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Impact of environmental stochastic fluctuations on the evolutionary stability of imitation dynamics
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To show the impact of environmental noise on imitation dynamics, the stochastic stability and stochastic
evolutionary stability of a discrete-time imitation dynamics with random payoffs are studied in this paper. Based
on the stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model, we
extend the concept of stochastic evolutionary stability to the stochastic imitation dynamics, which is defined as
a strategy such that, if all the members of the population adopt it, then the probability for any mutant strategy
to invade the population successfully under the influence of natural selection is arbitrarily low. Our main results
show clearly that the stochastic evolutionary stability of the system depends only on the properties of the mean
matrix of the random payoff matrix and is independent of the randomness of the random payoff matrix. Moreover,
as two examples, we show also that under the framework of stochastic imitation dynamics, the noise intensity
affects the evolution of cooperative behavior in a stochastic prisoner’s dilemma game and the system’s nonlinear
dynamic behavior.
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I. INTRODUCTION

It is well known that imitation dynamics is an important
theoretical branch of evolutionary game dynamics, which
mainly involves the process that the time evolution of strate-
gies (or behaviors) in population is more likely to be based on
the mutual imitation among individuals than on inheritance
[1,2]. Recently, we investigated the impact of the sensitivity
of individuals to the expected payoff differences between
paired individuals on the stability of a discrete-time imitation
dynamics and on the evolutionary stability of the imitation dy-
namics [3]. However, it is still unclear how the environmental
stochastic fluctuations (or the environmental uncertainty) will
influence the evolutionary stability of the imitation dynamics.

Similar to the classic evolutionary game theory, it is also
assumed that the environmental conditions do not change
over time in the standard imitation dynamics. However, this
assumption cannot be thought to be always true since en-
vironmental conditions in the real world are changing and
uncertain. As pointed out by May [4], for the population
dynamics in ecology, because of the uncertainty of real en-
vironments, the birth rates, carrying capacities, competition
coefficients, and other parameters which characterize natural
biological systems all, to a greater or lesser degree, exhibit
random fluctuations (see also [5]). This also implies that the
stochastic fluctuations in the surrounding environment of a
population may also cause changes in the occurrence of inter-
actions between individuals and, more importantly, changes in
the payoffs received by the interacting individuals. Therefore,
there is no a priori reason to assume that the payoffs in an
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imitation dynamics are constants if the environment is actually
stochastic.

In fact, in order to explore the impact of environmental
stochastic fluctuations on the evolutionary game dynamics,
Zheng et al. [6,7] (see also Feng et al. [8]) developed the
concept of stochastic evolutionary stability based on the
stochastic stability of the stochastic recurrence equation and
stochastic replicator dynamics. Similar to the standard def-
inition of evolutionarily stable strategy (ESS) developed by
Maynard Smith [12] (see also [2,13]), a stochastically evolu-
tionarily stable (SES) strategy is defined as a strategy such
that, if all the members of the population adopt it, then the
probability for at least any slightly perturbed strategy to in-
vade the population under the influence of natural selection
is arbitrarily low (see also [6,8–11]). In this study, based on
the framework of discrete-time imitation dynamics (in which
the Fermi function is taken to measure the probability of re-
ciprocal imitation between paired individuals [3,14]), we will
extend the concept of stochastic evolutionary stability to the
imitation dynamics with random payoffs (i.e., the stochastic
imitation dynamics). Our main goal is not only to reveal how
environmental stochastic fluctuations affect the stability of
imitation dynamics, especially on the evolution of coopera-
tion and the nonlinear dynamic behavior of the system, but
also to elucidate the conditions and properties of stochastic
evolutionary stability in imitation dynamics.

