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Hidden vortices and Feynman rule in Bose-Einstein condensates
with density-dependent gauge potential
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In this paper, we numerically investigate the vortex nucleation in a Bose-Einstein condensate (BEC) trapped
in a double-well potential and subjected to a density-dependent gauge potential. A rotating Bose-Einstein
condensate, when confined in a double-well potential, not only gives rise to visible vortices but also produces
hidden vortices. We have empirically developed Feynman’s rule for the number of vortices versus angular
momentum in Bose-Einstein condensates in the presence of density-dependent gauge potentials. The variation
of the average angular momentum with the number of vortices is also sensitive to the nature of the nonlinear
rotation due to the density-dependent gauge potentials. The empirical result agrees well with the numerical
simulations and the connection is verified by means of curve-fitting analysis. The modified Feynman rule is
further confirmed for the BECs confined in harmonic and toroidal traps. In addition, we show the nucleation
of vortices in double-well and toroidally confined Bose-Einstein condensates solely through nonlinear rotations
(without any trap rotation) arising through the density-dependent gauge potential.
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I. INTRODUCTION

The initial realizations of Bose-Einstein condensates
(BECs) employed harmonic traps (HTs), allowing for a rel-
atively simple and well-understood theoretical description of
the system [1–4]. Due to the technological developments in
atomic, molecular, and optical physics, the condensates are
also obtained and subsequently studied in nonharmonic po-
tentials, both experimentally and theoretically. Among the
nonharmonic cases, the BECs confined in double well (DW)
[5,6] and toroidal traps (TTs) [7–9] are studied in detail.
The DW potential because of its richness in physics forms
a significant model potential for studying the properties and
the quantum phenomena in BECs on a mesoscopic scale
[10–16]. Moreover, the static [17–20] and the rotating [21]
DW potentials can be reliably realized with precision in
present-day experiments. The rotating DW potentials thus
provide a platform to study the behavior of the topologi-
cal defects (quantized vortices) in these complex potentials.
Similarly, the confinement of BECs within toroidal traps pro-
vides valuable insights into the intricate realm of quantum
vortices [7,22].

Post successful realization in 1995, BEC provided an ami-
cable setting for studying the different aspects of the vortex
physics [23–29]. The quantized vortices within the BECs
and superfluid 4He [30] are chiefly nucleated by rotating the
confining potential about a fixed axis [24–27]. The presence
of vortices in BECs reveals their superfluid nature and has
contributed to the understanding of nonlinear phenomena and
phase coherence in quantum gases. The vortices in BECs
are also known to play a key role in the understanding of
quantum turbulence [31–33]. In harmonically confined BECs,
the vortices are visible within the density distribution and
carry the angular momentum of the BEC. Additionally, there

exist so-called ghost vortices at the periphery of the conden-
sate which do not carry any angular momentum. The total
number of visible vortices Nv nucleated in an area A reveals
a linear relationship with the angular frequency of the trap,
� as 2π h̄Nv/m = 2�A, where m is the mass of the Bose
atom constituting the BEC [3,4,27,34]. Feynman originally
deduced this relation (Feynman’s rule) in the context of su-
perfluid helium [35] and can be alternately expressed in terms
of the average angular momentum of the rotating BEC as
〈Lz〉 /h̄ = Nv/2.

However, in the BECs confined within the complex po-
tentials, besides visible vortices there exist hidden vortices
that are absent in the in situ density profiles but have phase
singularities. The phase profiles of the hidden vortices are
similar to those of the visible vortices. The hidden vortices
have no visible cores but carry angular momentum. In ad-
dition, their core dimensions are determined by the barrier
width rather than the healing length, which establishes the
length scale for visible vortices. It is found that in the case of
complex potentials, the celebrated Feynman’s rule is satisfied
only if the hidden vortices are also taken into account. In such
cases, Feynman’s rule takes the form 〈Lz〉 /h̄ = Nt/2, where
Nt = Nh + Nv represents the sum total of hidden and visible
vortices within the BEC [36–38]. Consequently, complex po-
tentials and DW potentials, in particular, offer a platform for
studying hidden vortices and thereby testing Feynman’s rule
in superfluids.

