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Temporal interaction and its role in the evolution of cooperation
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This research investigates the impact of dynamic, time-varying interactions on cooperative behavior in social
dilemmas. Traditional research has focused on deterministic rules governing pairwise interactions, yet the impact
of interaction frequency and synchronization in groups on cooperation remains underexplored. Addressing this
gap, our work introduces two temporal interaction mechanisms to model the stochastic or periodic participation
of individuals in public goods games, acknowledging real-life variances due to exogenous temporal factors and
geographical time differences. We consider that the interaction state significantly influences both game payoff
calculations and the strategy updating process, offering new insights into the emergence and sustainability of
cooperation. Our results indicate that maximum game participation frequency is suboptimal under a stochastic
interaction mechanism. Instead, an intermediate activation probability maximizes cooperation, suggesting a vital
balance between interaction frequency and inactivity security. Furthermore, local synchronization of interactions
within specific areas is shown to be beneficial, as time differences hinder the spread of cross-structures but
promote the formation of dense cooperative clusters with smoother boundaries. We also note that stronger
clustering in networks, larger group sizes, and lower noise increase cooperation. This research contributes to
understanding the role of node-based temporality and probabilistic interactions in social dilemmas, offering
insights into fostering cooperation.
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I. INTRODUCTION

Cooperation is a fundamental prosocial behavior essential
for the successful evolution of both biological ecosystems and
human societies [1–3]. The imperative to understand its ori-
gins and persistence has become more pressing in the context
of global challenges such as climate change [4] and pandemics
[5]. Notwithstanding, cooperation typically requires individ-
ual sacrifices for collective gain. It presents a dilemma where
selfish individuals may be tempted to defect and exploit the
efforts of others, resulting in the tragedy of the commons
scenario [6]. To illustrate the contrast between individual and
collective optimal behaviours, the public goods game (PGG)
serves as a fundamental paradigm in cooperation research.
Particularly in comparison with the prisoner’s dilemma (PD)
games where interactions occur in pairwise patterns [7–9], the
PGG involves multiperson interactions within a group and can
better capture the contributions to collective welfare.
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In recent decades, the advancement of evolutionary game
theory (EGT) has been bolstered by developments in network
science, statistical physics, and other interconnected fields
[10–12]. These contributions have furnished a robust math-
ematical framework essential for examining the emergence
of cooperation in social dilemmas. Moreover, empirical re-
search has shown that cooperative behavior is one form of a
more general class of moral behavior [13], and this unified
framework follows personal norms that beyond the monetary
payoffs [14]. To understand which personal norms are more
likely to be internalized, scholars have started applying EGT
also to study the evolution of other moral behaviours, such as
honesty in the sender–receiver game [15] and trustworthiness
in the trust game [16]. Considering that real interactions are
usually structured and affect behavioural decision-making,
evolutionary games on graphs utilize nodes to represent in-
dividuals and links to denote interactions, allowing us to
observe the evolutionary dynamics of cooperation and other
moral behaviours in structured populations [13,17]. With this
approach, it has demonstrated that certain types of pop-
ulation structures, such as lattice [18], small-world [19],
scale-free [20], are conducive to fostering cooperation. This
phenomenon is identified as network reciprocity [21], a con-
cept highlighting that individual interaction topologies are
influenced by physical or social connections rather than oc-
curring in a well-mixed population setting [22–24]. Apart
from the aforementioned network structure, heuristic strate-
gies have also been instrumental in modifying individual
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interactions, such as migration [25–27], volunteering [28–30],
and reputation-based partner choice [31,32]. For example, the
volunteer mechanism within the spatial PGG shows “loners”
opting out, earning a steady and modest income. It is im-
portant to note that while their nonparticipation and external
benefits affect game payoffs, these strategies do not impact the
dynamics of learning individual strategies.

In much of the research concerning evolutionary games
on networks, a common simplification posits that individuals
engage in uninterrupted interaction, participating in repeated
games. This implies that deterministic interactions among
neighboring individuals are persistently active. However, real-
world situations frequently diverge from this assumption.
In practice, not all potential interaction relationships remain
continuously operational. Instead, these interactions can be
intermittent, displaying characteristics that fluctuate over time
[33]. This observation highlights the discrepancy between the
idealized models commonly used in theoretical research and
the more complex, dynamic nature of real-world interactions.
To bridge this gap, research has begun to incorporate the
time dimension to examine how the dynamic nature of time-
varying interactions affects the tendency of coupled systems
to achieve coherency [34,35].

One typical framework corresponds to the cases where the
structural evolution of the graph alters the interaction in a
way that switches it on and off over the course of time, such
as the coevolutionary games [36,37] or temporal networks
[35,38]. In this case, the occurrence of individual interactions
is fully dependent on the existence of links and acts on the
strategy updating process. Specifically, coevolutionary games
represent a coupled process in which interaction structures are
fluid and evolve in tandem with individual strategies [39].
As predicted by most coevolutionary game theory models
[40,41], laboratory experiments based on dynamic networks
provide clear evidence that the rapid making and breaking of
social ties promotes cooperation and leads to greater degree
heterogeneity [42,43]. However, the frequency of interaction
changes in these studies is mainly strategy- or payoff-driven,
with less consideration of temporal effects. The temporal
network (also known as a time-varying network) is a type
of network representation that considers the time dimen-
sion of dynamic interactions, and discusses the times when
edges are active as an explicit element [35]. As a popular
family of generative temporal networks, activity-driven (AD)
modeling [44,45] describes the instantaneous and fluctuating
dynamics through a time-invariant function called activity
potential, which encodes the probability per unit time that
nodes are involved in social interactions. The key element
in the AD network is the formation of social interactions
driven by the activity of individuals, urging them to interact
with connected peers, and by the empirical fact that differ-
ent individuals show varying activity patterns in terms of
frequency and synchronization [33]. Recently, some research
has tried to associate activity-driven temporal networks and
the evolutionary dynamics of cooperation [46,47]. According
to activity potential, the nodes become active and generate
pairwise links, which are deleted and rebuilt in the next time
window. However, most social ties in real communities do
not change frequently, while the interactions that happen on
links are impermanent with temporal characters. Therefore, it

is necessary to address the insight of individual activity into
the construction of group interaction rather than the pairwise
connection topology.