II. BASIC MODEL AND STOCHASTIC
STABILITY ANALYSIS

Consider a discrete-time imitation dynamics with two pure
strategies S1 and S2, respectively. To show the influence of
the environmental noise on the imitation dynamics, we here
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assume that for the pairwise interactions, the payoff matrix at
time step t � 1 is a random matrix, which is given by

�(t ) =
(

c11(t ) c12(t )
c21(t ) c22(t )

)
=

(
a(t ) b(t )
c(t ) d (t )

)
, (1)

where ci j (t ) denotes the payoff to Si against S j at time
step t � 1 and it is a random variable for i, j = 1, 2. We
also assume that the probability distributions of these pay-
offs do not depend on the time step t � 1 [6]. The means,
variances, and covariances of all these random payoffs are
given by 〈ci j (t )〉 = c̄i j , 〈[ci j (t ) − c̄i j]2〉 = σ 2

i j , and 〈[ci j (t ) −
c̄i j][ckl (t ) − c̄kl ]〉 = σi j,kl , respectively, for i, j, k, l = 1, 2
with (i, j) �= (k, l ). Let ut denote the frequency of strategy
S1 in the population at time step t � 1. Then, under the as-
sumption of random pairwise interactions [2], the expected
payoffs of S1 and S2 at time step t � 1, denoted by π1,t and
π2,t , respectively, are given by π1,t = ut a(t ) + (1 − ut )b(t )
and π2,t = ut c(t ) + (1 − ut )d (t ), and the mean payoff of the
population at time step t � 1 is π̄t = utπ1,t + (1 − ut )π2,t .

Let N1,t denote the number of individuals using strategy
S1 at time stem t � 1, and similarly, N2,t the number of in-
dividuals using strategy S2. Based on the input-output model,
the proportional imitation rule, and the assumption of random
pairwise interactions [2], the numbers of individuals using S1

and individuals using S2 at time step t + 1 can be given by

N1,t+1 = N1,t − N1,t (1 − ut )g21,t + N2,t ut g12,t

= N1,t [1 + (1 − ut )(g12,t − g21,t )],

N2,t+1 = N2,t − N2,t ut g12,t + N1,t (1 − ut )g21,t

= N2,t [1 + ut (g21,t − g12,t )], (2)

respectively, where ut = N1,t/(N1,t + N2,t ) and g ji,t denotes
the probability that an individual using Si switches his strategy
to S j when he interacts with an individual using S j at time step
t � 1 for i, j = 1, 2. Here, g ji,t is defined as a Fermi function
[3,14], that is, g ji,t = 1

1+e−β(π j,t −πi,t ) for i, j = 1, 2, where the
parameter β is a positive constant that measures the individual
sensitivity to the payoff difference between paired individuals
[3]. Obviously, the term 1 + (1 − ut )(g12,t − g21,t ) in Eq. (2)
represents the change rate of the number of individuals using
S1 and, similarly, the term 1 + ut (g21,t − g12,t ) the change rate
of the numbers of individuals using S2. Based on Eq. (2), the
frequency of strategy S1 at time step t + 1 can be expressed as

ut+1 = ut [1 + (1 − ut )(g12,t − g21,t )]

= ut − ut (1 − ut )
1 − eβ(π1,t −π2,t )

1 + eβ(π1,t −π2,t )
. (3)

This is a stochastic recurrence equation. It provides a basic
model for understanding the dynamic stability and evolution-
ary stability of imitation dynamics in stochastic environments.

For the asymptotic (or long-run) behavior of Eq. (3), let
û represent a constant (nonrandom) equilibrium, that is, an
equilibrium that does not depend on the randomness of the
payoff matrix �(t ). For example, the fixation states û = 0 and
û = 1 are both the constant equilibria of the system. Following
Karlin and Liberman [15,16] (see also [6]), a constant equilib-
rium û is considered to be stochastically locally stable (SLS)
if for any ε > 0 there exists δ0 such that P (ut → û) � 1 − ε

as soon as |u0 − û| < δ0. On the other hand, a constant equi-
librium û is stochastically locally unstable (SLU) if P (ut →
û) = 0 as soon as |u0 − û| > 0.

A. Stochastic local stability of fixation states

Consider first the stochastic local stability of the fixation
state û = 0. Note that

dut+1

dut
= 1 − (1 − 2ut )

1 − eβ(π1,t −π2,t )

1 + eβ(π1,t −π2,t )

+ ut (1 − ut )
2eβ(π1,t −π2,t )β[a(t )−b(t )−c(t ) + d (t )]

(1 + eβ(π1,t −π2,t ) )2
.