Charge-neutral BECs not only provide a flexible experi-
mental platform to investigate various quantum phenomena
but they also provide a practical way to manifest artificial
electromagnetism in experiments [39,40]. This achievement
has been made possible through the creation of synthetic
gauge potentials, accomplished either by rapidly rotating
the condensate [23,24], establishing optical connections

2470-0045/2024/110(2)/024208(9) 024208-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9002-4393
https://orcid.org/0000-0003-2148-5433
https://ror.org/044g6d731
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.024208&domain=pdf&date_stamp=2024-08-15
https://doi.org/10.1103/PhysRevE.110.024208


ISHFAQ AHMAD BHAT AND BISHWAJYOTI DEY PHYSICAL REVIEW E 110, 024208 (2024)

between internal states of atoms [41–43], utilizing laser-
assisted tunneling [44,45], or employing Floquet engineering
[46]. The field of artificial gauge potentials is rapidly growing
through experiments and theory. By inducing electromag-
netism in BECs via experiments relying on Raman techniques
[47], intriguing phenomena have emerged, including orbital
magnetism [43,48], exotic spin-orbit coupling [49], and spin-
angular-momentum coupling with bosons [50,51] as well as
fermions [52,53]. However, the nature of these gauge po-
tentials is typically static and lacks feedback between light
and matter fields. On the other hand, in the case of dynamic
gauge fields, there exists nonlinear feedback between the
matter and gauge fields. Following the schemes [54–59] put
forward for simulating dynamical gauge fields with ultra-
cold atoms, experiments have successfully implemented the
density-dependent gauge fields [60,61]. More recently, the
density-dependent gauge potentials with a Raman coupled
BEC within the context of a one-dimensional (1D) contin-
uum was demonstrated experimentally [62–64]. The feedback
mechanism between the light and matter fields in BECs with
density-dependent gauge potentials is anticipated to enhance
our understanding of atomic and nonlinear systems.

BECs featuring density-dependent gauge potentials have
already been investigated in the context of anyonic struc-
tures [65], chiral solitons [66–69], collective excitations [70],
and chaotic collective dynamics [71]. The characteristic fea-
tures of rotating two-dimensional (2D) harmonically confined
density-dependent BECs have been studied numerically in
Refs. [72–74]. The density-dependent gauge potential realizes
an effective nonlinear rotation in BECs, resulting in the for-
mation of vortex-lattices that do not exhibit the characteristic
hexagonal symmetry of the Abrikosov vortices [75,76]. The
observed patterns of vortices in BECs with density-dependent
gauge potentials arise due to alterations in the Magnus force
acting on the vortices and the repulsive interactions between
them. Moreover, the critical trap rotation frequencies and the
ellipticities also get modified, thereby depending on the s-
wave interaction strength. In a recent development [74], it has
been revealed that vortex nucleation solely due to the density-
dependent gauge potentials is not possible in harmonically
confined BECs. Further, the validity of Feynman’s rule in
BECs with density-dependent gauge potential also requires
investigation.

In the present paper, we investigate the applicability of the
established Feynman’s rule in BECs with density-dependent
gauge potentials within the scope of direct numerical simula-
tions. Our investigation encompasses a BEC confined within
different potentials such as HTs, DW potentials and TTs.
Specifically, we examine the effects of the density-dependent
gauge potentials on the dynamics of vortex nucleation in DW-
confined BECs while drawing comparisons across different
confinements. We observe that BECs with density-dependent
gauge potential do show deviations from Feynman’s rule,
relating the number of vortices with the average angular
momentum of the system. This is due to the fact that the
average angular momentum in a BEC with density-dependent
gauge potentials does not solely depend on the total number
of vortices but also on the nature of the nonlinear rotation
induced due to the density-dependent gauge potentials within
the condensate. We also investigate the possibility of vortex

nucleation solely due to the nonlinear rotation in complex
traps. We show in this paper that vortex formation can be
achieved in BECs confined within the complex traps due to
density-dependent gauge potentials and without any need for
trap rotation. Furthermore, the manipulation of the strength
and width of the potential barrier allows for control over the
occurrence of vortex nucleation.

The subsequent material is structured as follows. In Sec. II,
we present the Gross-Pitaevskii (GP) equation, which de-
scribes the dynamics of a trapped BEC while being subjected
to a density-dependent gauge potential. This is followed by
Sec. III, where we discuss the results obtained from numerical
investigations using the Crank-Nicolson method [77,78]. The
paper is finally summarized in Sec. IV.

