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While many materials exhibit a complex, hysteretic response to external driving, there has been a surge of
interest in how the complex dynamics of internal materials states can be understood and designed to process
and store information. We consider a system of connected rubber balloons that can be described by a Preisach
model of noninteracting hysterons under pressure control but for which the hysterons become coupled under
volume control. We study this system by exploring the possible transition graphs, as well as by introducing a
configuration space approach which tracks the volumes of each balloon. Changes in the transition graphs turn
out to be related to changes in the topology of the configuration space of the balloons, providing a particularly
geometric view of how transition graphs can be designed, as well as additional information on the existence of
hidden metastable states. This class of systems is more general than just balloons.
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I. INTRODUCTION

Many systems in condensed matter, such as amorphous
media [1–5], crumpled paper [6,7], corrugated sheets [8], mul-
tistable origami [9,10] and mechanical metamaterials [11–15],
exhibit “memory” encoded by the configurations of internal
states. These systems are often modeled as a collection of
primordial, bistable elements called hysterons, which switch
between two states according to the history of some driving
field [Fig. 1(a)]. The sequence of how individual hysterons
switch states gives rise to important collective effects such as
return point memory [16]. The Preisach model of noninter-
acting hysterons is the prototypical model for describing how
individual hysterons lead to collective hysteresis [17]. When
interactions between hysterons are introduced, however, the
range of behavior expands dramatically: One sees multiperi-
odic orbits [1,2], scrambling and avalanches [8,18], transient
memory [12,16], and the ability to mimic finite-state machines
[19].

In this paper, we will consider a particular class of inter-
acting hysteron systems based on inflating rubber balloons.
In many types of balloons, the pressure depends nonmono-
tonically on the volume [20], and consequently balloons at
constant pressure can exhibit bistability and be modeled as
hysterons. When several balloons are joined in parallel to
share a common volume of air, however, the total pressure
becomes dependent on the state of the other balloons, in-
troducing an effective global interaction between hysterons.
We will show that this interacting hysteron system has an
alternate description, rooted in the geometry of a system of
curves in a configuration space parameterized by the vol-
umes of the individual balloons. Tuning the response of
individual balloons changes the topology of the configura-
tion space curves through a process of bifurcation-mediated
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recombination. Different topological classes of configuration
spaces correspond to different possible transition graphs that
can be realized.

While balloons are interesting in their own right, having
a number of applications to medicinal surgery [21–23], au-
tomobile air bags, pneumatic actuation and shape morphing
[24–26], and soft robotics [27–29], here we think of them as
a prototype for an entire class of systems which also includes
bistable origami [9] and mechanical beams [19] under fixed
strain.

The common element is that the bistability of the individ-
ual hysterons is governed by a smooth energy. In the case of
balloons, this means that the pressure is uniquely determined
by the volume; for buckled beams this will mean that the force
is determined uniquely by the displacement of the central
beam. Our approach provides an intriguing link between two
seemingly distinct methods to study the complex behavior of
designed materials: transition graphs induced by hysteretic
state changes and the bifurcations of smooth configuration
spaces. Indeed, we will explicitly show how to obtain tran-
sition graphs using our configuration space approach.

In Sec. II, we briefly discuss nonmonotonic inflation
in balloons and interpret this through noninteracting hys-
terons when the balloons are held at constant pressure and
globally interacting hysterons when the balloons have a con-
stant, shared volume. In Sec. III we will define and derive
the configuration space for interacting balloons and develop
our understanding of how the configuration space topology
changes through bifurcations. Finally, in Sec. IV, we demon-
strate the connection explicitly.

II. HISTORY-DEPENDENT BEHAVIOR OF BALLOONS

It is well known that in a typical rubber balloon, the
pressure depends on the inflated volume of the balloon non-
monotonically according to a function P(V ) which is, itself,
the derivative of an energy [20,30,31]. At a critical volume,
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FIG. 1. (a) Schematic of a single hysteron showing its two stable
configurations, 0 and 1. (b) The pressure-volume curve for a rubber
balloon showing that there is a jump between two different volumes
at given threshold pressure

V+, the pressure obtains a local maximum. Above V+, the
pressure decreases until a higher volume, V−, after which
it rises again. In party balloons, this is experienced as the
balloon becoming easier to inflate after some air has been put
into the balloon. Were we to inflate the balloon at constant
pressure, it would exhibit a sudden increase in volume at
a critical pressure P(V+) = P+ and, on deflation, a sudden
decrease in volume at a lower pressure, P(V−) = P−. Thus,
a single balloon can exhibit hysteresis and a state can be
assigned to each balloon (Fig. 1).