The second category includes systems where the time-
dependency of interactions is driven by external factors, such
as environmental changes. Research in this area typically
models scenarios where nodes interact randomly, even with
established links among neighbors, and the probability of
interaction is not uniform. The exploration of stochastic inter-
actions within evolving games has been a crucial component
of these studies [48,49]. Individuals stochastically participate
in PDGs with direct neighbors based on specified proba-
bilities, where interaction frequency, governed by a certain
distribution, only impacts game participation and not strategy
updates. Nevertheless, a notable limitation of these studies is
the frequent oversight of the physical features that adhere to
specific spatial-temporal rules within the dynamics of interac-
tions. This oversight is particularly evident when considering
individuals with varying circadian rhythms or those situated in
different geographical locations [50]. Such disparities can re-
sult in different periods of inactivity between game rounds and
difficulties in synchronizing gameplay due to factors like jet
lag. Pioneered by Kuramoto who considered the case where
each oscillator is coupled to all the others [51,52], synchro-
nization, as an emerging phenomenon of a large population
with dynamically interacting units, has been widely discussed
in coupled systems. In the framework of complex networks
where each node is considered as a Kuramoto oscillator [53],
the emergence of collective synchronization with oscillating
behavior is affected by interaction topologies that are fixed in
time or time-varying [33,54]. So far, synchronized behaviors
[55] have been mostly studied in the limit to structural prop-
erties of static networks (e.g., the degree distribution [56]),
while relatively few applications have been conducted on
time-varying intrinsic parameters (e.g., the natural frequency
[57]) of dynamic networks. This highlights the necessity of
comprehending how the synchronization developed in differ-
ent temporal interaction dynamics influences the evolution of
cooperation in spatial PGG.

Building upon volunteering and stochastic interaction con-
cepts, our study introduces temporal interaction mechanisms
to explore the effects of sporadic individual interactions on
group cooperation. In this extended PGG framework, individ-
uals can choose between cooperation or defection strategies
and be either active or inactive. On the basis of the indi-
vidual active state, we have refined the allocation of public
goods benefits, ensuring inactive individuals receive a basic
allowance only in the presence of active cooperators. Addi-
tionally, we established two individual activity patterns by
creating state variables for each individual. These variables
follow random distributions across time and space, introduc-
ing a time lag that renders interactions periodic over time and
varied across regions.

This work offers a twofold contribution. First, we find
that high-frequency game interaction is not essential for the
prevalence of cooperation; instead, there is an optimal in-
teraction frequency range that maximizes cooperation levels.
Cooperation necessitates individuals being synchronously ac-
tive within a localized area. Time differences, while hindering
the spread of cooperation, promote the formation of highly
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FIG. 1. Schematic of temporal interaction mechanism. (a) Active patterns of five individuals, represented by solid circles of various colours.
Agents x and y engage in stochastic interactions, while agents u, v, and w follow periodic interactions. Panel (b) illustrates game payoff
scenarios: active cooperators and defectors as filled blue and red circles, inactive ones as light blue and red empty circles. In panel (b-1), only
w is active, leading to no game and zero gain. Panel (b-2) represents the typical situation where the active cooperator y contributes to public
goods, and inactive ones receive a basic allowance. Panel (b-3) shows zero payoff due to no active cooperators. Panel (c) details the calculation
of the population activation rate.

cooperative clusters. Second, distinguishing from studies with
pairwise interactions on temporal networks, we present a
deeper understanding of the spatial dynamics affecting the
emergence of clusters in self-organizing populations through
typical snapshots of temporal group interactions and the com-
parison of heterogeneous network structure. These insights
could have significant implications for fostering cooperation
in social and information networks.

This paper is structured as follows: Section II outlines the
models under stochastic and periodic interaction mechanisms.
Section III details numerical simulation results. Conclusions
and discussions are drawn in Sec. IV. Finally, we formulate
an extended pair-approximation model and provide theoretical
analyses in the Appendix.

II. MODELS

A. Public goods game

We consider the spatial PPGs on a L2 square lattice with
periodic boundary conditions. Each individual is situated at
a node and interacts within the von Neumann neighborhood,
where G = k + 1 represents the group size, and k = 4 in-
dicates the node degree. Participants can adopt one of two
strategies: cooperation (C), where cooperators contribute a
quantity c to the common pool or defection (D), where de-
fectors contribute nothing, opting to free-ride on the public
goods. For simplicity, we standardize the investment cost c to
one.

B. Temporal interaction

Considering scenarios where individuals frequently miss
games due to various time-related factors, we introduce an
exogenous time-dependent state variable ax(t ) ∈ {0, 1} to rep-
resent the interaction state of individual x at time t . Active
individuals (ax(t ) = 1) choose to contribute to public goods
and revise strategies based on their payoff differential with
neighbors. In contrast, inactive individuals (ax(t ) = 0) neither
participate in games nor change strategies, but they receive
a small, fixed portion σ of the public resources. This is due
to the nonexcludability and positive externalities of public
goods, preventing the exclusion of noncontributors from ac-
cessing them. In each PGG group, total benefits are generated
exclusively from active cooperators’ contributions. After de-
ducting the shares for inactive individuals, the residual amount
is equally divided among all active members. Notably, differ-
ent from the loners’ scenario [29], inactive individuals receive
no benefits in the absence of active cooperators.