II. MODEL

We consider a dilute BEC of N two-level atoms coupled
by a coherent light-matter interaction due to an incident laser
field and described by the following mean-field Hamiltonian
[39,72,79]:

Ĥ =
(

p̂2

2m
+ V (r)

)
⊗ Ǐ + Ĥint + Ûlm, (1)

where in the first term p̂ is the momentum operator, V (r) is
the trapping potential, and Ǐ is the 2×2 unity matrix. The
mean-field interactions, Ĥint = (1/2)diag[�1,�2] with �i =
gii|�i|2 + gi j |� j |2 and gi j = 4π h̄2ai j/m, where ai j are the
respective scattering lengths of the collisions between atoms
in internal states i and j (i, j = 1, 2). Further, the light-matter
interactions given by [40,79]

Ûlm = h̄�r

2

(
cosθ (r) e−iφ(r)sinθ (r)

eiφ(r)sinθ (r) −cosθ (r)

)
(2)

are parameterized in terms of Rabi frequency, �r , mixing
angle, θ (r), and phase of the incident laser beam, φ(r). In
a dilute BEC, when the Rabi-coupling energy is much larger
than the mean-field energy shifts, the perturbative approach
leads to the following vector and scalar density-dependent
potentials, A and W , respectively [72,79,80]:

A = − h̄θ2

4
(1 − 4ε)∇φ, (3)

W = h̄2

2

(
(∇θ )2(1 − 4ε) + θ2(1 + 4ε)(∇φ)2

4m
− ∇θ2 · ∇ε

)
,

(4)

where θ = �r/� represents the ratio of Rabi frequency to
laser detuning, and ε = n(g11 − g12)/4h̄� takes into account
the collisional and coherent interactions. Within the limits of
the adiabatic approximation wherein the coupled two-level
atom is projected onto a single dressed state, one arrives at
the following mean-field GP equation [72–74,79–81]:

ih̄
∂�

∂t
=

[
(p̂ − A)2

2m
+ V (r) + h̄�r

2
+ δ + W + a1 · J

]
�

+
[
n

(
∂W

∂�∗ − ∇ · ∂W

∂∇�∗

)
− ∂W

∂∇�∗ · ∇n

]
, (5)
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where n = |�|2 is the density of the BEC in the projected
state, δ = g11n − θ2n(g11 − g12)/4 is the dressed mean-field
interaction, and a1 = θ∇φ(g11 − g12)/4� is the strength of
the coupling to the gauge field. The current nonlinearity,

J = h̄

2mi

[
�

(
∇ + i

h̄
A

)
�∗ − �∗

(
∇ − i

h̄
A

)
�

]
, (6)

in density-dependent BECs is a manifestation of the den-
sity dependence of the geometric potentials (3) and (4). By
defining �r = κ0r, where r is the radial distance and φ = lϕ,
where l and ϕ are, respectively, the angular momenta and
polar angle of the laser beam [82], Eq. (5), after following
the usual procedure of dimensional reduction [83], results in
the following 2D GP equation [72–74]:

(i − γ )
∂ψ

∂t
=

[
−∇2

ρ

2
+ V (ρ) − �̃n(ρ, t )L̂z + g̃|ψ |2

]
ψ,

(7)
where

�̃n(ρ, t ) = �0/ω⊥ + C̃n(ρ, t ) (8)

represents the density-dependent rotation experienced by the
BEC because of the density-dependent gauge potentials. Here
�0 is the trap rotation frequency in units of the transverse os-
cillation frequency ω⊥ while n(ρ, t ) = |ψ (x, y, t )|2 is the 2D
number density of the BEC in the xy plane. In Eq. (7), which
is a dimensionless GP equation, the operator ∇2

ρ = ∂2

∂x2 +
∂2

∂y2 while the interaction parameters, C̃ = lθ2
0 (g11 − g12)N/

(
√

2πσz h̄�), g̃ = g11Nm/h̄2 + √
2πσz(2l2 − 1)C̃/4l . The

coefficient θ0 = κ0/� and σz represents the thickness of the
BEC in the axial direction. In this dimensionless form, the
2D wave function ψ (ρ, t ) is normalized to unity and L̂z =
−i(x ∂