A. Pressure control

When N nonidentical balloons are connected to a pump
held at constant pressure, the total volume of air used to inflate
the balloons, VT , will also show hysteresis as a function of
the pressure. To describe this behavior, we can use a Preisach
model of independent hysterons [17], which we briefly de-
scribe here for completeness. The Preisach model consists of
N independent hysterons. Each hysteron can be in one of two
distinct states, which we call 0 and 1. A hysteron transitions
from state 0 to 1 when the driving field reaches a threshold
value, H+ and from 1 to 0 at a threshold value of H− < H+
[Fig. 1(a)] [32–34]. The state of the hysteron between the
lower and upper threshold then depends on the history of the
driving. When a collection of hysterons have a distribution of
lower and upper thresholds, they exhibit return-point memory
[6,35–37].

Because of the hysteresis of traditional, rubber party bal-
loons, the transitions they exhibit at constant pressure are also
hysteretic, allowing us to assign a balloon a state, 0 or 1, based
on the pressure history experienced by that balloon [Fig. 1(b)].
Note that many balloons also exhibit different curves when
inflated and deflated, and their behavior is further complicated
by plastic deformations that soften them after repeated cycles
of inflation and deflation [38,39]. In this paper, however, we
will ignore these potential complications and assume our bal-
loons are made of an elastic material with the same inflation
and deflation curves. Extending this analysis to balloons with
different behavior under inflation and deflation pathways will
be explored elsewhere.

We consider a system of N balloons and assume that the
ith balloon has transition pressures at Pi− < Pi+ [Fig. 1(b)].
We choose to label the balloons, with no loss of generality,
such that P1+ > P2+ > · · · > PN+; then it becomes clear that

FIG. 2. [(a) and (b)] Transition graphs for two and [(c)–(h)] three
balloons under constant pressure. Black (darker) arrows indicate
transitions involving an increasing pressure while orange (lighter)
ones are transitions to lower pressure.

all of the possible transitions between states of N balloons is
determined only by the ordering of the local minima, Pi−.

As is standard, we can construct transition graphs as fol-
lows: [18]

(1) Start from the lowest collective state (0, 0, . . . , 0), and
determine its “up” transition by finding

min
i

Pi+.

This indicates that the (0, 0, · · · , 0) state has a link to the state
in which the first balloon to transition has transitioned to the
state 1.

(2) For each new collective state, determine the “up” tran-
sition by finding

min
i0

Pi0+

and the “down” transition by finding

max
i1

Pi1− ,

where the index i0 spans hysterons in state 0 and i1 spans
hysterons in state 1. These are used to generate new links
to the states that can now be reached by the transitions of
individual balloons at the given pressures.

(3) Stop when all possible transitions have been accounted
for.

For N balloons, there are, in principle, N! possible tran-
sition graphs. These are shown explicitly for two and three
balloons in Fig. 2. It is interesting to notice that though
there are N! different transition graphs, the number of graph
topologies—that is, graphs having the same number and ar-
rangement of vertices, edges, and loops—can be fewer. For
three balloons, for example, there are only 5 topologically
distinct transition graphs (Fig. 2).
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FIG. 3. Schematic of the connected system of balloons sharing
constant total volume.

B. Volume control

We now turn our attention to a system of N balloons
sharing a single reservoir of air (Fig. 3), so that the system
satisfies the constraint

∑N
i=1 Vi = VT . Rather than controlling

the internal pressure, we then consider the behavior of the
system as VT is changed.

If we are to follow the analogy between balloons and
magnetic materials, then the volume-controlled system is
analogous to fixing the magnetization and asking for the
magnetic field that produced it. Reflecting on the graph in
Fig. 1(a), however, shows that the field associated with a given
magnetization in a single hysteron is not even single-valued.
However, even though single balloons are hysteretic at con-
stant pressure, their pressure is a function of their volume
[Fig. 1(b)]. This property is shared by many systems of re-
alistic hysterons such as origami bellows [9], elastic conical
shells [29], and buckling beams [40]. A critical consequence
is that the branch of the pressure-volume curve with negative
slope (the dashed curve in Fig. 1), which is unstable under
pressure control, becomes accessible under volume control.