(4)

Thus, for P [b(t ) = d (t )] < 1, when the system state is near
û = 0, Eq. (3) can be approximated as

ut+1 ≈ ut

(
1 − 1 − eβ[b(t )−d (t )]

1 + eβ[b(t )−d (t )]

)

= 2ut

1 + e−β[b(t )−d (t )]
. (5)

Note also that

un = u0

n−1∏
t=0

2

1 + e−β[b(t )−d (t )]

⇒ 1

n
ln

un

u0
= 1

n

n−1∑
t=0

ln
2

1 + e−β[b(t )−d (t )]

⇒ lim
n→∞

1

n
ln

un

u0
= lim

n→∞
1

n

n−1∑
t=0

ln
2

1 + e−β[b(t )−d (t )]

=
〈
ln

2

1 + e−β[b(t )−d (t )]

〉
, (6)

where 〈·〉 denotes the mathematical expectation. Here we need
to point out that the last step in the above equation is deter-
mined by the strong law of large numbers, and the probability
distributions of the random variables b(t ) and d (t ) do not
depend on the time step t � 1. Thus, for P [b(t ) = d (t )] < 1,
the fixation state û = 0 is SLS if〈

ln
2

1 + e−β[b(t )−d (t )]

〉
< 0 (7)

(the proof is shown in the Appendix; see also Zheng et al. [6]).
Furthermore, for the degenerate case with P [b(t ) =

d (t )] = 1 [i.e., b(t ) = d (t ) at any time step t � 1], when the
system state is near û = 0, Eq. (2) can be approximated as

ut+1 = ut − ut (1 − ut )
1 − eβ[a(t )−c(t )]ut

1 + eβ[a(t )−c(t )]ut

≈ 2ut

1 + e−β[a(t )−c(t )]ut
. (8)

Note also that when ut is small, we have e−β[a(t )−c(t )]ut ≈
1 − β[a(t ) − c(t )]ut . So, the above equation can also be re-
approximated as

ut+1 ≈ 2ut

2 − β[a(t ) − c(t )]ut
. (9)
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FIG. 1. Stochastic simulations for the stochastic local stability of cooperation in the imitation dynamics based on SPD game. We here
take b = 2 and c = 1, and that ϑi j for i, j = 1, 2 are independent and identically distributed Gaussian noises with variance σ 2. Moreover,
the initial frequencies of cooperation are taken as 0.99 [in panel (a)] and 0.9 [in panel (b)], respectively. The simulation results are shown
on the β-σ 2 plane, in which the color of each point represents the probability that the cooperation will be fixed, which is calculated from a
thousand independent stochastic simulations. The light purple curve corresponds to the theoretical critical condition 〈ln 2

1+eβ[−c+η(t )] 〉 = 0 for
the stochastic local stability of the fixation state of cooperation. Obviously, these results show clearly a mutual compensation effect between
the noise intensity and the size of parameter β for the evolution of cooperation.

Let vt = 1/ut , that is, vt → ∞ if ut → 0. Then, the above
equation can be equivalently expressed as

vt+1 = vt − β[a(t ) − c(t )]

2
. (10)

This implies that

vn − v0 = −β

2

n−1∑
t=0

[a(t ) − c(t )]

⇒ 1

n
(vn − v0) = β

2

1

n

n−1∑
t=0

[c(t ) − a(t )]

⇒ lim
n→∞

1

n
(vn − v0) = β

2
lim

n→∞
1

n

n−1∑
t=0

[c(t ) − a(t )]

= β

2
〈c(t ) − a(t )〉. (11)

Therefore, for the degenerate case with P [b(t ) = d (t )] = 1,
the fixation state û = 0 is SLS if c̄ > ā (the proof of this result
is similar to that in the Appendix, and see also [6]).

By symmetry, we can see that the fixation state û = 1 is
SLS if 〈ln 2

1+eβ[a(t )−c(t )] 〉 < 0, and for the degenerate case with
P [a(t ) = c(t )] = 1, û = 1 is SLS if b̄ > d̄ .