∂y − y ∂
∂x ) is the angular-momentum operator. Further,

the BEC is assumed to be trapped either in an anisotropic
HT [84],

V (ρ) = 1
2 [(1 − ε)x2 + (1 + ε)y2], (9)

where ε characterizes the anisotropy, or in the DW potential
of form

V (ρ) = ρ2

2
+ V0 exp(−x2/2σ 2), (10)

with V0 and σ as the height and width of the potential, re-
spectively. Moreover, the in case of toroidal confinement, the
trapping potential is expressed as

V (ρ) = ρ2

2
+ V0 exp((−βx2 − y2/β )/2σ 2), (11)

where β is the anisotropy parameter. The parameter
γ = 0.03 in Eq. (7) symbolizes dissipation within the system
[37,84,85]. Its inclusion facilitates the faster convergence to
an equilibrium state characterized by the presence of vortices
without influencing the dynamics of the BEC [86].

III. NUMERICAL ANALYSIS

The introduction of trap rotation, �0, has been employed
both experimentally [1,2,24,25] as well as theoretically
[3,4,78,84] to evolve the anisotropically trapped BECs for

FIG. 1. Phase (I–III) and density (IV) profiles of the ground
states in a BEC with g̃ = 420 and for mentioned strengths of non-
linear rotation, C̃, and trap rotations, �0. The height of the potential
barriers is maintained at V0 = 40 while its width σ = 0.5. The blue
circles mark the positions of the vortices in the phase and density
profiles.

vortex nucleation. The procedure is that a BEC is first pre-
pared in a nonrotating ground state. In numerical simulations,
this is achieved via the imaginary time propagation (t → −it)
of the GP equation (7) [77,78]. Following similar procedures
and choosing �x = �y = 0.08 and �t = 0.001 as space and
time steps, respectively, we first obtain the ground state of
a BEC with �0 = C̃ = 0 and confined either in a HT with
ε = 0.025, TT with β = 0.8, or a DW potential with σ = 0.5.
The vortex nucleation in the initially simulated ground state
is then studied by evolving the GP equation (7) for different
values of �0 and C̃. For each run, the initial condition ψ0

j,k =√
max(0, (μ − Vj,k )/g) + ε exp(iπR j,k ), where the first term

is the Thomas-Fermi wave function, ε = 10−3 is the strength
of the random perturbation to the wave function, and R j,k

represents a pseudorandom matrix with elements from a
uniform distribution in the range [0, 1]. This choice breaks
any underlying symmetries within the system and prevents
the simulation from getting stuck in any of the metastable
states [73].

The effects of density-dependent gauge potentials on the
dynamics of vortex nucleation in a harmonically confined
BEC is presented in Ref. [74]. The process of vortex formation
in a rotating DW potential differs greatly from that in a har-
monic potential. In the case of harmonically confined BECs,
only ghost vortices exist at the periphery of the cloud, and
the BEC lacks substantial angular momentum when the trap
rotation is less than the critical frequency (�cr). Once the trap
rotation frequency exceeds the critical value, visible vortices
emerge, accompanied by a significant increase in the angular
momentum of the BEC. However, for a DW-confined BEC,
the process of vortex formation starts with the creation of a
pair of hidden vortices. By following the figures of any row
in Fig. 1, it is clear that a pair of hidden vortices emerge
initially at the edges of the potential barrier which subse-
quently move towards the center. The increase in trap rotation
sees additional pairs of hidden vortices emerging along the
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FIG. 2. Variation of the critical frequency (�cr) with the strength
of the nonlinear rotation, C̃, in a DW-confined BEC with g̃ = 420.
The height of the potential barriers is maintained at V0 = 40 while its
width σ = 0.5.

barrier. The ghost vortices appear only after several pairs of
hidden vortices have formed. A similar effect due to the
nonlinear rotation, C̃|ψ |2, induced by the density-dependent
gauge potentials is expected. By examining the figures in
columns I–III, respectively, it is clear that the number of
hidden vortices decreases and their separation increases as
the value of C̃ decreases. These modifications also alter the
critical frequency (�cr) as shown in Fig. 2, whereby a pair of
visible vortices materializes in the ground state of the BEC.
The critical frequency for vortex nucleation is observed to
decrease with the increasing strength of nonlinear rotation,
similar to the behavior seen in harmonically confined BECs
with density-dependent gauge potentials [74]. The nucleation
of the visible vortices results in a substantial increase in the
system’s angular momentum as shown in Fig. 3(a), which
displays the dependence of angular momentum on the trap
rotation frequency with and without density-dependent gauge
potentials. Figure 3(a) shows that for any value of C̃ the angu-
lar momentum increases linearly with �0, provided �0 < �cr,
and finally shows a jump at �cr. The linear progression in the
angular momentum is due to an increase in the number of
hidden vortices along the central barrier as shown in Fig. 1.