To simplify the analysis while capturing the essential fea-
tures, we assume that we can approximate the pressure of a
single balloon as a linear function of the volume [Fig. 4(a)],
and keeping the N shape of the curve. We will show later that

FIG. 4. (a) The PV curves of two balloons used to obtain the
transition graph under a volume controlled inflation shown in (b),
where thicker arrows indicate an avalanche.

this approximation works well for qualitative analysis since
the important aspects of the curve are kept. Thus, the pressure
of the jth balloon will be approximated by

Pj = Vjg j + h j, (1)

where

g j =
{−mj, if s j = 1/2,

mj, otherwise (2)

and

h j =
⎧⎨
⎩

0, if s j = 0
2mja j if s j = 1/2
2mj (a j − b j ) if s j = 1

. (3)

Here a j and b j are the volumes at which a balloon switches
states, mj is the slope of the pressure as a function of volume,
and s j is the state of the jth balloon. The state s j determined
as follows: It is 0 if the balloon’s volume lies in the first
ascending branch of the PV curve, 1/2 if it lies in the descend-
ing branch, and 1 if the volume lies in the second ascending
branch of the curve, as shown in Fig. 4(a). At constant volume,
a system of N balloons will equalize their pressure, P, at the
shared total volume VT ,

Pi(Vi) = P, (4)

N∑
i=1

Vi = VT , (5)

for all balloons.
Using Eqs. (1), (4), and (5), we can write the total volume

as a function of the volume of a single balloon i and the states
of the other balloons in the system.

VT =
n∑

j=1

(
Vi

gi

g j
+ hi − h j

g j

)
. (6)

From this, identify the switching fields for each hysteron i,

VT,i± =
n∑

j=1

(
Vi±

gi

g j
+ hi − h j

g j

)
, (7)

where Vi+, and Vi− are the “bare” switching fields, i.e., the
individual volume values at which the ith hysteron switches
its state (either ai or bi in Fig. 4, depending on the current state
of the balloon). If si = 0, then Vi+ = ai, but if si = 1/2, then
Vi+ = bi. The volume, VT,i±, on the other hand, is the total
volume value at which hysteron i changes state. When these
switching field values are only dependent on the collective
state s = (s1, s2, . . . , sN ), and not other aspects of the driving
history, the system can be described as a system of interacting
hysterons [12,41]. To find the up-down transitions from a state
s, we need to calculate:

V+(s) = min
i0

VT,i0+, (8)

V−(s) = max
i1

VT,i1−, (9)

where now i0 runs over hysterons in states 0 and 1/2 while i1
runs over hysterons in states 1/2 and 1. We can also rewrite
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Eq. (6) to write the individual volumes as a function of the
total volume and the collective state of the system,

Vi(VT , s) =
VT − ∑

j
hi−h j

g j∑
j gi/g j

. (10)

Under pressure control, the collective state of the system
after a transition was always stable, now the stability of an
individual balloon depends on the state of the other balloons.
The procedure for determining transition graphs is then mod-
ified by an additional step. For hysterons that do not have an
s = 1/2 state, a detailed account of state stability is given in
Ref. [18]. In our case, we check for the stability of a landing
state as follows. Suppose the system is in a collective state, s,
and there is a transition at a total volume VT = VTCS that takes it
to state s′. The new state is a stable landing spot for the system
if the individual volume Vi(VTCS + ε, s′) for each hysteron i
lies within the range of volumes matching its adjective state
s′

i, where ε is a very small positive or negative number when
the total volume is increasing or decreasing. Cases where a
system goes through intermediate unstable states to reach a
stable one signify the existence of avalanches as seen in Fig. 4
and is a hallmark of interacting hysterons [8,18,42].

