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Extracting meaningful information from signals has always been a challenge. Due to the influence of environ-
mental noise, collected signals often exhibit nonlinear characteristics, rendering traditional metrics inadequate in
capturing the dynamic properties and complex structures of signals. To address this challenge, this study proposes
an innovative metric for quantifying signal complexity—dispersion network-transition entropy (DNTE), which
integrates the concepts of complex networks and information entropy. Specifically, we assign single cumulative
distribution function values to network nodes and utilize Markov chains to represent links, transforming
nonlinear signals into weighted directed complex networks. Subsequently, we assess the importance of network
nodes and links, and employ the mathematical expression of information entropy to calculate the DNTE value,
quantifying the complexity of the original signal. Next, through extensive experiments on simulated chaotic
models and real underwater acoustic signals, we confirm the outstanding performance of DNTE. The results
indicate that, compared to Lempel-Ziv complexity, permutation entropy, and dispersion entropy, DNTE not
only more accurately reflects changes in signal complexity but also exhibits higher computational efficiency.
Importantly, DNTE demonstrates optimal performance in distinguishing different categories of chaotic models,
ships, and modulation signals, showcasing its significant potential in extracting effective information from
signals.
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I. INTRODUCTION

In this age of information technology, the effective acqui-
sition of information plays a pivotal role in various fields.
By processing the collected signals, we can extract valuable
information from complex data and address various practical
problems. The development of signal processing not only
drives the advancement of science and technology but also
profoundly influences our daily lives, spanning multiple fields
such as industrial engineering [1], economics [2], and hy-
droacoustics [3]. The core of signal processing lies in feature
extraction [4]. However, influenced by various factors such
as complex environments and equipment self-noise, collected
signals often exhibit nonlinear characteristics [5], making
traditional feature extraction methods less advantageous in
processing real measured signals. Therefore, it is imperative to
apply new features that can effectively characterize nonlinear
signals.
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Nonlinear dynamical features are used to describe the char-
acteristics of nonlinear behavior within dynamical systems,
and many scholars have applied them in the application of real
measured signals [6–9]. Commonly employed nonlinear dy-
namical features include Lempel-Ziv complexity (LZC) [10],
the Lyapunov exponent [11], and entropy [12]. Specifically,
LZC can characterize the rate at which new patterns emerge
in a signal, whereas entropy quantifies the uncertainty of the
signal. In contrast to the high computational complexity asso-
ciated with Lyapunov exponent calculation, LZC and entropy
not only have lower computational complexity but also vary
with the complexity of the signal. Specifically, as the signal
becomes more complex, both entropy and LZC values tend to
increase [13].

Complex networks are another commonly used method of
extracting information from signals. They define nodes and
links in a specific way, where nodes represent individuals or
elements in the system, and links in the network represent
connections or relationships between nodes [14–16]. Unlike
metrics such as LZC and entropy, which directly act on
signals, complex networks calculate various relationships be-
tween nodes and links, and the obtained features can be used
to describe the complex structures and dynamic behaviors of
various systems. Therefore, complex networks are widely ap-
plied in fields such as mechanical engineering, biomedicine,
and hydroacoustics [17–19].
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Currently, commonly used complex networks include the
visibility graph (VG) [20], recurrence network (RN) [21], and
transition network (TN) [22]. In VG, each sampling point in
the signal data is regarded as a node, and they are connected
based on visibility, offering the advantage of not requiring
parameter selection [23]. On the other hand, both RN and
TN use the embedding dimension to segment signal data as
different nodes. However, RN establishes links through sim-
ilarity calculations, whereas TN considers adjacent nodes as
connected links, thereby preserving temporal causality [24].

However, the aforementioned complex networks also face
certain issues. For instance, VG encounters potential data
loss and exhibits limited applicability to large datasets [24].
Incorrect threshold selection in RN can significantly impact
the network, and during network transformation [25], TN may
lead to the loss of effective information in the original signal
due to the settings of embedding dimension and time delay.
To illustrate, consider the pattern π123; based on the temporal
sequence, the next pattern can only be π23x. While setting
a larger time delay can mitigate this phenomenon, it may
also affect subsequent patterns. In addition, existing complex
network metrics, such as the global clustering coefficient
[26], network transitivity [27], and average path length [28],
although capable of providing a profound understanding of
the overall structure, properties, and functionality of networks
[29], still have certain limitations in quantifying network
irregularities.