FIG. 3. (a) Variation of the average angular momentum, 〈Lz〉
with trap rotation frequency, �0, in a rotating BEC with g̃ = 420 and
for different strengths of nonlinear rotation, C̃. (b) Contour plot of the
vortex ground states obtained at the respective critical frequencies.
The small pointlike contours represent the positions of the visible
vortices on either side of the central barrier of the DW potential.

It is worth mentioning that hidden vortices are associated
with significant angular momentum. For �0 exceeding �cr,
the angular momentum increases exponentially, resulting in
an increased number of visible vortices in the density profiles.
Moreover, in Fig. 3(a) one can see that at a fixed value of
�0, the values of angular momenta are different and depend
on the nature of nonlinear rotation, C̃. This can be explained
from the corresponding phase profiles in Fig. 1, whereby it
is clear that the nonlinear rotation adjusts the number and/or
the separation between the hidden vortices. The nonlinear
rotation is even seen to affect the angular momentum in a BEC
by fixing the positions of the visible vortices. In Fig. 3(b),
which shows the vortex ground states at the critical frequen-
cies, it is evident that the visible vortex pair corresponding to
C̃ > 0 are closer to the central barrier compared to the ones
with C̃ � 0. Since the angular momentum associated with a
singly quantized defect varies with its position r with respect
to the center as lz = (1 − r2/R2), where R is the radius of
the BEC. Consequently, the angular momentum in the ro-
tating BECs with density-dependent gauge potential follows
〈Lz〉 (C̃ > 0) > 〈Lz〉 (C̃ = 0) > 〈Lz〉 (C̃ < 0) for a given value
of �0. The dependence of vortex positions and the average an-
gular momentum on the nature of nonlinear rotation in BECs
with density-dependent gauge potential suggests a possible
deviation from the standard Feynman’s rule, 〈Lz〉 = Nt/2.

For a BEC in the absence of the density-dependent gauge
potentials, C̃ = 0, it is known that Feynman’s rule is satis-
fied with the inclusion of the hidden vortices. As shown in
Fig. 4(b) the ground state of a BEC rotating in a DW potential
at �0 = 0.9ω⊥ consists of a pair of vortex-lattices possessing
hexagonal symmetry. However, the number of visible vortices
Nv = 18 is much less to satisfy Feynman’s rule, 〈Lz〉 = Nv/2.
By including the hidden vortices Nh = 18 for which the av-
erage angular momentum, 〈Lz〉 ∼ 18, Feynman’s rule, 〈Lz〉 =
(Nv + Nh)/2 = Nt/2 is satisfied as confirmed by the data point
marked with a red arrow in Fig. 4(g). The numerical data in
the case of C̃ = 0 grazes along the respective theoretical curve
and Feynman’s rule in its standard form is satisfied for any
number of vortices as shown in Fig. 4(g). Feynman’s rule for
a BEC confined in a DW potential is derived in Ref. [37].
However, the spatial dependence of the rotation in BECs with
density-dependent gauge potentials invalidates the formalism.
In the presence of the density-dependent gauge potentials
where C̃ �= 0, Feynman’s rule is more or less satisfied for
a small number of vortices within the BEC. However, the
system shows significant deviations from the standard Feyn-
man’s rule at large vortex numbers. These deviations can be
attributed to the non-Abrikosov nature (lack of hexagonal
symmetry) of the visible vortex lattices in BECs with density-
dependent gauge potentials [72–74], as confirmed in the insets
of Figs. 4(a) and 4(c). In contrast, the visible vortex lattice in
the case of C̃ = 0 exhibits hexagonal symmetry (Abrikosov
lattice, equilateral triangles) as shown in the inset of Fig. 4(b).
The nature of the nonlinear rotation, C̃ determines the amount
of deviation. As indicated by the density profiles depicted
in Fig. 4, for the scenario where C̃ > 0, the visible vortices
exhibit a closer proximity to the barrier such that 〈Lz〉 > Nt/2.
This positioning of the vortices causes the numerical data
points to lie above the theoretical curve for C̃ = 0. On the
other hand, for C̃ < 0, there is an increased presence of the
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FIG. 4. Density (a)–(c) and the corresponding phase profiles
(d)–(f) of the vortex ground states in a BEC with g̃ = 420 and rotated
with �0 = 0.9ω⊥ in a DW potential for different strengths of non-
linear rotation, C̃. The corresponding insets show vortex pattern in
the region ∼[−5.4, −2.5] × [−5.4, −1.4]. (g)–(i) Plot of Feynman’s
rule [Eq. (12)] with lines and the numerical data with plot markers for
different strengths of nonlinear rotation, C̃, in (g) double well (DW),
(h) toroidal (TT), and (i) harmonically (HT) trapped BECs. The data
points identified by the arrows in (g) correspond to �0 = 0.9ω⊥.