To investigate the impact of activity patterns on evolu-
tionary dynamics, this study considers two representative
distributions for activation interaction rules, namely stochastic
interaction and periodic interaction. These rules introduce a
degree of randomness and heterogeneity into the evolutionary
timeline. Figure 1 illustrates these individual activity patterns.
The population activation rate is defined as the ratio of the
number of activated individuals at time t to the total popula-
tion size. These two different interaction rules can be captured
as below.
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Stochastic interaction: As depicted in Fig. 1(a), stochastic
interaction (individuals x and y) characterizes scenarios where
human behavior is random at any given time. We assign a
probability p for each individual to become active in group
interactions, where p ∈ [0, 1]. The number of activations Ab in
which an individual participates over the total simulation time
T follows a binomial distribution Ab ∼ B(T, p). The proba-
bility of Ab taking value n is P(Ab = n) = (T

n

)
pn(1 − p)T −n

for n = 0, 1, 2 . . . , and the scenario of p = 1 represents full
interactions, reverting our model to the baseline spatial public
goods game [18].

Periodic interaction: Accounting for human circadian
rhythms and location, periodic interaction alternates between
engagement and rest periods as depicted in Fig. 1(a) and indi-
viduals u, v,w. For each individual, the number of activations
Ap within the time [t, t + τ ) follow a Poisson distribution with
parameter λ, as Ap ∼ P(λ). Here, τ is a unit like a day or
week, and λ represents the average number of active partici-
pations per time interval. The probability of Ap taking value
n is P(Ap = n) = λne−λ

n! for n = 0, 1, 2 . . . . Thus, the average
activation probability p̄ = λ/τ , simplified to p for further
discussion. Additionally, a random variable ε ∼ N (μ, σ 2) is
introduced to indicate the time lags effect on interaction states
across different areas. A node close to the network centroid is
arbitrarily selected as a reference point, with its time serving
as the basis for simulation time. The mean value μ of ε

corresponds to the Euclidean distance d between an individual
and this reference node:

d (i, j) =
√

(xi − x j )2 + (yi − y j )2, (1)

where 2μdmax = τ ensures that the maximum time difference
between the farthest individuals does not surpass the time
interval. The local time for each agent is set to t − ε. All
probability is assumed to be independently and identically
distributed among different individuals.

C. Evolutionary dynamics

Simulations are conducted using Monte Carlo methods.
Initially, each individual on site is randomly assigned a strat-
egy with equal probability, and all actively participate in
games. Subsequently, an activation schedule is generated for
each individual according to the temporal interaction rule,
defining their state at any point during the evolutionary pro-
cess. For periodic interaction, we set τ = 24, μ = 12

√
2L,

and σ = 2 to simulate daily human activities. The PGG then
advances through a sequence of elementary steps.

Step 1 (Game interaction): A random individual x is se-
lected as the focal player to participate in the PGGs occurring
at its site and neighboring sites. Within each group g, let ic
(id ) denote the number of active cooperators and defectors,
respectively, and i = ic + id represents the total number of
active neighbors. If ax + i � 1, the game does not take place,
and all individuals receive a payoff of 0 [Fig. 1(b-1)]. In other
scenarios, the multiplication factor r ∈ (1, G) determines the
total contributions from cooperators. With the experimental
evidence in Refs. [58,59], an increase in r leads to a dimin-
ished dilemma strength and favors cooperation. Accordingly,

the payoff of active cooperator (AC) and active defector (AD)
in one game are given as

πAC = r(ic + 1) − σ (k − i)

i + 1
− 1, (2)

πAD = ric − σ (k − i)

i + 1
. (3)

Both inactive cooperator (IC) and inactive defector (ID)
receive a payoff

πI =
{
σ, ic � 1,

0, ic = 0,
(4)

where σ ∈ (0, r − 1) represents the inactivity payoff. Specifi-
cally, when there are no active individuals investing in public
goods, all AD, IC, and ID have no benefits, as illustrated
in Fig. 1(b-3). The overall payoff at time step t is the sum
of all payoffs from the games participated in, calculated as
�x = ∑G

g=1 π
g
x .

Step 2 (Update of strategy and state): Following game par-
ticipation, individuals update their strategies asynchronously
in a randomly sequential manner. Initially, individual x ran-
domly selects one of its neighbors y, who acquires its payoff
�y. Then, x adopts y’s strategy with a probability determined
by the Fermi function [17]:

f (sx → sy) = ax(t )

1 + e[−(�y−�x )/K]
, (5)

where K measures noise intensity. With K → 0, individu-
als with higher payoffs easily dominate strategy-wise over
those with lower payoffs. Conversely, for K → ∞, strategy
imitation becomes indiscriminate of payoffs, indicative of
weak selection [60]. We set K = 0.1, favoring the imitation
of higher payoff strategies, though noise allows for the oc-
casional adoption of less successful ones. It is important to
note that strategy updates are exclusive to active individuals,
while inactive ones keep their strategies but may still influ-
ence others [Eq. (5)]. Each individual x updates its state to
ax(t + 1) for the next game round. The process concludes
with L2 iterations, allowing every individual the opportunity
to revise their strategy and state once on average, completing
a full Monte Carlo step (MCS).