A noticeable difference between the interacting system of
balloons and the noninteracting one, as seen from the tran-
sition graph in Fig. 4, is the occurrence of the state s = 1/2
in the interacting system of balloons, which arises from the
descending branch of the pressure. This has an obvious effect
on what we can observe physically as well. While in the
pressure controlled system, there are sudden jumps in the
volumes of individual balloons [30], the state switching in the
volume controlled case does not always involve discontinuous
jumps in the volumes. Instead, transitions from 0 to 1/2 or 1/2
to 1 are characterized by incremental changes in the volume,
except in the case of avalanches. For all the examples in this
paper, when there occurs a discontinuous jump in the state of
the system, there is only one single stable state it could land in.
In general, however, it is impossible to rule out the existence
of multiple stable states during avalanches.

In the next section we demonstrate an alternative pathway
to understand the behavior of these systems by tracing the
bifurcations of a suitably defined configuration space. Such a
configuration space for the linearly approximated system from
Fig. 4 is shown in Fig. 5, and details on obtaining it are given
in the next section. We believe this might provide a new angle
to explore these kinds of systems, as well as uncover new
behavior not easily seen with models of interacting hysterons.

III. THE CONFIGURATION SPACE OF N BALLOONS
SHARING A VOLUME

A system of N balloons sharing a constant total volume
of air, VT , will equalize their pressure, P. We denote the
state of the system with an N + 1 dimensional vector, V =
(V1, . . . ,VN , P), satisfying the Eqs. (4) and (5). To study the

V1

V2

(0,0)
(1/2,0)

(1,0)

(0,1) (1/2,1) (1,1)

FIG. 5. The configuration space for the two balloons from Fig. 4.
The dashed gray contour line indicates the constant volume value
at which the avalanche occurs, where the system jumps from the
state (1,0) to (0,1), while the dashed (dark) lines indicate an unstable
solution.

solutions of those equations, we define the vectors

F(V) =

⎡
⎢⎢⎣

P1(V1) − P
...

PN (VN ) − P
V1 + ... + VN

⎤
⎥⎥⎦, and B =

⎛
⎜⎝

0
...

VT

⎞
⎟⎠. (11)

Then the system of equations takes the compact form,
Fα (V) = Bα where α ranges from 1 to N + 1 and indexes
the components of F and B. Equations of this type occur in a
number of contexts, but particularly in bar-joint mechanisms
in which bars of fixed length are connected by freely rotating
joints.

First, whenever the Jacobian of the map Fα (V) is full rank,
the system has (possibly many) isolated solutions, V(VT ).
When sweeping over possible values of VT , these solutions
trace out curves, as seen in Fig. 6 with stable solutions drawn
as solid curves and unstable solutions drawn as dashed curves.
In Fig. 6, we have used the smooth pressure from Fig. 1(b).
In analogy with mechanisms, we will refer to the space of
solutions V(VT ) as the configuration space of the N balloons.
The diagonal light gray lines of constant VT are provided as a
guide to the eye.

Figure 6 also makes apparent, however, that there can exist
degenerate points for which the Jacobian of Fα , Jαβ (V ) =
∂Fα/∂Vβ , is not full rank. For example, a stable and unstable
solution can meet at a saddle-node bifurcation, which changes
the number of distinct states the system can occupy for a given
VT . However, we also see transcritical bifurcations, such as in
Fig. 6(b), which are points where two solutions exchange sta-
bility. In the example shown in Fig. 6(b), such a point has the
appearance, and is sometimes called, a branch point. As VT is
tuned through a branch point, the system chooses, essentially
randomly, which branch to follow. Notice, however, that the
transcritical point in Fig. 6(b) distinguishes two different ways
of connecting the configuration space and, consequently, two
different physical behaviors. Figure 6(a) shows a situation in
which the configuration space has two components, but where
increasing VT results in continuous inflation as the system
follows the stable branch from one corner of the plot to the
other. In 6(c), however, the configuration space is connected
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FIG. 6. The configuration space for two balloons inflated under
volume control with different pressure versus volume curve combi-
nations. The branch point is shown in (b), where we can see the conic
shape of the configuration space at the branch point, and a small de-
viation from the critical value of the control parameter shows the two
hyperbolas formed, in (a) and (c). The diagonal lines shown are con-
tours of constant total volume values. The pressure-volume curves
are distinguished through the order of pressure maxima (P1+ > P2+).
Red (solid) denotes stable solutions while blue (dashed) denotes
unstable ones.

into one component, and now a continuously increasing VT

would lead to a discontinuous jump at a critical volume and,
on deflation, another discontinuous jump at a lower volume.
An example of one of these jumps is shown in Fig. 7.