vortices towards the outer periphery of the BEC, resulting
in 〈Lz〉 < Nt/2. The variation of average angular momentum
〈Lz〉 with the total number of vortices Nt in BECs with density-
dependent gauge potentials can be explained by modifying the
standard form of Feynman’s rule as

〈Lz〉 = Nt

2
exp

(
C̃ρ0

2

)
, (12)

where ρ0 denotes the peak density of the BEC. Equation (12)
represents an empirical relationship that explains the role
of nonlinear rotation in determining the angular momentum
characteristics in BECs with density-dependent gauge po-
tentials. This equation highlights how the average angular
momentum, given a certain number of vortices, can either
increase or decrease depending on the nature of the nonlinear
rotation at the maximum density, C̃ρ0, and is illustrated in
Figs. 4(g)–4(i) for respective confinements. Notably, the av-
erage angular momentum exhibits an exponential dependence
on the strength of the nonlinear rotation C̃ for a fixed value
of peak density ρ0. In the special case where C̃ = 0, one
recovers the standard form of Feynman’s rule, which typi-
cally applies to the conventional BECs with only rigid-body
rotation. The results presented in this section find further
support through the application of curve-fitting analysis. As
illustrated in Figs. 4 and 5, the linear regression of average
angular momentum (〈Lz〉) against the total number of vortices
(Nt ) is depicted for fixed values of C̃. It is found that 〈Lz〉

FIG. 5. Linear fitting of 〈Lz〉 versus Nt and Nv corresponding
to the vortex ground states in a BEC with g̃ = 420 and trapped in
(a)–(c) DW, (d)–(f) toroidal (TT), and (g)–(i) harmonic traps (HT),
respectively. The nonlinear rotation strength, C̃ = 5 (a), (d), (g);
0 (b), (e), (h); and − 10 (c), (f), (i), respectively.