III. RESULTS

In the following subsections, we present simulation results
conducted on a square lattice of size 104. The key value ρc,
characterizing the frequency of cooperators in the population,
is derived by averaging over the last 103 generations, fol-
lowing more than 104 time steps. To ensure robustness and
minimize variability, the final steady states are obtained by
conducting up to 10 independent realizations.

A. Overview of temporal interaction mechanism

We begin by providing a comprehensive analysis of the
transition phenomenon, focusing on the multiplication factor
r and activation probability p. Figure 2 presents r-p phase
diagrams illustrating the cooperation level ρc under both
stochastic and periodic interaction mechanisms. Notably, al-
though a portion of the investment returns in public goods is
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FIG. 2. r-p phase diagrams of the spatial public goods game as
obtained for different inactive income σ = 0.5 (left column) and
σ = 1 (right column). Panels (a) and (b) represent stochastic in-
teraction, panels (c) and (d) represent periodic interaction. The red
(blue) line represents the phase transitions between the mixed C + D
and homogeneous D (C) states, and the solid (dashed) lines sig-
nify the continuous (discontinuous) phase transitions. The inserted
colourmap (∗−1) of each panel shows the equilibrium fraction of
cooperators with r and p. From red to blue, the color bar indicates
that the cooperation level changes from 0 to 1 accordingly. All results
are obtained for K = 0.1 and t = 105.

distributed to inactive individuals, the threshold for coopera-
tors to surpass defectors is significantly lower than the null
model. This implies that temporal interaction mechanisms
are conducive to the flourishing of cooperation. Moreover,
at σ = 1, the proportion of defectors is reduced compared to
the volunteering model [29], increasing the likelihood of the
group reaching a global cooperation steady state. However,
the fixed payoff σ of inactive individuals undermines coopera-
tion. As σ increases from 0.5 to 1, the transition lines between
ALL D, C+D, and ALL C shrink, along with a reduction
in the area representing the C+D phase. Interestingly, the
transition between the all-cooperator and all-defector states is
discontinuous, with low activation probabilities. Conversely,
under conditions of frequent interactions, the system evolves
into a mixed C+D state through a continuous phase transition.

Further, there exists a nonlinear interplay between mul-
tiplication factor r and activation probability p in fostering
cooperation, with varying impacts depending on the activ-
ity pattern. As depicted in Figs. 2(a) and 2(b), within the
stochastic interaction mechanism, a negative correlation be-
tween r and p is observed at p < 0.5. Specifically, as p
decreases, the threshold r required to shift the system from
an all-defector (ALL D) to an all-cooperator (ALL C) state
incrementally rises. It’s important to note that cooperators fail

(a) (b)

FIG. 3. Cooperation level ρc as a function of activation probabil-
ity p for various multiplication factors r under a stochastic interaction
mechanism. Results are shown for (a) σ = 0.5 and (b) σ = 1. In each
subplot, four distinct curves correspond to r values of 3.5, 3.75, 4,
and 4.25, respectively.

to sustain themselves at p < 0.1, underscoring the critical role
of adequate interaction for the emergence of cooperation. In
scenarios of higher activation frequency (p � 0.5), the transi-
tion from an ALL D to a mixed cooperator-defector (C+D)
phase shows limited sensitivity to changes in p. However, the
multiplier r needed to achieve an ALL C phase escalates with
increasing p, indicating a positive correlation. This suggests
that, in stochastic interactions, an optimal activation probabil-
ity p exists at which the system can evolve into an ALL C
equilibrium with the smallest required r.

Furthermore, periodic interactions appear to have a slightly
more pronounced positive influence on cooperative behav-
ior. Figures 2(c) and 2(d) show that the C+D and ALL C
regions are more extensive compared to those in stochastic
interactions. Interestingly, the threshold for the emergence of
cooperation is not influenced by p, with the ALL D threshold
situated around r = 3.62 in Fig. 2(c) and r = 3.75 in Fig. 2(d).
However, as p increases from 0.01 to 1, the required r to
achieve an ALL C state first decreases and then rises con-
tinuously. Even with p < 0.1, effective cooperation can still
emerge and predominate with suitable r values, as seen in
Fig. 2(c). This indicates that small-scale activation may more
effectively lead to global cooperation, a phenomenon further
examined through spatiotemporal factors in Fig. 6.

B. Effects of stochastic interactions

To more precisely quantify the role of stochastic interaction
in promoting cooperation and determine the critical exponent,
our study investigates the dependence of cooperation level
(ρc) on activation probability (p) for varying multiplication
factors (r), as illustrated in Fig. 3. We observe that for a
fixed r the proportion of cooperators initially increases with
p, reaching an optimum, and then decreases as p further
escalates to 1. This pattern suggests an optimal p-range con-
ducive to achieving full cooperation, indicating that maximal
cooperative spread under stochastic interaction occurs at an
intermediate temporality. This “Goldilocks effect” of tem-
porality, eqnarraying with findings in spatial PDG [46,61],
demonstrates that neither too frequent nor too rare interactions
are ideal for promoting cooperation. Moreover, as p sur-
passes this optimal range, ρc starts to decline monotonically,
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(a-1)

(b-1)

(a-2)         (a-3)      (a-4)   (a-5)    (a-6)       (a-7) t=1                           t=100                          t=500                        t=1000 t=5000

t=1                           t=100                          t=500                         t=750   t=1500(b-2)      (b-3)       (b-4)     (b-5)   (b-6)   (b-7) 