Example 1. In this example, we consider a stochastic imita-
tion dynamics based on a stochastic prisoner’s dilemma (SPD)
game, which was proposed by Bereby-Meyer and Roth [17]
(see also [18]). The payoff matrix �(t ) is taken as

�(t ) =
(

b − c −c
b 0

)
+

(
ϑ11(t ) ϑ12(t )
ϑ21(t ) ϑ22(t )

)
,

where the first matrix on the right side of the above
corresponds to a standard prisoner’s dilemma (PD) game

with b > c [2,12,13], and the second matrix is a random
payoff matrix, which represents the additive effect of en-
vironmental noises on the pairwise interactions [18]. For
convenience, we here assume the random variables ϑi j (t )
(i, j = 1, 2) to be independent and identically distributed
Gaussian noises if P [ϑi j (t ) = ϑkl (t )] < 1 for i j �= kl , that
is, 〈ϑi j (t )〉 = 0 and 〈ϑi j (t )ϑi j (t ′)〉 = 2Dδ(t − t ′) for i, j =
1, 2, and 〈ϑi j (t )ϑkl (s)〉 = 0 for i j �= kl and s �= t . Let ut

denote the frequency of cooperation (C) and 1 − ut the
frequency of defection (D) at time step t � 1. Then, it
is easy to see that the fixation of D (û = 0) is SLS
if 〈ln 2

1+e−β[−c+ξ (t )] 〉 < 0, where ξ (t ) = ϑ12(t ) − ϑ22(t ) with
〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = 4Dδ(t − t ′), and the fixation
of C (û = 1) is SLS if 〈ln 2

1+eβ[−c+η(t )] 〉 < 0, where η(t ) =
ϑ11(t ) − ϑ21(t ) with 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 = 4Dδ(t −
t ′). The stochastic simulation results show clearly that for a
given value of β, a higher noise intensity is more conducive
to promoting the evolution of cooperation, and similarly, for a
given noise intensity, a higher β is also more conducive to pro-
moting the evolution of cooperation [see Figs. 1(a) and 1(b)].
This implies that for the evolution of cooperation, there may
be a mutual compensation effect between the noise intensity
and the size of parameter β.

B. Stochastic local stability of a constant interior equilibrium

Let û ∈ (0, 1) be a constant interior equilibrium of the
system, which is a solution of π1,t − π2,t = 0 independent of
the randomness of the payoff matrix �(t ) in the interval 0 <

ut < 1 [6]. For example, if a(t ) = d (t ) and b(t ) = c(t ) at any
time step t � 1, then û = 1/2 must be a constant interior equi-
librium of Eq. (3). This implies that for Eq. (3), the existence
of constant interior equilibrium strongly depends on the nature
of the random payoff matrix �(t ); that is, we cannot guarantee
the constant interior equilibrium always exists in general.
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Note that if a constant interior equilibrium û exists, then we have

dut+1

dut

∣∣∣∣
ut =û

= 1 + û(1 − û)
β[a(t ) − b(t ) − c(t ) + d (t )]

2
. (12)

When ut is near û, we have the approximation

ut+1 = û +
(

1 + û(1 − û)
β[a(t ) − b(t ) − c(t ) + d (t )]

2

)
(ut − û)

⇒ ut+1 − û =
(

1 + û(1 − û)
β[a(t ) − b(t ) − c(t ) + d (t )]

2

)
(ut − û)

⇒ (
ut+1 − û

)2 =
(

1 + û(1 − û)
β[a(t ) − b(t ) − c(t ) + d (t )]

2

)2

(ut − û)2. (13)

Let zt = (ut − û)2 for all possible t � 0. Then, we have

zt+1 = zt

(
1 + û(1 − û)

β[a(t ) − b(t ) − c(t ) + d (t )]

2

)2

⇒ zn = z0

n−1∏
t=0

(
1 + û(1 − û)

β[a(t ) − b(t ) − c(t ) + d (t )]

2

)2

⇒ lim
n→∞

1

n
ln

(
zn

z0

)
= lim

n→∞
1

n

n−1∑
t=0

ln

(
1 + û(1 − û)

β[a(t ) − b(t ) − c(t ) + d (t )]

2

)2

=
〈

ln

(
1 + û(1 − û)

β[a(t ) − b(t ) − c(t ) + d (t )]

2

)2
〉
. (14)

This implies that a constant interior equilibrium û is SLS if〈
ln

(
1 + û(1 − û)

β[a(t ) − b(t ) − c(t ) + d (t )]

2

)2
〉

< 0

(15)

(the proof of this result is also similar to that in the Appendix,
and see also [6]).