varies linearly with the total number of vortices in the rotating
BEC with the slope of the fitting line depending on the nature
of the nonlinear rotation arising from the density-dependent
gauge potentials. We have disregarded the intercepts as they
don’t provide any valuable information, except for the pres-
ence of minimal rotation due to the density-dependent gauge
potentials. The slope of the fitting line increases with the
strength of C̃. For a given slope (a), the nonlinear rotation,
C̃ = (2/ρ0)ln(2a). The specific values of a in Figs. 5(a)–
5(c) lead to corresponding C̃ values of (a) 6.35, (b) 0, and (c)
−10.05 for a BEC confined in a DW potential. On the other
hand, in the case of harmonically confined BECs, where only
visible vortices are present, the resulting C̃ values are approx-
imately (g) 8.73, (h) 1.32, and (i) −11.62, respectively. These
derived values of C̃ closely align with the parameter values
employed in numerical simulations, thus providing a robust
validation of Eq. (12). We have further corroborated the
aforementioned discussion through an examination of a BEC
confined in a TT given in Eq. (11). The results as men-
tioned in Figs. 5(d)–5(f) agree well with the empirical relation
Eq. (12). On similar lines, Fig. 6 illustrates the exponential
correlation between 〈Lz〉 and C̃. In this context, the fitted
values m and b are directly related to the total number of
vortices and the peak density of the BEC through the rela-
tionships, m = Nt/2 and b = ρ0/2, respectively [Eq. (12)].
In Fig. 6, we employed the BEC profiles characterized
by a different total number of vortices, specifically Nt =
14 (a), (d), (g); 16 (b), (e), (f); and 18 (c), (f), (i), respectively,
while the peak density ρ0 ∼ 0.03 in dimensionless units. The
exponential fitting of 〈Lz〉 vs C̃ predicts the values for Nt and
ρ0 around the numerically used values in each case. To il-
lustrate, in Fig. 6(a) depicting a DW-confined BEC, the fitting
parameters m = 7.37 and b = 0.012 yield the estimated val-
ues of Nt = 14 and ρ0 = 0.024, respectively. Remarkably, the
estimated values in any case closely match with the numeri-
cally used parameters, underscoring the robustness of Eq. (12)
in predicting the vortex count and peak density. Consequently,
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FIG. 6. Exponential fitting of 〈Lz〉 versus C̃ corresponding to
the vortex ground states in a BEC with g̃ = 420 and trapped
in (a)–(c) DW, (d)–(f) toroidal (TT), and (g)–(i) harmonic traps
(HT). respectively. The number of vortices, Nt = 14 (a), (d), (g);
16 (b), (e), (h); and 18 (c), (f), (i), respectively.

this confirms the exponential dependence of 〈Lz〉 on C̃ in
BECs with density-dependent gauge potentials.

Until now, we have focused on a BEC with or without
dynamical gauge potentials and subjected to external trap ro-
tation. In general, it is found that visible vortices are nucleated
only when the trap rotation exceeds the critical value. For
trap rotations exceeding the critical value, vortex lattices are
formed. However, in BECs confined in complex potentials
(DW and TT), hidden vortices exist prior to the nucleation
of the visible vortices at the critical trap rotation. The hidden
vortices lie within the central barrier of the complex potential
while the visible vortices form lattices. We now explore the
possibility of vortex nucleation solely through the influence
of dynamical gauge potentials in a BEC confined within an
anisotropic and nonrotating complex potential. The vortex
nucleation solely due to the nonlinear rotation (�0 = 0) is
anticipated for a BEC with a large number of atoms [79,80].
When considering a harmonically confined BEC in the pres-
ence of density-dependent gauge potentials, it is found that the
vortices do not nucleate solely due to the nonlinear rotation
[74]. The same is found true for a BEC with a large number
of atoms and confined in a slightly anisotropic toroidal trap
with small central barrier heights. For small BECs trapped in
toroidal traps with large central barrier heights and anisotropy,
only hidden vortices are possible, as shown in Fig. 7. How-
ever, in the case of DW-confined BECs, Fig. 8 illustrates
numerically simulated ground states of a BEC for different
values of nonlinear interaction strengths. For a given DW
potential, the BEC exhibits hidden vortices exclusively when
the two-body interaction strengths are relatively low. The
number of hidden vortices increases with the strength of the
two-body interactions and hence the nonlinear rotation. The
hidden vortices along the central barrier of the DW poten-
tial start becoming visible when the BEC density around the
central barrier increases. At much larger interaction strengths,
when the overlap along the central barrier is complete, visible
vortices appear along the low-density central barrier region

FIG. 7. The nucleation of hidden vortices in the ground states of
a toroidally confined BEC corresponding to g̃ = 100 and nonlinear
rotation, C̃ = 23.5. The BEC rotates in a static TT (V0 = 40, β = 2.5
and σ = 0.5) solely through nonlinear rotation (�0 = 0).

and within the bulk of the BEC. The density-dependent gauge
potentials induce the nucleation of only a small number of
vortices, even with significantly large two-body interactions,
on either side of the barrier. Consequently, we did not ob-
serve any vortex-lattice formation. The nucleation of visible
vortices via the nonlinear rotation alone at large interaction
strengths hints at the possibility of vortex nucleation even for
smaller two-body interaction strengths, provided the height
of the barrier is lowered. In this direction, Fig. 9 shows the
dynamics of vortex nucleation due to the nonlinear rotation
in a DW-confined BEC with g̃ = 1000,V0 = 10, and C̃ = 65.
The initial deformation of the BEC leads to the creation of a
vortex pair at the inner surface of the barrier. The vortices then
subsequently move into the bulk of the condensate by follow-
ing the motion of the rotating BEC. The BECs with opposite
signs of the nonlinear rotation rotate in opposite directions but
result in the same number of vortices. It is worth mentioning
that the vortices still enter the BEC through the low-curvature
region [85]. However, the shape oscillations induced in the
BEC are aperiodic because of the nonlinear rotation due to
the density-dependent gauge potentials [74]. Moreover, it is
found that in addition to the interaction strength values, the