FIG. 4. Evolutionary dynamics and spatial distributions of strategies under stochastic interaction mechanism. Columns (*-1) illustrate the
evolution process of strategy proportions over time, where the blue (red) line indicates the fraction of cooperation (defection) that contains
active and inactive states, and columns (*-7) show the strategy fraction at the equilibrium state. Columns (*-2) to (*-6) display snapshots at
specific iterations, with p = 0.4 and t = 1, 100, 500, 1000, 5000 in panel (a-*), as well as p = 0.8 and t = 1, 100, 500, 750, 1500 in panels
(b-*). Dark and light red represent active and inactive cooperators, while dark and light blue denote active and inactive defectors, respectively.
All results are obtained for r = 3.75, σ = 0.5 over t = 25 000 iterations.

eventually stabilizing at a mixed cooperator-defector (C+D)
strategy equilibrium (for r = 4 and 4.25). Additionally, at a
fixed p and σ , a higher r correlates with an increased ρc at
evolutionary equilibrium, where the plateau’s length expands
with r but contracts with σ . Notably, in Fig. 3(b) with σ = 1,
the optimal p-value for fostering cooperation is significantly
larger compared to σ = 0.5 in Fig. 3(a). This reflects the real-
world scenario where higher basic security from public goods
necessitates more frequent interactions to achieve cooperative
consensus. In such cases of less active, the disparity in indi-
vidual gains is minimal, and the strategy learning probability
calculated by Eq. (5) in each MCS is low.

To intuitively understand the impact of stochastic inter-
action on cooperation at the micro level, we examine the
yellow curve in Fig. 3(a) for the activation probability of
p = 0.4 and p = 0.8. Some typical snapshots are provided
in Fig. 4. The overall trend shows an initial decline followed
by an increase in the prevalence of cooperation in Fig. 4(*-1).
Following the framework in Wang et al. (2013) [62], this
process encompasses two phases: the enduring (END) phase
and the expanding (EXP) phase. The END phase is character-
ized by a rapid decrease in cooperation and the emergence
of large defector clusters. Cooperators, however, persist in
the spaces between these clusters, protected by inactive in-
dividuals who inhibit the spread of defection, observed in
Fig. 4(*-3). Next, in the EXP phase, small cooperative groups
encircled by defectors start to grow. Active individuals at the
irregular boundary are more likely to become cooperators
due to higher benefits within cooperative clusters, leading
to a rapid increase and subsequent stabilization of coopera-
tion levels around a mixed C+D equilibrium. Interestingly,
cooperation level at equilibrium is higher at smaller active
probability p, and the spatial distribution of the strategies
shows a great deal of variation in Fig. 4(*-6). As shown
in Figs. 4(a-4) to 4(a-6), although the presence of inactive
individuals creates a significant hurdle to forming ideal co-
operative clusters, it protects the expansion of cooperative
cluster, while a small number of defectors exist in unevenly

distributed clusters. By contrast, high-frequency interactions
allows defectors to connect and form a mesh structure. This
net divides the cooperative group into small size and decreases
the level of cooperators, see Figs. 4(b-4) to 4(b-6).

C. Dynamics of periodic interactions based on time-lag

Recalling Figs. 2(c) and 2(d), the periodic interaction
mechanism enables cooperation to prevail with a small av-
erage active probability. Figure 5 plots how ρc varies as a
function of p under different values of r, revealing that co-
operation is maximized at the combination of intermediate r
and low p. When r exceeds the ALL D threshold in Fig. 2, the
proportion of cooperation decreases from 1 with increasing p,
reaching a C+D mixed equilibrium. Counterintuitively, Fig. 5
shows that the inactivity payoff σ affects the evolution of
cooperation but not the final cooperation level. As r increases,
the downward trend of ρc slows and stabilizes at a higher level
than the equilibrium fraction in Fig. 3. An exception is the
yellow line in Fig. 5(b), which presents a positive correlation

(a) (b)

FIG. 5. Cooperation level ρc as a function of activation probabil-
ity p for various multiplication factors r under a periodic interaction
mechanism. The results are presented for (a) σ = 0.5 and (b) σ = 1.
In each subplot, the four curves correspond to r = 3.5, 3.75, 4 and
4.25, respectively.
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FIG. 6. Evolutionary dynamics and spatial distributions of strate-
gies under periodic interaction mechanism. Panel (a-*) are obtained
for r = 3.75, p = 0.6 over t = 50 000 iterations, as well as r = 4,
p = 0.1 and t = 100 000 in panel (b-*). (a-1) and (b-1) illustrate
the evolution process of strategy proportions. (*-2) and (*-3) dis-
play snapshots at specific iterations t = 5000, 10 000 in (a-*) and
t = 35 000, 47 500 in (b-*). Taking the yellow circles in (a-2) as an
example, panel (c-*) visualize the strategy changes of individuals
on the boundary of cluster. Dark and light red represent active and
inactive cooperators, while dark and light blue denote active and
inactive defectors, respectively. All results are obtained for σ = 1.

between ρc and p, as r = 3.75 is the critical value for cooper-
ation evolution under σ = 1.

To further explore the reason why periodic interaction
shows a significant positive effect when activation frequency
is small, Fig. 6 records snapshots of the spatial distribution
at different simulation times. As shown, the time difference
leads to the phenomenon of periodic shift of the active center
at the macro level, and the activity patterns are similar among
individuals located in the same region. When one region is
active, nearly all individuals within that region participate
in games, while others far away are inactive. Comparing
Figs. 6(a-*) and 6(b-*), we observe that higher p forms many
small-sized C clusters with irregular boundaries, whereas
lower p produces fewer C clusters with smoother boundaries.