In response to the existing issues, we propose a unique
solution that combines the concepts of complex networks
and information entropy, leveraging the advantages of both
to characterize the complexity of nonlinear signals from the
perspective of network information distribution. Specifically,
inspired by the dispersion pattern [30], we initially use the
values of the cumulative distribution function after scaling as
network nodes. Following the principles of Markov chains, we
treat the relationships between connected nodes as links, thus
introducing the concept of the dispersion network (DN). Sub-
sequently, we calculate the distribution probabilities of each
node and link in the DN and use the Shannon entropy formula
to obtain the DN-transition entropy (DNTE). While construct-
ing DN, we do not employ embedding dimensions for pattern
segmentation of nodes to reduce information redundancy.
In the computation of TE, we also simultaneously consider
the importance of both network nodes and links. Therefore,
compared with other metrics, DNTE exhibits more stable
and accurate characteristics in characterizing signal complex-
ity. Subsequently, experimental validations are conducted on
simulated chaotic models and two types of real measured hy-
droacoustic signal datasets, further confirming the outstanding
performance of DNTE in nonlinear signal processing.

The main contribution of this paper is the introduction
of an alternative complexity metric, DNTE, which demon-
strates excellent performance in nonlinear signal complexity
characterization. Furthermore, the structure of this paper is
as follows: Section II progressively introduces the theoret-
ical steps of DNTE and discusses its parameters. Section
III uses simulation experiments to compare DNTE’s ability
to detect dynamic changes and differentiate chaotic models,
while also evaluating its computational cost. In Sec. IV, the
practical application capabilities of DNTE are validated using

two types of real measured hydroacoustic datasets. Section V
summarizes the entire paper.

II. THEORY

A. Dispersion network

Similar to other complex networks, the proposed DN
typically involves two fundamental steps: the initial
determination of nodes and the subsequent establishment
of links among these nodes. The distinctive feature of DN
lies in the requirement for the preprocessing of temporal
information before node determination, which is a crucial
step in the construction process. Specifically, for a time series
X of length L, where X = {x1, x2, . . . , xL}, the construction
process of the DN is as follows:

Step 1: Through mapping using a normal cumulative dis-
tribution, the original sequence is transformed into a new
sequence composed of cumulative distribution function val-
ues, reducing the impact of the original values’ scale and
range. The mapping using normal cumulative distribution can
be represented as follows [30]:

yk = 1

σ
√

2π

∫ xk

−∞
e− (t−μ)2

2σ2 dt, (1)

where σ and μ are the standard deviation and mean of the ini-
tial sequence X , respectively. We can obtain a new sequence
Y = {y1, y2, . . . , yL}, which consists of cumulative distribu-
tion function values.

Step 2: Introduce the class c and perform round function
mapping on the normalized sequence Y . The cumulative dis-
tribution function values in Y are further converted into a new
sequence Z , which consists of integers from 1 to c.

zk = |yk × c + 0.5|. (2)

Here, | · · · | denotes rounding the elements within the
brackets to the nearest integer. The resulting zk can be con-
sidered as a node in the network, denoted as πi(i = zk), with a
maximum of c classes of nodes.

Step 3: Count the links between adjacent nodes in chrono-
logical order and denote them as πi → π j , where i and j
are both within the range of 1 − c, with a total of c2 classes
of possible links. Note that self-loops are allowed, meaning
situations where the preceding and succeeding nodes are the
same, as self-loops also contain valuable information. By
counting the occurrences of πi and πi → π j, i, j ∈ [1, c],
we can obtain the constructed DN, represented as [Gc,W c].

Gc = [Nπ1 , Nπ2 , . . . , Nπc ], (3)

W c =

⎡
⎢⎢⎢⎢⎣

N(π1→π1 ) N(π1→π2 ) . . . N(π1→πc )

. . . . . . . . . . . .

N(πi→π1 ) N(πi→π2 ) . . . N(πi→πc )

. . . . . . . . . . . .

