (1) as a
boundary value problem, using periodicity as the boundary
condition. Numerical exploration of this more complicated
approach reveals that when Frs � 7, the value of 〈u〉 computed
from (2) deviates from the boundary value calculation by �
10% for any β (see Supplemental Material [28, Sec. 1]). As β

increases from 1/4, the requisite Frs decreases. Thus, although
the limit Frs → ∞ is not physically realizable, the properties
of the simpler equation (2) reveal the essential properties of
the more general solution for large (�7, depending on β) but
finite Frs. In this paper, we focus on solutions of (2).

By numerical investigation of (2), we deduced that when
Frs is large and γ = 2,

(4a)
〈u〉 =

⎧⎨
⎩

−2β cos(φ), |β| � 1/4

− cos(φ)/(8β ), |β| > 1/4. (4b)

Reznik and Canny [21] discovered the equivalent of (4a) for
any φ, and the equivalent of (4b) when φ = 0 [using a dis-
placement s(τ ) depending on cosines instead of sines]. They

FIG. 2. Experimental validation of (4). (a) The piecewise β de-
pendence when γ = 2, φ = 0, and ω/2π = 30 Hz. Frs ranges are
2.9–13.8 (steel) and 3.9–11.7 (rubber). (b) The cos(φ) dependence
with γ = 2 and ω/2π = 30 Hz. Frs ranges are 3.0–3.6 (steel) and
5.7–7.5 (rubber), and β ranges are 0.43–0.48 (steel) and 0.40–0.44
(rubber). Friction coefficients were measured using an inclined plane
[27]; kinetic coefficients were determined by measuring particle
location with high-speed video, and fitting to a parabola. For steel
on aluminum, μs = 0.338 ± 0.017 and μk = 0.337 ± 0.039, and for
rubber on aluminum, μs = 0.375 ± 0.014 and μk = 0.365 ± 0.022.
Reported errors are ±1σ from 10 replicates.

further noted that the same φ that makes 〈u〉 zero for small
|β| makes 〈u〉 zero for large |β|. The complete formula (4) is
derived below.

There is no net motion when Frs is large and φ = ±π/2.
We have experimentally validated this relation for simple
sliding objects, such as steel and rubber washers (Fig. 2; see,
also, Supplemental Material [28, Sec. 1]). Although colliding,
rolling objects such as sand or dry yeast aggregates are sub-
ject to additional forces, we also find qualitative agreement
between the motion of such granular materials and this simple
theory [18].

To prove (4) when γ = 2, and when Frs is large such that
(2) is applicable, the strategy is to find values of 〈u〉 that
yield points of intersection τi (3) that partition the period
T = 2π to make (2) be zero. Figure 3 illustrates how the
character of the solution changes with β. When |β| < 1/4,
there is one root at π/2 and another at −π/2, independent
of β and φ. When |β| = 1/4, a degenerate root pair appears
at a φ-dependent time, and when |β| > 1/4, there are four
asymmetrically distributed roots that partition the period.
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FIG. 3. The solution 〈u〉 (blue dashed line) to f = 0 [cf. Eq. (2)]
in response to surface motion ṡ (purple curve) with γ = 2, φ = π/8:
(a) when β = 0.1, two roots (filled circles) at π/2 and 3π/2 separate
the domain into two equal pieces; (b) when β = 0.25, a degenerate
root appears at π − φ; and (c) when β = 0.4, there are four roots
asymmetrically distributed.

First observe that for any β,

ṡ
(
±π

2

)
= cos

(
±π

2

)
+ 2β cos(±π + φ) = −2β cos(φ).