In Figs. 6(a-1) and 6(b-1), the fraction of cooperation de-
creases during the END period and rises up to 0.55 and 1,
respectively, in the EXP period. With p = 0.1 in Figs. 6(b-
*), strategy updates are less frequent, leading to a prolonged
journey to stochastic equilibrium. The trend of periodic fluctu-
ations in ρc mirrors the population activity rate in Fig. 1(c-2),
increasing initially and then declining. Figures 6(c-*) illus-
trates this change in cooperative clusters over time at the
micro level. Active individuals at cooperative cluster bound-
aries can expand outward due to payoff settings, forming
cross-like structures as seen in Figs. 6(c-1) to 6(c-3). However,
with the shifting active center and an increase in inactive
neighbors, these active cooperators face exploitation by defec-

FIG. 7. Effects of different network structures with the stochastic
interaction. (a) The cooperation level ρc as a function of activation
probability p on regular, ER, SW and BA graphs with r = 4. (b) The
evolutionary process for the fractions of cooperation strategies ρc

over time at r = 3.75 and p = 0.6. All results are obtained for
σ = 0.5 and t = 20 000.

tors, leading to a reduction in their numbers [Fig. 6(c-4)] and
eventually forming larger, more compact cooperative clusters
with smoother boundaries [Fig. 6(c-5)]. These clusters are
more resilient against defection in subsequent active peri-
ods. Consequently, sparse activity under a periodic interaction
mechanism is more conducive to the formation and integration
of robust cooperative clusters. In Figs. 6(b-2) and 6(b-3), these
compact cooperative clusters gradually connect and encircle
defector clusters, ultimately achieving an ALL C equilibrium.

D. Robustness verification

a. Heterogeneous degree distribution and stochastic in-
teraction.Consistent with the square lattice network, we
generate Erdos-Renyi random network (ER) [63], Watts-
Strogatz small-world network (SW) [64] and Barabási-Albert
scale-free network (BA) [65] with the average degree 〈k〉 = 4.
As shown in Fig. 7, the clustering is a double-edged sword.
On the one hand, the optimal platform for p is not observed in
the ER and SW graphs, which means high-frequency stochas-
tic interactions not constrain the flourish of cooperation, see
Fig. 7(a). Since the ER and SW networks have small average
shortest path lengths and large local clustering coefficients,
the hubs can serve as common connections to mediate the
short path lengths between other edges. In other words, even
distant individuals belonging to different regions can con-
nect via the hubs that work like social media platforms, thus
facilitating the flow of information and capital beyond the
limitations of distance, enabling individuals to make decisions
with a more holistic perspective, and generating collective
behaviors [66]. A recent study of temporal interactions had
led to the similar conclusion that the appropriate absence of
hubs boosts cooperation [67], which supports our finding. By
contrast, the lack of cliques and clustering coefficient equal
to zero is are the primary reason that nonlinear temporality is
only seen in regular networks. As shown in Fig. 4(b-6), the de-
fectors have formed a net structure to separate the cooperators
into unconnected clusters with frequent interactions. The so-
cial sphere for each individual in regular network is limited by
information cocoons [68], thereby bias decision outcomes and
it is difficult to connect different clusters to form synergies.
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(a) (b)

FIG. 8. Effects of different group size with the periodic inter-
action. (a) The cooperation level ρc as a function of multiplication
factor r on regular graphs with k = 3, 4, 6, 8. (b) The evolution-
ary process for the fractions of cooperation strategies ρc over time
at r = 3.75 and p = 0.6. All results are obtained for σ = 0.5 and
t = 15 000.

Besides, cooperators have a similar time gaining footholds
but smaller fluctuations to reach higher cooperation level at
equilibrium in ER and SW networks, see Fig. 7(b), because
the social diversity [20] is more conducive to the formation
of cooperative clusters. On the other hand, the strong het-
erogeneity of degree and low clustering coefficient in BA
graph fully inhibits cooperation, as inactive individuals with
high-degree can take free-rides extensively, destroying fragile
cooperative structures early in the evolutionary process. The
similar phenomenon has been found in periodic interactions.

b. Different group size and periodic interaction. In agree-
ment with the fact in Fig. 6 that cooperation requires a
sufficient number of active individuals in a localized area,
we may argue that larger groups facilitate the survival of
cooperators. Results presented in Fig. 8 evidence clearly that
group size G = k + 1 plays a decisive role by the evolution
of cooperation in PGG on regular graphs with different node
degree k = 3, 4, 6, and 8. From a per capita perspective, the
marginal return r/G required for cooperation to emerge and
dominance decreases slightly as the group size is enlarged
[see Fig. 8(a)], which supports the preceding statement. This
fact has long been confirmed by several experimental studies
[58,69,70], and they argued that the group size has a positive
effect on cooperation in the PGG only when it generates
a linear increase of the benefit r or a decrease of the cost
c of cooperation. However, by leaving both the benefit and
cost constant, the group size has a pure negative effect on
cooperation in Fig. 8(b). The collective gains are susceptible
to be free ridden in large-size group interactions, resulting in
a lower cooperation level at equilibrium, and this fact has also
been confirmed by several experimental studies [69,71].

c. The effect of noise on the evolution of cooperation. As
described in Sec. II, the noise K characterizes the irrational-
ity during the process of strategy imitation. Therefore, it is
of great significance to explore the robustness of dynamic
systems over different parameter K , especially in the case
of weak selection (high noise). The robustness verification
of stochastic interaction in Fig. 9(a) and periodic interac-
tion in Fig. 9(b) both indicate an optimal active threshold
for facilitating cooperation in different noise environments,