N(πc→π1 ) N(πc→π2 ) . . . N(πc→πc )

⎤
⎥⎥⎥⎥⎦, (4)

where Nπi and (πi → π j ) are the number of corresponding
nodes and connected links, respectively. It is important to note
that the constructed DN is a directed network, and N(πi→π j ) is
usually not equivalent to N(π j→πi )(i �= j).

Figure 1 illustrates the time series and the corresponding
DNs (with c set to 10) constructed by the logistic map under
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FIG. 1. (a) Time series of logistic map under different bifurcation parameters μ, (b) DN constructed from period 2 (μ = 3.25), (c) DN
constructed from period 8 (μ = 3.547), (d) DN constructed from period 16 (μ = 3.567), and (e) DN constructed from the chaotic state
(μ = 3.7).

different bifurcation parameters μ, including μ = 3.25, 3.547,
3.567, and 3.7, which correspond to period 2, period 8, period
16, and chaotic states, respectively, and more details about the
logistic map can be seen in Sec. III A. From Fig. 1, it can be
observed that under the period-2 solution, only nodes 1 and
10 have links, accompanied by the same thickness. However,
with an increase in the irregularity of dynamical regimes,
both the number of node classes and links increase, which
is also reflected in the thickness of each link, demonstrating
that networks generated by different dynamical regimes can
exhibit distinct characteristics.

B. Transition entropy

Entropy is a fundamental concept in information theory
and is frequently employed to measure the intricacy and un-
predictability of time series [30,31]. Building upon the DN
derived from Eqs. (3) and (4), we introduce the calculation
procedure for transition entropy (TE) to obtain the DNTE
value, which helps in quantifying the complexity of the ob-
tained DN.

DNTE simultaneously considers both node and link in-
formation in the network, providing an effective measure of
the overall complexity of the network. It can be used as
a nonlinear metric to apply to complex signal applications.
Specifically, for the constructed network [Gc,W c], DNTE
involves two steps:

Step 1: Calculate the probabilities Pπi and Pπi→π j for each
class of nodes and each class of links, respectively:

Pπi = Nπi

L
, (5)

Pπi→π j =
N(πi→π j )

Nπi

. (6)

Step 2: Calculate the DNTE value Ec by taking Pπi and
Pπi→π j as weights and probabilities, respectively, and combin-
ing them with the definition of Shannon entropy as follows:

Ec =
c∑

i=1

Pπi

c∑
j=1

Pπi→π j log(Pπi→π j ). (7)

By applying Shannon entropy, we combine the information
from nodes and links to quantify the network’s complexity.
In Eq. (7), it is evident that the formula simultaneously cap-
tures effective information from both nodes and links in the
DN, and the computed value of DNTE is more comprehen-
sive in representing various aspects of the initial time series
information.

Additionally, in the calculation process of DNTE, it is
necessary to normalize the content within the second sum-
mation formula. Normalization ensures that the computed
entropy value is scaled appropriately, making it easier to in-
terpret and compare across different networks. The specific
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ALGORITHM 1. Dispersion network-transition entropy
(DNTE).

1: Input time series X = {x1, x2, . . . , xL}.
2: Obtain the cumulative distribution function sequence

Y = {y1, y2, . . . , yL} through Eq. (1).
3: Obtain the integer sequence Z = {z1, z2, . . . , zL} by applying

the round function in Eq. (2).
4: Construct [Gc,W c] based on the nodes and links in sequence Z .
5: Count the quantity and probabilities of the nodes and links in

[Gc,W c].
6: Calculate DNTE values Ec based on Eq. (7).
7: Normalize the Ec.

procedure of normalization involves dividing the value ob-
tained from Eq. (7) by log(c), since for each node i there are c
possible linking results. Through normalization, the resulting
Ec are scaled within the range of 0 to 1, offering a more
intuitive representation of the complexity of the network,
as a value between 0 and 1 clearly indicates the degree of
complexity, with higher values representing greater complex-
ity. Additionally, Algorithm 1 shows the pseudocode of the
DNTE.

C. Parameter selection

As elucidated earlier, DNTE solely entails the determina-
tion of the parameter c, necessitating less a priori knowledge
for parameter selection than alternative metrics. c determines
the potential number of nodes, while c2 represents the po-
tential number of links. Hence, a judicious choice of c can
effectively capture subtle pattern changes in the time se-
ries while ensuring that DNTE remains insensitive to noise,
thereby retaining the essential information of the time series.