FIG. 7. The configuration space for two balloons inflated under
volume control showing the avalanche that occurs at a critical con-
stant volume value. The red (solid) curve indicates a stable solution
while blue (dashed) indicates an unstable one. The thicker red curve
is the path that the system follows on inflation. The purple arrow
indicates the discontinuous jump that the system undergoes

Thus, the topology of the configuration space determines
the physical behavior, with a branch point separating the two
regimes of behavior. Finally, note that it is the functions Pi(Vi )
that determine what kind of physical behavior is seen, with the
branch point occurring precisely when the two local minima
are at the same pressure. It is a simple consequence of the
implicit function theorem that changes in the topology of the
configuration space cannot occur except in the presence of a
bifurcation. These arguments are outlined in great detail for
mechanisms in Ref. [43] and we do not reproduce them all
here.

These observations motivate a search for critical points of
Fα (V). To find these, we solve

det(∂Fα/∂Vβ ) =
N∑

i=1

⎡
⎣ N∏

j �=i

P′
j (Vj )

⎤
⎦ = 0. (12)

and Eq. (11) simultaneously. Both the saddle-node bifurca-
tions for which stable and unstable branches meet as well as
the transcritical bifurcation in Fig. 6(b) occur as solutions to
these equations. By numerically solving Eqs. (11) and (12),
we have found that the number of bifurcation points, on aver-
age, is 10 for N = 3 balloons, 45 for N = 4, 145 for N = 5,
461 for N = 6, and 1484 for N = 7, which shows a growth
of the number of bifurcation points with increasing number of
balloons consistent with ∼eN . This growth is consistent with
the exponential increase in the number of transition diagrams
[18].

Thus, it would be useful to isolate the branch points only.
To do this, we treat the total volume, which parametrizes
the curves of the configuration space, as a parameter. The
state of the system is now described by an augmented vector
Ṽ = (V1, . . . ,VN , P,VT ); thus, the system of equations now
has N + 2 degrees of freedom but only N + 1 constraints.
We know that there will be zero modes [44], defined as the
elements of the right null space of the augmented Jacobian,

Jαi(V )δVi = 0. (13)

Now, critical points V c at which the augmented Jacobian fails
to be full rank are characterized by elements of the left null
space,

σαJαi(V c) = 0. (14)

In the case of spring networks, they are often called self-
stresses [43–45], since they represent the collection of spring
tensions such that there is net zero force on each of the nodes.
However, self-stresses also have a dual meaning as signifier
of nonlinearities that lead to kinks or branches in kinematic
mechanisms [43]. In our case, there seems to be no analogous
physical meaning of the left null space other than as a signifier
of nonsmoothness. The augmented Jacobian can be written as
the (N + 1) × (N + 2) matrix,

J =

⎡
⎢⎢⎢⎢⎣

P′
1(V1) 0 · · · 0 0 −1

0 P′
2(V2) · · · 0 0 −1

...
...

. . .
...

...
...

0 0 · · · P′
N (VN ) 0 −1

1 1 · · · 1 −1 0

⎤
⎥⎥⎥⎥⎦. (15)
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It is now explicit that its rank drops by one every time two
pressure derivatives are simultaneously zero for some value
of V that is an equilibrium solution of the system. When the
maxima and minima of the pressure occur at the same volume
in each balloon, this can only happen when Pi− = Pj− for
balloons i and j.

We show that the critical points of the augmented Jacobian
are, indeed, the branch points observed in the balloon config-
uration space. We start by expanding Fα (V + δV ) for small
changes in volumes,

JαiδVi + 1

2

∂2Fα (V c)

∂Vi∂Vj
δViδVj + O(δV 3) = 0. (16)

Writing a formal series expansion, δV = δV (1) + δV (2) + ...,

and substituting this into Eq. (16), one finds that δV (1)
i is a

zero mode of the Jacobian satisfying [46],

1

2
σ (n)

α

∂2Fα (V c)

∂Vi∂Vj
δV (1)

i δV (1)
j = 0, (17)

where σ (n)
α is a basis for the self stresses at the critical point.