(a) (b)

FIG. 9. Effects of noise K on the cooperation level ρc under dif-
ferent activation probability p. Results are obtained for (a) stochastic
interaction with r = 3.75 and (b) periodic interaction with r = 4.0.
In each subplot, four color curves correspond to p values of 0.25,
0.5, 0.75, and 1, respectively. All results are obtained for σ = 0.5
and t = 25 000.

which again supports our findings of the temporal Goldilocks
effect. As p increases to 1, the proposed model reverts to
static networks, and an increase in K leads to a monotonically
decreasing level of cooperation, in line with the previous
work [18]. By contrast, the decreased interaction frequency
can instead encourage cooperation as K increases, see the
curves for p = 0.25, 0.5 in Fig. 9(a) and p = 0.25 in Fig. 9(b).
This implies that cooperative behavior can thrive on inactivity
when decision-making is irrational and a similar phenomenon
was found in Ref. [72] concerning activity teaching. These re-
sults prove that noise and active participation have a nontrivial
relationship in the evolution of cooperation.

IV. DISCUSSION

In real society, individuals exhibit diverse active patterns,
alternating between periods of activity and rest. This vari-
ability, influenced by differences in biological clocks and
geographic locations, means that individuals in different states
seldom interact simultaneously. Consequently, actual partner-
ship interactions are dynamic in nature and characterized by
temporal variations. In this context, we propose two temporal
mechanisms for participation in spatial public goods games:
stochastic interaction and periodic interaction. An individ-
ual’s state not only influences the payoffs from the game
but also affects the strategy updating process. Furthermore,
acknowledging the nonexclusive nature of public goods, we
introduce a rule for sharing collective benefits. Specifically,
inactive individuals are allowed to free-ride only when there
are contributions from active cooperators.

The results demonstrate that temporal interaction signifi-
cantly enhances cooperation, with the level of enhancement
being greatly influenced by interaction patterns and activation
probability. Notably, the transition line from a mixed C+D to
an ALL C state is quasi-concave, revealing an optimal combi-
nation of p and r that maximizes cooperation. In the realm of
stochastic interactions, an intermediate p value creates an en-
vironment conducive to cooperative behavior, suggesting that
a moderate frequency of interactions, rather than continuous
engagement, is more effective in promoting cooperation. Con-
versely, periodic interactions, characterized by synchronized
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activities within small regions, positively influence coopera-
tive evolution. From a macro perspective, temporal disparities
lead to shifts in the active center, thereby limiting the spread
of cooperation to inactive areas. However, at the micro level,
the inactivity of neighbors curtails the outward expansion of
cooperative structures, thereby facilitating the formation of
more robust cooperator clusters, particularly at lower p values.
Furthermore, the combination of spatial and temporal hetero-
geneity is discussed. It reveals that the strong heterogeneity
of degree distribution tends to inhibit cooperation, whereas a
larger group size promotes cooperation and moderate some
defectors inside.

In summary, our study explores the impact of interaction
frequency and synchronization on the evolution of coopera-
tion in spatial PGG. Utilizing Monte Carlo simulations and
theoretical calculations, we have demonstrated that maintain-
ing cooperation requires an appropriate balance of interaction
frequency and local synchrony. This work potentially posi-
tions temporal interaction as an alternative mechanism for
enhancing cooperation. It also provides great potential for
wider applications to investigate the evolution of truth-telling,
trust, or other moral behaviors from a temporal network per-
spective. Future work could explore individual interaction
preferences through a utility function, investigate the bound-
ary conditions of the moral phenotype particularly focusing
on temporal interactions, or guide the orchestration and opti-
mization interaction sequences in practical scenarios, which
will continue to be a focal topic in modern science.
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APPENDIX: EXTENDED PAIR-APPROXIMATION
APPROACH

Based on the pair approximation approach [60,73], let ρx

and ρxy denote the fraction of strategy X and XY pairs in the
population, where x, y ∈ C, D. Let qx|y represent the condi-
tional probability to find a X player given that the adjacent
node is occupied by a Y player. Based on these definitions,
the relations

ρx + ρy = 1, qx|y + qy|y = 1, ρxy = ρyqx|y, ρxy = ρyx

imply that the whole system can be described by
only two variables ρx and qx|y in the pair approx-
imation approach. Specifically, ρd = 1 − ρc, qd|c = 1 −
qc|c, qc|d = ρcd

ρd
= ρc (1−qc|c )

1−ρc
, qd|d = 1−2ρc+ρcqc|c

1−ρc
, ρdc = ρcd =

ρcqd|c = ρc(1 − qc|c), and ρdd = ρd qd|d = 1 − 2ρc + ρcqc|c.
We first consider the accumulated payoff of AD player who

has ic(id ) AC (AD) neighbors, and i = ic + id represents the
number of active individuals among the k nearest neighbors.
According to Sec. II, the total payoff of focal player is ac-
cumulated from k + 1 involved PGGs, but here we assume
that the payoff is merely determined by a single PGG. This
simplification makes the pair approximation more convenient
while causing minor modifications in the systems dynamics
[74]. In addition, AD gains nothing when i = 0 or ic = 0.
Therefore, the expected payoff of an active defector in a

PGG is

�AD =
k∑

i=1

(
k

i

)
pi(1 − p)k−i

i∑
ic=1

(
i

ic

)
qic

c|d qi−ic
d|d

×
(

ric − σ (k − i)

i + 1

)
. (A1)