Figure 2 illustrates the mean and standard deviation of the
three types of noise under different classes c. White noise
exhibits constant power across all frequencies, resembling
a random mixture, while pink noise accentuates lower fre-
quencies, and blue noise accentuates higher frequencies in
their respective spectral distributions [32]. The length of each
noise class is 6000, with 200 randomly generated instances
for each class. From the figure, it can be observed that with
smaller c, the distinction among different noise types is more

FIG. 2. Mean and standard deviation of the three types of noise
under different classes c.

apparent. Larger c, particularly in the case of pink and blue
noise, exhibit smaller variances, indicating greater stability in
representing complexity. Therefore, we recommend a range
for the parameter c between 10 and 20.

III. TESTS ON THE SIMULATED SIGNALS

In this section, we conduct comparative experiments on the
performance of DNTE using simulated signals, including its
ability to capture dynamic changes and differentiate between
various chaotic models. Quantitative metrics of complexity
for comparison include LZC [10], permutation entropy (PE)
[31], and dispersion entropy (DE) [30], and their metric values
are denoted as ε1, ε2, and ε3, respectively. Additionally, we
also conduct a statistical analysis of the computational con-
sumption of these metrics.

A. Experiment (1): Capture of dynamic changes

The logistic map is a classic one-dimensional chaotic map
widely used in the study of chaotic phenomena and nonlinear
dynamical systems [33,34]:

xi+1 = μxi(1 − xi ). (8)

Here, μ acts as the bifurcation parameter controlling the
level of chaos in the entire map, while x0 denotes the initial
point of the map. Typically, in chaotic systems, the specific
value of the initial point has minimal impact on the results,
and we set it as 0.1. In our experiments, we systematically
varied μ within the range [3.5, 4] with an interval of 0.001.
For each μ value, we extract the final 5000 iterations out of
10 000 to form the sample sequence. Figure 3(a) illustrates
the bifurcation diagram of the logistic map, highlighting the
transition from initial period 4 to subsequent period 8, period
16, and a progressively increasing chaotic behavior as the
bifurcation parameter undergoes changes. Figures 3(b)–3(e)
depict the variation curves of different metrics with the bifur-
cation parameter μ. Among these, LZC involves no parameter
selection; for DNTE, the number of classes c is set to 5,
10, 15, and 20, respectively; the embedding dimension m for
PE ranges from 3 to 6; DE involves the selection of both
the embedding dimension m and the number of classes c. In
addition to the suggested combinations (3,4), (4,3), and (4,4)
[30], we also set (2,15) for comparison. This is because an
embedding dimension of 2 is equivalent to the statistics of
adjacent nodes; hence for completely normal signals, DNTE
and DE are the same (same c). However, completely normal
signals are almost nonexistent in the real world, and these
differences can be reflected through Eqs. (6) and (7).

Figure 3 shows that each metric broadly reflects the over-
all chaotic variations of the logistic map, yet distinctions
persist among them. For instance, within the interval μ ∈
[3.5, 3.545], the map resides in a period-4 state. However,
both PE (m = 5 and 6) and DE (m = 3, c = 4, and m = 4,
c = 4) curves exhibit frequent jumps in this interval. Fur-
thermore, although the DE curve with parameters m = 2 and
c = 15 is more reflective of the dynamics of the logistic map,
the normalized ε1 in the periodic state is greater than 0.5,
which illustrates that when c is taken to be 15, due to the
overly fine division of the categories, it may lead to a very
similar distribution for some of the pattern categories, which

024205-4



DISPERSION NETWORK-TRANSITION ENTROPY: A … PHYSICAL REVIEW E 110, 024205 (2024)

FIG. 3. Variation curves of different metrics with the bifurcation parameter μ of the logistic map. (a) Bifurcation diagram of the logistic
map, (b) LZC, (c) PE, (d) DE, and (e) DNTE.

in turn makes the amount of useful information of the time
series decrease. In contrast, it is worth noting that the DNTE
curves depicted in Fig. 3(e) (except when c is set to 5) not only
accurately describe the transition between the periodic and
chaotic states, but also accurately reflect the periodic state of
the logistic map (with an Ec of 0), and also show sensitivity to
subtle bifurcations within the periodic state, particularly when
μ ∈ [3.5, 3.635]. In conclusion, compared with the other three
metrics, DNTE exhibits significantly superior performance in
detecting dynamic changes in the logistic map.