We assume that all critical points are isolated and that each
critical point has only one self stress, which is true as long
as no more than two pressure derivatives are simultaneously
zero at that critical point. Then we choose a basis for the zero
modes at the critical point, we call that basis ηn,i, and we write
δV (1)

i = cnηn,i, so that,

Qnmcncm = 0, (18)

where the matrix Qnm is given by

Qnm = ηn,iηm, jσ
(1)
α ∂Fα (V c)/∂Vi∂Vj . (19)

Now we can understand the behavior of the system near a
critical point of the augmented Jacobian. Under the assump-
tions that we have made, if the matrix Qnm is either positive or
negative definite, then we have a “rigid system.” That is, there
are no nontrivial solutions to the system. It is not clear that
this situation can even occur with N balloons. With a combi-
nation of mixed positive and negative eigenvalues, however,
the geometry of the configuration space at the critical point is
that of pair of lines meeting at the branch point and tangent
to the solutions of Eq. (18). We might now ask what happens
if we perturb the pressure curves, Pi(Vi ), near such a branch
point. Clearly this perturbation must separate the branches
(since there will no longer be a branch point); this is precisely
what we see in Fig. 6. A detailed proof that the branch breaks
into one of two hyperbolas can be found in Ref. [43].

Finally, in Fig. 8 we show all of the six possible config-
uration spaces of three balloons. As the number of balloons
increases, it appears that the number of individual configura-
tion space components also increases. As the relative pressure
curves of the balloons are adjusted, these loops join or sep-
arate from each other to create different inflation paths. As
is the case with two balloons, the topology of these config-
uration spaces changes through branch points, which occur
when two of the balloons pressure derivatives are equal to
zero simultaneously for a value V that also solves Eqs. (4) and
(5). A small perturbation to the pressure curves, once again,
results in two hyperbolas forming after the separation of the
two meeting branches. That is true, in fact, for a system of

FIG. 8. The configuration space for a three balloons system with
various pressure curves minima. Two of the configuration spaces,
(b) and (c), have the same topology, namely, they have the same
number of components.

any number of balloons as long as only two balloons’ pressure
derivatives are zero at some value V . The analysis is slightly
more complicated when more than two are simultaneously
zero.

Taken together, we see that by manipulating the mechani-
cal properties of individual balloons, we can control the order
of their inflation or introduce hysteresis. Because of this hys-
teresis, the history of a single parameter, VT , can be used to
determine one of several potential inflation states of the N
balloons.

IV. FROM CONFIGURATION SPACES BACK
TO TRANSITION GRAPHS

Finally, we point out that the configuration space approach
provides a relatively straightforward route to reconstructing
the transition graphs. To begin, it is interesting to note that
both the Preisach and the “volume-control” transition graphs
as well as the configuration spaces change topology when the
local minima of Pi(Vi) change order. Interestingly, in the case
of three balloons, there were only five distinct Preisach tran-
sition graphs as two of them were identical by a symmetry;
this property is shared by the configuration spaces as well:
there are only five topologically distinct configuration spaces
in Fig. 8.

Indeed, it turns out that the transition graphs can be recon-
structed from the configuration spaces. To begin, consider two
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FIG. 9. [(a) and (b)] A smooth configuration space and a corre-
sponding linear approximation for two balloons with states labeled
in the configuration space. State changes occur when the slopes of
the curves change sign. The corresponding transition graph is shown
in (c) which follows the main branch, avoiding the “Garden of Eden”
states which are, nevertheless, still present in the configuration space.
[(d)–(e)] A smooth configuration space and corresponding linear
approximation for two balloons after a recombination. The transition
graph in (f) illustrates the hysteresis that the system exhibits.

balloons with the simplified piecewise-linear pressure curves
in Fig. 4(a), for which the configuration space is given by
piecewise linear curves in Fig. 5. Since the states of the transi-
tion graphs are labeled by which branch individual balloons
reside and these are, consequently, represented entirely by
the slope of Pi(Vi ), transitions from one set to another are
represented by changes in slope in Fig. 5. In this case, it is
straightforward to read off the state of the balloons directly
from the slope of the configuration space.