Similarly, the expected payoff of AC, ID, and IC is respec-
tively given as

�AC =
k∑

i=1

(
k

i

)
pi(1 − p)k−i

i∑
ic=0

(
i

ic

)
qic

c|cqi−ic
d|c

×
(

r(ic + 1) − σ (k − i)

i + 1
− 1

)
, (A2)

�ID =
k∑

i=2

(
k

i

)
pi(1 − p)k−i

i∑
ic=1

(
i

ic

)
qic

c|d qi−ic
d|d σ, (A3)

�IC =
k∑

i=2

(
k

i

)
pi(1 − p)k−i

i∑
ic=1

(
i

ic

)
qic

c|cqi−ic
d|c σ. (A4)

Next, if the selected AD player imitates a C neighbor
successfully, then ρc increases by 1/N with the transition
probability

T +(	ρc = 1/N ) = ρd qc|d [p f (AD → AC)

+ (1 − p) f (AD → IC)], (A5)

where N is the size of population, which equal to L2. And
the transition probability that ρc decreases by 1/N because a
selected AC imitates a D-neighbor successfully is

T −(	ρc = −1/N ) = ρcqd|c[p f (AC → AD)

+ (1 − p) f (AC → ID)]. (A6)

Considering the expression of Fermi function with respect
to the intensity of selection ω, the Eq. (5) can be rewritten as

f (sx → sy) = ax(t )

1 + e[−ω(�y−�x )]

= 1

2
ax(t ) + 1

4
ωax(t )(�y − �x ) + O(ω2). (A7)

We assume that every imitation event occurs in one unit of
time 1/N . Therefore, the derivative of ρc is given by

ρ̇c =
(

1

N
T +

(
	ρc = 1

N

)
− 1

N
T −

(
	ρc = − 1

N

))
N

= 1

4
ωρc(1 − qc|c)[(1 + p)(�AC − �AD)

+ (1 − p)(�IC − �ID)] + O(ω2). (A8)

Simultaneously, a successful adoption of cooperator strat-
egy will increase the number of CC-pairs by 1 + (k −
1)qc|d and ρcc increases by 1+(k−1)qc|d

kN/2 , thus the derivative of
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CC-pairs is

ρ̇cc =
(

1 + (k − 1)qc|d
kN/2

T +
(

	ρc = 1

N

)

−1 + (k − 1)qc|d
kN/2

T −
(

	ρc = − 1

N

))
N

= 1

k
ρc(1 − qc|c)

1 + (k − 2)ρc − (k − 1)qc|c
1 − ρc

+ O(ω).

(A9)

Furthermore, we can compute the derivative of qc|c is

˙qc|c = d

dt

(
ρcc

ρc

)

= 1

k
(1 − qc|c)

1 + (k − 2)ρc − (k − 1)qc|c
1 − ρc

+ O(ω).

(A10)

Therefore, Eqs. (A8) and (A9) that describe the evolutionary
dynamics of cooperation can be written as function of ρc and
qc|c as {

ρ̇c = ωF1(ρc, qc|c) + O(ω2),
˙qc|c = F2(ρc, qc|c) + O(ω).

(A11)

Based on the dynamical equation (A11) we obtained
above, our next goal is to investigate the theoretical
conditions for promoting cooperation in structured popu-
lations. For weak selection ω → 0, the local frequency
qc|c equilibrates much more quickly and converge to the
stationary state of F2(ρc, qc|c) = 0 than ρc. Hence, we
have

qc|c = 1

k − 1
+ k − 2

k − 1
ρc. (A12)

Furthermore, based on Eq. (A12) we can obtain the following
expressions

qd|c = k − 2

k − 1
(1 − ρc),

qc|d = k − 2

k − 1
ρc, (A13)

qd|d = 1 − k − 2

k − 1
ρc,

and

ρc|d = k − 2

k − 1
(1 − ρc)ρc. (A14)

Accordingly, the time derivative of ρc is

ρ̇c = k − 2

4(k − 1)
ωρc(1 − ρc)[(1 + p)(�AC − �AD)

+ (1 − p)(�IC − �ID)] + O(ω2), (A15)

FIG. 10. Numerical results of Eq. (A18). the result are obtained
for k = 4, σ = 0.5, and ρc = 0.5. Blue means that the inequation is
true, red means that it is false.

where the differences in expected payoffs of active and inac-
tive individuals are

�AC − �AD

= (1 − p)k

(
1

k − 1
+ r

k − p − 2pk

p(k + 1)(k − 1)
+ r + σk + 1

)

+ σk(pqd|d + 1 − p)k (1 + pqd|d )

+ r

k − 1

(
1 − k

p(k + 1)

)
− 1, (A16)

and

�IC − �ID = σ [(pqd|d + 1 − p)k − (pqd|c + 1 − p)k

+ k(1 − p)k−1 p(qd|c − qd|d )]. (A17)

From Eq. (A16), we can observe that evolutionary direc-
tion of the population depends on the sign of �AC − �AD and
�IC − �ID. Therefore, the sufficient condition for cooperation
to prevail is

(1 + p)(�AC − �AD) + (1 − p)(�IC − �ID) � 0. (A18)

For any p ∈ [0, 1] and r ∈ [1, k + 1], we plot the colormap
of Eq. (A18). As shown in Fig. 10, larger activation proba-
bility is detrimental to cooperation, and there is a negative
correlation between the threshold r and p required to increase
cooperator. By comparing the simulation results in Fig. 2 with
the theoretical approximations, it is found that although there
are some tiny deviations, the extended pair approximation
method reflects role of probabilistic interaction in the spatial
PGGs, especially that the transition line between all C and all
D has similar trend.
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