(5)

If 〈u〉 = −2β cos(φ), then (3) gives two zeros, ±π/2: they
partition the period into two intervals of length π . When
|β| < 1/4, these are the only real zeros of (3) (see Supple-
mental Material [28, Sec. 2]), and therefore (2) is zero when
〈u〉 = −2β cos(φ) and |β| < 1/4. When |β| = 1/4, a new
degenerate root appears, but because it has multiplicity 2, or 3
if φ = ±π/2, sgn(ṡ − 〈u〉) does not change value across the
degenerate point and (2) is still zero. Equation (4a) is proved.
This same analysis can be applied to any γ = 2n, with n an
integer, with the result that

〈u〉 = (−1)nγ β cos(φ),

if |β| is sufficiently small. To study the case |β| > 1/4 when
γ = 2, it is convenient to express (3) in the complex plane
using the change of variables, z = exp(iτ ), with i = √−1.
Then, (3) becomes

0 = z4 + z3 e−iφ

2β
− z2 〈u〉e−iφ

β
+ z

e−iφ

2β
+ e−2iφ, (6a)

for which we desire the factorization

0 = [z2 + zO(β−1) − ie−iφ][z2 + zO(β−1) + ie−iφ]. (6b)

In the limit |β| → ∞, the roots of (6b) are easily found:
expressed as dimensionless times, they are π/4 − φ/2 and

5π/4 − φ/2 from the first factor, and 3π/4 − φ/2 and
7π/4 − φ/2 from the second. Importantly, the roots of the
first factor are interleaved with those of the second. If this
proposed factoring is achieved, from the first factor one has
z1z3 = −i exp(−iφ) for any β, and from the second factor one
has z2z4 = i exp(−iφ). Together,

z1z3

z2z4
= −1 = eπ i. (7)

Taking the argument of both sides,

(τ1 − τ4) + (τ3 − τ2) = π,

which makes (2) zero; see Fig. 4(a). To achieve this factoring,
compare the expanded (6a) and factored (6b) expressions to
obtain three equations (for the coefficients of z, z2, and z3)
in three unknowns [〈u〉 and the two zO(β−1) terms]. Solving
this algebraic system determines 〈u〉 = − cos(φ)/(8β ) (see
Supplemental Material [28, Sec. 3]).

The proposed factorization (6b) is necessary and suffi-
cient to determine the unique 〈u〉 that zeros (2) in the limit
|β| → ∞. To prove (4b), it is also necessary to show that the
roots of the two factors remain interleaved for all |β| > 1/4.
Because the roots are interleaved in time at ∞ and because
they are continuous functions of β, they remain interleaved
in time as |β| decreases until a degeneracy occurs. In the
|β| interval [1/4,∞), the only degenerate point is |β| = 1/4
(see Supplemental Material [28, Sec. 4]) (Fig. 5); Eq. (4b)
is proved. This approach can be extended to other γ cases,
although the algebra becomes increasingly cumbersome as
the number of roots increases [29]. When γ = 4, one finds
〈u〉 = − cos(φ)/(212β3) in the limit |β| → ∞.

Nonzero net motion is only found when γ is the ratio of an
even and an odd integer [17]. We have discovered numerically
that when φ = ±π/2 and γ is even/odd, then 〈u〉 = 0 for
all β, as found in the special case γ = 2/1. However, if γ

is odd/even, then the mean velocity need not be zero when
φ = ±π/2. Physically, when γ is even/odd and φ = ±π/2,
the roots of (3) are partitioned in a way that causes the
net motion to be zero. This condition (like β = 0 and γ =
odd/odd) provides a temporal symmetry constraint. If any of
these constraints is active, there is no net motion. If none of
these constraints apply, net motion is possible but not required
(see, e.g., Fig. 2(e) of [17]).

First we show that 〈u〉 = 0 is always the solution to (2)
when Frs is large, φ = ±π/2, and γ = n/m is even/odd. If
the ratio n/m is reduced, the period T is 2πm. Let τ̂ = τ/m,
so that −π � τ̂ � π in the period. The root-determining con-
dition of zero net motion (3) becomes

0 = cos(mτ̂ ) ∓ γ β sin(nτ̂ ). (8)

Expressing these trigonometric functions in terms of sin(τ̂ )
and cos(τ̂ ) using de Moivre’s theorem with the binomial the-
orem (see Supplemental Material [28, Sec. 5]), one finds

cos(τ̂ )Pm−1[sin(τ̂ )] = ±γ β cos(τ̂ )Qn−1[sin(τ̂ )], (9)

where Pm−1 and Qn−1 are polynomials of degree m − 1 and
n − 1, respectively. One set of roots is τ̂ = ±π/2, from the
cos(τ̂ ) factors on either side of the equation. Then, factoring
out cos(τ̂ ), the remaining roots come from a polynomial in
sin(τ̂ ): for every root τ̂ , there will be a mirror root at π − τ̂ .