More generally, the property that Pi(Vi ) is a well-defined
function means that we can always unambiguously assign a
state to the ith balloon only based on its volume relative to
Vi− and Vi+. The space (V1, . . . ,VN ) decomposes into regions,
each of which is associated with a unique state of the system
in the transition graph. Simple transitions occur when the
trajectory of the system leaves one state’s domain and enters
another. This can be determined whether the trajectories are
straight or curved, as seen in Fig. 9. There, we have color
coded the regions of the configuration space corresponding
to each possible system state to show the relative easiness of
constructing the transition graphs off of the space itself.

Note that when a trajectory changes from a stable to un-
stable branch, the actual system jumps to a new stable state,
and it must do so along the same plane of constant VT . When
there is only one other stable state, as in Fig. 5, it is clear
that the system jumps to that new state. As it transitions, it
passes along a path that may take it through one or more other
states, tracing out the sequence of avalanches. For example, at

a certain critical total volume value (the dashed contour line
in Fig. 5), the system must jump from state (1,0) to (0,1).

The configuration space picture also provides more infor-
mation about how the system finds its ultimate stable state.
One can integrate the pressure functions to determine the
elastic energy of the balloons and, in particular, the relative
energies of all stable states at a specific VT . Though we do
not explore it here, this energy landscape also contains infor-
mation about how the balloons find their ultimate stable state
after becoming unstable.

For some values of the total volume, the system can have
more than one stable state, though that state may not be
accessible from the main branch connected to the deflated
state, V = (0, . . . , 0). These are sometimes called “Garden of
Eden” states, which are states that the system can transition
out of but not into them by simply changing the global driving
field [9]. In the configuration space, they are seen as the loops
in Figs. 8 and 9. In the case of balloons, these metastable states
can be accessed by pushing on the larger balloon, forcing
the system to jump into the other branch of solutions while
keeping the total volume constant. “Garden of Eden” states
should, in fact, be accessible when the system is near a branch
point. Moreover, the configuration space can also have loops
that are entirely unstable, at least for three or more balloons.
Nevertheless, and perhaps surprisingly, the joining and sep-
aration of the additional disconnected branches to the main
branch plays a crucial role in determining the transition graphs
seen in different systems.

V. CONCLUSION

As we have seen, systems of balloons can demonstrate
complicated and hysteretic behavior, as described by a
Priesach model [36,37]. When the balloons share a constant
volume of air, the hysterons interact through that shared vol-
ume, and subsequently allow a richer variety of transition
graphs [18]. Because of the descending branch and the fact
that a single balloon’s pressure is a function of its volume,
the transition graphs are more naturally expressed in terms of
three states, 0, 1/2, and 1.

Another natural description for this system is, however, as
a curve in the configuration space of N balloons described
by their respective volumes, V = (V1, . . . ,VN ). Different tran-
sition graphs of the interacting hysteron model of balloons
are represented by these curves leaving and entering dis-
tinct regions of the volume space. This gives a geometrical
picture of how different transition graphs are related to
each other, as well as providing another approach to under-
standing avalanches. While we focus on small number of
balloons for visualization in this paper, the geometrical ap-
proach can be applied even for higher numbers of balloons
despite the difficulty in visualizing. It would be interest-
ing to explore the statistics of the configuration spaces for
large N .

One potential complication that would be difficult to fold
into the configuration space picture is the fact that some bal-
loons have different inflation and deflation curves. Even if we
only increase the total volume, VT , individual balloons can in-
flate and deflate. Since this effect occurs to individual balloons
and the configuration space is a function of individual balloon
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volumes, this could be incorporated by suitably adjusting the
configuration space trajectories according to whether the in-
dividual balloons inflate or deflate; this is, in turn, related to
the local orientation of the configuration space. This might
change where bifurcations happen but should not change the
overall picture we lay out.

Many systems that have been traditionally described as in-
teracting hysterons appear to also be in the class of systems of
N balloons. In the case of buckling beams [12,40] and bistable
origami [9], for example, there is a continuum of strains for
which a stress can be assigned, σ (γ ). These systems, there-
fore, can be analyzed through a similar configuration space

lens. Thus, this may be an approach to exploring interacting
hysterons in a wide variety of systems.
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