Example 2. From the inequality in Eq. (15), if all a(t ),
b(t ), c(t ), and d (t ) are constants, and a(t ) = d (t ) = a and
b(t ) = c(t ) = b with b > a, then Eq. (3) degenerates to a
deterministic recurrence equation, and the constant interior
equilibrium û = 1/2 is locally asymptotically stable if β <

βcr = 8/(b − a), where βcr denotes the bifurcation value of
β such that for β > βcr , with the increase on β, the system
will exhibit the periodic bifurcations and chaos, and also the
symmetry breaking in this process [3,19–21]. For a = 0 and
b = 4, when β = 6, the system will exhibit a periodic two-
cycle with symmetric breaking [see Figs. 2(a) and 2(e)] (see
also [3]). This naturally raises a more challenging question:
how will the environmental noise affect the nonlinear dynamic
behavior of the system? As a special case, we here assume that
a(t ) = d (t ) = 0 and b(t ) = c(t ) at any time step t � 1, where
〈b(t )〉 = b̄ = 4 and the variance of b(t ) is given by 〈[b(t ) −
b̄]2〉 = σ 2

b . From the inequality in Eq. (15), the constant inte-
rior equilibrium û = 1/2 is SLS if 〈ln[4 − βb(t )]2〉 < ln 16.
If σ 2

b is small but σ 2
b �= 0, then the condition that û = 1/2 is

SLS can be approximately expressed as ln(1 − β )2 <
σ 2

b
2(1−β )2 ;

that is, û = 1/2 must be SLS if β < 2. So, for small σ 2
b ,

the distribution characteristics of ut for given different values

of β should match the bifurcation diagram corresponding to
σ 2

b = 0. For example, when σ 2
b = 0.01, the distribution of ut

is a bimodal distribution for β = 6, which corresponds to the
periodic two-cycle with symmetric breaking in the bifurca-
tion diagram [see Figs. 2(b) and 2(f)]. However, for β = 6,
as σ 2

b increases, the distribution of ut undergoes a transition
from a bimodal distribution to a 4-peak distribution (i.e., the
symmetry breaking disappears due to the increase in σ 2

b ) [see
Figs. 2(c) and 2(g)], then from a 4-peak distribution to a
bimodal distribution [see Figs. 2(d) and 2(h)]. This strongly
suggests that for the stochastic imitation dynamics with con-
stant interior equilibrium, the increase in noise intensity may
change the nonlinear dynamic behavior of the system. This
result should also be consistent with findings in a previous
study [21].

III. STOCHASTIC EVOLUTIONARY STABILITY

For the stochastic imitation dynamics, we define a stochas-
tically evolutionarily stable (SES) strategy as a strategy such
that, if all the members of the population adopt it, then the
probability for any mutant strategy to invade the population
successfully under the influence of natural selection is arbi-
trarily low (see also [6,8]). This also implies that if a strategy
is a SES strategy, then the fixation state of this SES strategy
must be SLS for any one possible mutant strategy.

To show the condition for the stochastic evolutionary
stability in the stochastic imitation dynamics, we consider
a population consisting of only two mixed strategies u =
(u, 1 − u) and û = (û, 1 − û). The payoff matrix at time step
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FIG. 2. Stochastic simulations for the impact of the noise intensity σ 2
b on the symmetric breaking. The bifurcation diagrams of the system

corresponding to σ 2
b = 0, σ 2

b = 0.01, σ 2
b = 0.1, and σ 2

b = 1, as well as the corresponding distribution of ut at β = 6, are presented in panels
(a) and (e), (b) and (f), (c) and (g), and (d) and (h), respectively. All these results show how the nonlinear dynamical properties of the
imitation dynamics are affected by the environmental noise. For given σb and initial value u0 = 0.6, the stochastic simulations are performed
corresponding to the different values of β, respectively. For the simulation corresponding to a given value of β, the initial 3 × 103 steps are
discarded as transients, and the iterative results from the next 104 steps are recorded as the data points plotted in the bifurcation diagrams.