024212-3



ZHANG, HUI, RISTENPART, AND MILLER PHYSICAL REVIEW E 110, 024212 (2024)

FIG. 4. Cartoons representing the relation between roots (filled circles) on a unit circle. (a) Roots ti of (6b) as points zi on the complex unit
circle. The sum of the 41 and 23 arc lengths, the argument of z1z2/z3z4, is half the period: π . (b) Symmetry relations for the roots of 0 = ṡ
when γ is even/odd and φ = ±π/2, constructed by treating dimensionless time τ̂ as an angle measured clockwise from the positive horizontal
axis. Alternating signs of the sgn function are indicated by + and −. Because of roots at ±π/2 and because of the left-right symmetry of
the other roots, the signs are antisymmetric, guaranteeing that (2) is zero. (c) Symmetry relations for the roots of 0 = ṡ when γ is odd/even
and φ = ±/2. Because the roots display left-right symmetry, but there are no roots at ±π/2, the signs are not antisymmetric. A zero average
velocity is possible but not assured.

The symmetry of these roots about the unit circle proves that
they partition the period into sets of equal length, making
(2) zero; see Fig. 4(b). Degeneracy at ±π/2 could spoil the
solution, but it may be shown that only one of the roots
±π/2 can be degenerate, and it will have multiplicity 3 (see
Supplemental Material [28, Sec. 6]): ṡ will change sign, and
the symmetry-dictated solution 〈u〉 = 0 remains valid.

Now consider the case that γ = n/m is odd/even. Again,
the period is 2πm if n/m is reduced, and we change variables
to τ̂ = τ/m. If the mean velocity is zero, then (8) again ap-
plies, but now de Moivre and the binomial theorem give

Pm[sin(τ̂ )] = ∓βγ Qn[sin(τ̂ )].

As before, for every root in the right half-plane, there is a
mirror root in the left half-plane, but there cannot be sign
changes at either π/2 or −π/2 (see Supplemental Material
[28, Sec. 5]). In this case, the roots may partition the period
into sets of equal length, making (2) zero, but it is not required.
This construction is illustrated in Fig. 4(c).

One observation that has so far defied quantitative expla-
nation is the distribution of mean velocities as a function of
β, γ , φ, e.g., Fig. 6. This figure shows the special character
of the γ = 2 case, where 〈u〉 �= 0 unless β = 0. Aside from
vertical stripes for special values of γ , there is also a distinct

FIG. 5. The four roots of (3) as times, computed with φ = π/8,
maintain consistent ordering except at β = ±1/4. Roots of the first
factor of (7b) (solid) and roots of the second factor (dashed) are inter-
leaved, which is critical to the interpretation of (8). When |β| < 1/4,
the roots are ±π/2 (black, dotted) from (6).

βγ ≈ 1 trend. With

ṡ = cos(τ ) + βγ cos(γ τ ),

the surface velocity has a single mode when βγ = 0 or when
βγ → ±∞, and 〈u〉 will be zero in those limits. Evidently,
the interplay of the two modes, which is essential to the
observation of net motion, is greatest when βγ = O(1). This
qualitative observation is consistent with the points in Fig. 6
clustering near the βγ = 1 curve, but does not explain why
they are denser below the curve when γ > 1 and above the
curve when γ < 1. The behavior when γ < 1 is related to
the behavior when γ > 1 by a rescaling (see Supplemental
Material [28, Sec. 7]). In general,