FIG. 8. The nucleation of hidden and visible vortices in the
ground states of a BEC corresponding to different two-body inter-
actions, g̃ and nonlinear rotations, C̃. The BEC rotates in a static
DW potential (V0 = 40 and σ = 0.5) only via nonlinear rotation
(�0 = 0).

024208-6



HIDDEN VORTICES AND FEYNMAN RULE IN … PHYSICAL REVIEW E 110, 024208 (2024)

FIG. 9. Time development of the condensate density during vor-
tex nucleation in a BEC with g̃ = 1000 and solely rotated via
nonlinear rotation (�0 = 0). The strength of the nonlinear rotation
is maintained at C̃ = 65 while the confining potential is a DW of
height V0 = 10 and width σ = 0.5.

number of vortices nucleated by the nonlinear rotation is also
limited by the shape and size of the potential.

In the above described settings, Fig. 10 shows the variation
of average angular momentum, 〈Lz〉 with the strength of the
density-dependent gauge potential. It is evident that angular
momentum increases linearly with C̃ before the nucleation
of a new pair of vortices. The angular momentum under-
goes abrupt changes with the addition of each successive pair
of vortices. Additionally, it is observed that for the vortices
nucleated solely by means of density-dependent gauge poten-
tials, the average angular momentum is proportional to the
total number of vortices, i.e., 〈Lz〉 ∼ Nt .

IV. CONCLUSIONS

In this paper, we have considered a BEC in the presence
of density-dependent gauge potential and confined either in a
HT, a DW potential, or a TT. We have examined the validity
of the standard Feynman’s rule in BECs featuring density-
dependent gauge potentials. Because of the nonlinear rotation
arising due to the density-dependent potentials, these BECs do
not follow the standard form of Feynman’s rule. The angular
momentum for a given number of vortices also depends on
the nature of the nonlinear rotation and the peak density of
the BEC. We presented an empirical relation as a modified
Feynman’s rule that relates the average angular momentum
and the number of vortices in BECs with density-dependent
potentials. The average angular momentum alters in an ex-
ponential manner with the strength of the density-dependent
gauge potentials. The agreement between the modified Feyn-
man’s rule and the numerical data is well established through
fitting analysis.

FIG. 10. Variation of average angular momentum, 〈Lz〉 with the
strength of nonlinear rotation, C̃ in a BEC with g̃ = 1000 and no
external trap rotation (�0 = 0) in a DW potential of height V0 = 10
and width σ = 0.5.

Moreover, within the context of a harmonically confined
BEC, it is demonstrated that the mere presence of density-
dependent gauge potentials alone does not lead to vortex
nucleation, even when the mean-field interactions are con-
siderable [74]. However, in the case of complex potentials,
density-dependent gauge potentials alone can result in vor-
tex nucleation. We observe only hidden vortex formation
due to the density-dependent gauge potentials alone in BECs
confined in a highly anisotropic TT. Similarly, aided by
the anisotropy in the DW confinements, our findings reveal
that nucleation of visible vortices in BECs is even achiev-
able solely through density-dependent gauge potentials. This
phenomenon is particularly notable in DW confinements char-
acterized by low central barrier heights. For large barrier
heights, only hidden vortices are obtained. The number of
nucleated vortices is not only determined by the interaction
parameters but are also limited by the specifications of the
DW potential. Further, the average angular momentum varies
proportionately with the number of vortices in case the BEC
is rotated solely by means of density-dependent gauge po-
tentials, 〈Lz〉 ∼ Nt . We believe that two recent experiments
[62,64] involving coupling of density-dependent gauge fields
with Raman coupled BEC in 1D can be generalized to 2D, as
considered in the paper, in the near future.
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