t � 1 for these two mixed strategies is given by(
u · �(t )u u · �(t )û
û · �(t )u û · �(t )û

)
, (16)

where u · �(t )u [or u · �(t )û] is the payoff to strategy
u against strategy u (or ũ) at time step t � 1, and û · �(t )u
[or û · �(t )û] the payoff to strategy û against strategy u
(or û). Let yt be the frequency of strategy u at time step
t � 0, and 1 − yt the frequency of strategy û. Then, the
expected payoffs of u and û at time step t � 1 can be
given by πu,t = yt u · �(t )u + (1 − yt )u · �(t )û and πû,t =
yt û · �(t )u + (1 − yt )û · �(t )û, respectively. Thus, the fre-
quency of u at time step t + 1, yt+1 can be described as

yt+1 = yt − yt (1 − yt )
1 − eβ(πu,t −πû,t )

1 + eβ(πu,t −πû,t )
. (17)

Based on the definition of stochastic evolutionary stability, if
strategy x̂ is said to be a SES strategy, then the fixation state
of û, denoted by ŷ = 0, is SLS for all possible u �= û. For the
stochastic local stability of ŷ = 0, we need to consider two
possible cases:

(i) If strategy û satisfies P {[�(t )û]1 = [�(t )û]2} =
1, that is, [�(t )û]1 = [�(t )û]2 at any time step t �
1, where [�(t )û]1 = ûa(t ) + (1 − û)b(t ) and [�(t )û]2 =
ûc(t ) + (1 − û)d (t ), then Eq. (17) can be rewritten as

yt+1 = yt − yt (1 − yt )
1 − eβ[u·�(t )u−û·�(t )u]yt

1 + eβ[u·�(t )u−û·�(t )u]yt
. (18)

When yt is near 0, the above equation can be approximated as

yt+1 ≈ 2yt

1 + e−β[u·�(t )u−û·�(t )u]yt
. (19)

Therefore, similar to the analysis in Eqs. (8)–(11), ŷ = 0 is
SLS if 〈û · �(t )u〉 > 〈u · �(t )u〉 (the proof is similar to that

in the Appendix). This implies that a strategy û satisfying
P {[�(t )û]1 = [�(t )û]2} = 1 is said to be a SES strategy if
û · �̄u > u · �̄u for all possible u �= û, where �̄ = (ā b̄

c̄ d̄

)
is called the mean payoff matrix of �(t ). This condition is
exactly the so-called stability condition for ESS in classical
evolutionary game theory [2]. For example, if a(t ) = d (t ) and
b(t ) = c(t ) at any time step t � 1, then it is easy to see that
strategy û = ( 1

2 , 1
2 ) is a SES strategy if b̄ > ā.

(ii) If strategy û satisfies P {[�(t )û]1 = [�(t )û]2} < 1,
then, similarly to the analysis in Eqs. (5)–(7), ŷ = 0 is
SLS if

〈
ln

2

1 + e−β[u·�(t )û−û·�(t )û]

〉
< 0 (20)

(the proof is similar to that in the Appendix). For convenience,
we take

H (u, û) =
〈
ln

2

1 + e−β[u·�(t )û−û·�(t )û]

〉
. (21)

Note that

∂H (u, û)

∂u
= β

〈 {[�(t )û]1 − [�(t )û]2}e−β[u·�(t )û−û·�(t )û]

1 + e−β[u·�(t )û−û·�(t )û]

〉
,

∂2H (u, û)

∂u2

= −β2

〈
{[�(t )û]1 − [�(t )û]2}2e−β[u·�(t )û−û·�(t )û](

1 + e−β[u·�(t )û−û·�(t )û]
)2

〉
< 0.