〈u〉(γ −1, β−1,−φ/γ ) = 1

βγ
〈u〉(γ , β, φ),

FIG. 6. Numerically computed values of 〈u〉 with φ = 0, where
γ = n/m is a ratio of integers with m ∈ [1, 63]. Only |〈u〉| > 0.02
values are shown. Points are sorted so that large |〈u〉| values are
plotted above smaller overlapping ones.
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FIG. 7. The dependence of 〈u〉 on φ when γ = 3/2 and β = 1,
calculated numerically from (4), with zeros predicted from the sym-
metry of the complementary γ = 2/3 problem to be at ±3π/4 (filled
circles), and two additional roots at ±π/4 (open circles) offset by π .

and, in particular, rescaling (4) gives

〈u〉(1/2, β, φ) =
{−β2 cos(2φ)/16, |β| < 4

− cos(2φ), |β| � 4.
(10)

Equation (10) suggests that our chosen scaling gives larger
dimensionless velocities when γ < 1 than when γ > 1, and
thereby explains the apparent greater density of high ve-
locity values plotted in Fig. 6 when γ < 1. Sampling bias
accounts for the greater density of γ < 1 points tested,
but does not account for the disparity of plotted velocity
values.

This scaling argument predicts that 〈u〉(1/2n, β, φ) =
(−1)n cos(2nφ) for integer n in the limit |β| → ∞, where (3)
has two real roots in period T = 4nπ , and 〈u〉(1/4, β, φ) =
−β4 cos(4φ)/214 in the limit |β| → 0, where (3) has eight real
roots in T = 8π .

This analysis also suggests that the symmetry-mandated
mean velocity zeros found when φ = ±π/2 and γ is
even/odd predict zeros in the complementary odd/even case,
γ ′ = 1/γ , when the phase lag φ′ is ±πγ ′/2. Changing the
phase lag by π is like changing the sign of β, which will not
affect the symmetry zeros. Therefore, when γ ′ is odd/even,
additional zeros are expected at ±πγ ′/2 ± π . Figure 7 shows
that ±πγ ′/2 and ±πγ ′/2 ± π accounts for the four observed
φ roots of the odd/even case 3/2.

The preceding results all strongly suggest that the system
behavior is deterministic, but a natural question is whether
chaotic behavior can be observed. The answer is no in the
large-Fr limit of interest here. First, the Poincaré-Bendixson
theorem precludes the existence of strange attractors because
the phase space of our ODE is two dimensional. Second, in
the limit Fr → ∞, u(τ ) = 〈u〉, a constant; and the monotonic-
ity of Eq. (2) makes the 〈u〉 solution, hence u(τ ), unique.
Therefore, period doubling, a route to chaotic behavior, cannot
occur. However, when Fr is finite, period doubling might
occur and chaotic behavior may be possible. Our prelimi-
nary numerical searches through the large parameter space
(γ , β, φ, Frs, Frk) have not found evidence of period dou-
bling. Detailed numerical results for finite Fr are left to future
investigations.

III. CONCLUSIONS

In conclusion, a mathematical analysis of the large-Frs

formula (2) proves the numerically discovered, experimen-
tally verified formula (4) when the frequency ratio γ is 2.
Comparing the substrate velocity with ratio γ to the same
motion with ratio 1/γ gives a complementary result for the
case γ = 1/2, given by Eq. (10). If γ is the ratio of an even
to an odd integer, the mean velocity 〈u〉 is zero when the
phase lag φ is ±π/2. When γ is the ratio of odd to even
integers, symmetry does not require 〈u〉 = 0 when φ = ±π/2.
But, appealing to the relation between γ dependence and
1/γ dependence, symmetry-dictated zeros are deduced at φ =
±πγ /2 and ±πγ /2 ± π . We offer a qualitative justification
for large nonzero 〈u〉 values lying near the curve γ β = 1, and
results (4) and (10) explain the existence of certain special
values of γ for which significant mean velocities are found for
almost every β. However, the distribution of large velocities in
the γ , β, φ parameter space remains largely unexplained.
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