(22)
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Thus, we can see that if û is a SES strategy, then it must be
the solution of the equation

∂H (u, û)

∂u

∣∣∣∣
u=û

= 0

⇒ 〈[�(t )û]1 − [�(t )û]2〉 = 0

⇒ (�̄û)1 − (�̄û)2 = 0, (23)

which is û = (b̄ − d̄ )/(b̄ − d̄ + c̄ − ā). This means that the
pure strategy S1 is SES for all possible u �= S1 if û � 1; the
pure strategy S2 is SES for all possible u �= S2 if û � 0; and
if û is in the interval 0 < û < 1, that is, ā > c̄ and d̄ > b̄, or
ā < c̄ and d̄ < b̄, then mixed strategy û = (û, 1 − û) is SES
for all possible u �= û.

All of the above results show clearly that for the stochastic
imitation dynamics described by Eq. (2), the stochastic evolu-
tionary stability depends only on the mean payoff matrix �̄ of
the random payoff matrix �(t ).

IV. DISCUSSION

In this paper, the stochastic stability and stochastic evo-
lutionary stability of a discrete-time imitation dynamics with
random payoffs are studied. As is well known, random-
ness (or uncertainty) in the environment is one of the main
characteristics of nature, and this environmental noise will
generally affect the results of interactions between species
and between individuals [6], for example, the impact of en-
vironmental stochastic fluctuations on the interspecific com-
petition, or more theoretically, the stochastic stability of the
Lotka-Volterra equation under environmental stochastic fluc-
tuations [4]. Furthermore, as shown in the introduction, in
order to explore the impact of environmental noise on evo-
lutionary game dynamics, some previous studies not only
investigated the stochastic stability of the evolutionary game
dynamics with random payoffs but also developed the concept
of stochastic evolutionary stability [6,8]. So, as a natural ex-
tension of the study on the evolutionary game dynamics with
random payoffs, it is also a very interesting and challenging
question as to how the imitation dynamics is affected by the
environmental fluctuations.

For the stochastic stability of the imitation dynamics with
random payoffs, we mainly focus on the stochastic local
stability of the system’s constant equilibrium, that is, the
stochastic local stability of the boundary (or fixation state)
and constant interior equilibrium. Our main results show
that the boundary û = 0 is SLS if 〈ln 2

1+e−β[b(t )−d (t )] 〉 < 0, and
similarly, the boundary û = 1 is SLS if 〈ln 2

1+eβ[a(t )−c(t )] 〉 < 0;
if a constant interior equilibrium û ∈ (0, 1) exists, then it
is SLS if 〈ln[1 + û(1 − û) β[a(t )−b(t )−c(t )+d (t )]

2 ]2〉 < 0. On the
other hand, we have also to point out that for the degenerate
case with P [b(t ) = d (t )] = 1 (or P [a(t ) = c(t )] = 1), û = 0
(or û = 1) is SLS if c̄ > ā (or b̄ > d̄).

As an example, based on the stochastic local stability of
the boundaries (or fixation states) in the stochastic imitation
dynamics, the SPD game [18] is considered. We found that
for a given value of β, a higher noise intensity should be
more conducive to promoting the evolution of cooperation,
and similarly, for a given noise intensity, a higher value of β

should be more conducive to promoting the evolution of co-

operation. This implies that for the evolution of cooperation in
stochastic imitation dynamics, there may be a mutual compen-
sation effect between the noise intensity and the parameter β.
This result may provide a new perspective for understanding
the evolution of cooperation in stochastic environments. Fur-
thermore, based on the stochastic local stability of a constant
interior equilibrium in the stochastic imitation dynamics, the
effect of noise intensity on the nonlinear dynamical behavior
of the system is also considered. For a special case with
�(t ) = ( 0 b(t )

b(t ) 0

)
, where 〈b(t )〉 = 4 and β = 6, we found

that an increase in noise intensity may have a profound impact
on the nonlinear dynamic behavior of the system. This result
implies that the nonlinear dynamic properties of imitation dy-
namics could be profoundly affected by environmental noise.

Just as the evolutionary stability and stochastic evolution-
ary stability are respectively the most fundamental theoretical
concepts in evolutionary game dynamics and in stochastic
evolutionary game dynamics [6–8,21], the stochastic evolu-
tionary stability should be also the core theoretical concept
of stochastic imitation dynamics. Based on the analysis of
stochastic local stability of stochastic imitation dynamics, the
stochastic evolutionary stability can also be equivalently de-
scribed as follows: if a strategy is called a SES strategy, then
its fixation state must be SLS for any one possible mutant
strategy. According to this definition, we found that (i) if a
strategy û satisfies P {[�(t )û]1 = [�(t )û]2} = 1, then it is
SES if û · �̄u > u · �̄u for all possible u �= û, and (ii) if
a strategy û satisfies P {[�(t )û]1 = [�(t )û]2} < 1, then the
pure strategy S1 (or S2) is SES if b̄−d̄

b̄−d̄+c̄−ā
� 1 (or b̄−d̄

b̄−d̄+c̄−ā
�

0), and a completely mixed strategy û = (û, 1 − û) with û =
b̄−d̄

b̄−d̄+c̄−ā
∈ (0, 1) is SES if b̄ > d̄ and c̄ > ā, or d̄ > b̄ and

ā > c̄. Therefore, for the stochastic imitation dynamics, the
stochastic evolutionary stability depends only on the mean
payoff matrix �̄ of the random payoff matrix �(t ). This result
should have significant theoretical value for understanding the
effect of environmental noise on the evolutionary stability of
imitation dynamics.

Finally, in this study, based on some previous studies
[3,14], we still use the Fermi function to measure the prob-
ability of pairs of individuals imitating each other. However, a
natural question is whether the different mathematical forms
of the function measuring the strategy switching probability
will have a significant impact on the results. This is a question
that is well worth considering in future studies.
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APPENDIX: PROOF OF THE STOCHASTIC LOCAL
STABILITY OF EQUATION (5)

Following Karlin and Liberman [15,16] and Zheng et al.
[6], we can see that Eq. (5) can be written in the form

ut+1

ut
= 2

1 + e−β[b(t )−d (t )]
, (A1)
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from which

1

n
(ln un − ln u0) = 1

n

n−1∑
t=0

ln
2

1 + e−β[b(t )−d (t )]
(A2)

for n � 1. Let

μ =
〈
ln

2

1 + e−β[b(t )−d (t )]

〉
(A3)

and define

E =
{

1

n

n−1∑
t=0

ln
2

1 + e−β[b(t )−d (t )]
→ μ

}
. (A4)

The strong law of large numbers guarantees that P (E ) = 1.
Under these conditions, Eq. (A2) implies that

lim
n→∞

1

n

n−1∑
t=0

ln
2

1 + e−β[b(t )−d (t )]
� 0 (A5)

if this limit exists. This is not possible in the set E if μ > 0.
In this case, we conclude that

P (ut → 0) � P (EC ) = 0. (A6)

This means that û = 0 is stochastically unstable if μ > 0.
Now consider the case where μ < 0. By the strong law

of large numbers and Egorov’s theorem, for any ε > 0, there

exists an integer N � 1 such that the probability of the event

F =
{

1

n

n−1∑
t=0

ln
2

1 + e−β[b(t )−d (t )]
<

μ

2
, ∀ n � N

}
(A7)

satisfies

P (F ) � 1 − ε. (A8)

Therefore, there exists 0 < δ0 < δ such that ut < δ for t =
0, 1, . . . , N − 1 as soon as u0 < δ0. As a consequence,
Eq. (A2) for n = N yields

1

N
(ln uN − ln u0) <

μ

2
< 0 (A9)

in the set F as soon as u0 < δ0, which implies that

uN < u0 < δ, (A10)

and by recurrence that un < δ for all n � N .
It remains to show that un → 0 in F if u0 < δ0 as claimed

in Karlin and Liberman [15,16], since then

P (un → 0) � P (F ) � 1 − ε. (A11)

It suffices to note that Eq. (A2) for all n � N under the above
conditions gives

1

n
(ln un − ln u0) <

μ

2
< 0, (A12)

from which

ln un < ln u0 + nμ

2
→ −∞. (A13)

This means that un → 0, which completes the proof.
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