B. Experiment (2): Differentiation of the different
chaotic models

Next, we introduce the Hénon map [18] and Lorenz map
[35] to conduct experiments aimed at distinguishing different
chaotic models. The formulas for the Hénon map and Lorenz
map can be expressed as follows:

xi+1 = 1 + yi − ax2
i yi+1 = bxi, (9)

.
x = σ (y − x)

.
y = ρx − y − xz

.
z = xy − βz. (10)

Here, the parameters for the Hénon map are set as a = 1.3
and b = 0.3, while the parameters for the Lorenz map are set
as σ = 10, ρ = 28, and β = 8/3. For each chaotic model, we
select various sequence lengths ranging from 1000 to 10 000,
with intervals of 1000. It is worth noting that we also omit
the initial 5000 iterations of each map to ensure sequence
stability. By calculating the Ec (c = 15), ε2 (m = 5), and ε1

and ε3 (m = 3, c = 4; m = 2, c = 15) values for different
sequence lengths of the chaotic models, the mean and standard
deviation of the distributions are obtained as shown in Fig. 4,
and all metrics are normalized for ease of comparison.

Observation of Fig. 4 reveals that the LZC can effectively
identify nearly all three types of chaotic models. However,
there is a slight sample confounding observed in the logistic
and Lorenz maps, with large standard deviations for all mod-
els. Moreover, the metric values of the three chaotic models
in DE (m = 3, c = 4) are very close, making it difficult to
distinguish them effectively. Furthermore, the entropy value
of DE (m = 2, c = 15) is markedly elevated, which leads to
the logistic map and the Lorenz map being nearly identical,
making them challenging to distinguish. Only PE and DNTE
are found to be effective in distinguishing the three chaotic
models, with their entropy values exhibiting minimal standard
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FIG. 4. Mean and standard deviation of various metrics for three
chaotic models.

deviation. These findings indicate that PE and DNTE are
capable of accurately reflecting the entropy values of input
signals, even when the sample series are limited in size.

C. Experiment (3): Comparison of time consumption

The time consumed in the computation of various met-
rics is also of greater significance in practical application.
Among the four metrics considered, both LZC and PE exhibit
time complexities of O(N2), while DE and DNTE boast time
complexities of O(N ). Figure 5 illustrates the average com-
putational consumption of these metrics across varying time
series lengths. Each time series length is randomly generated
for 200 records.

It is clear from Fig. 5 that increasing the series length
results in a linearly increasing computational cost for each
metric. In terms of computational efficiency, PE and LZC
emerge as the most time-consuming metrics, followed by DE,
where the increase in the number of categories also leads to a
longer computation time. It is worth noting that the DNTE
algorithm is the most efficient. In particular, LZC and PE
exhibit computational consumption three orders of magnitude
higher than that of DNTE, and the results underscore the prac-

FIG. 5. Computational consumption of LZC, PE (m = 6), DE
(m = 3, c = 4), DE (m = 2, c = 15), and DNTE (c = 15) for differ-
ent time series lengths.

TABLE I. Specific types and labels of ShipsEar signals.

Class Type Label

A Dredge 80__04_10_12_adricristuy
B Motorboat 72__23_07_13_H3_lancha2
C Passengers 9__10_07_13_marDeOnza_Espera
D Ocean liner 69__23_07_13_H2_costaVoyager
E Background noise 82__27_09_13_H3_lluvia

tical advantage of our proposed DNTE in providing superior
computational efficiency.

IV. APPLICATION TO REAL MEASURED
HYDROACOUSTIC SIGNALS

The ability of DNTE to reflect dynamic changes and differ-
entiate between chaotic models has been confirmed through
simulated experiments. In this section, we conduct classifica-
tion experiments on real measured hydroacoustic signals. The
data include the publicly available ShipsEar dataset and mea-
sured signals of various modulation classes, and the compared
metrics include LZC, PE (m = 6), and DE (m = 2, c = 6),
and their values are also denoted as ε1, ε2, and ε3, respectively.
By comparing the feature distribution and recognition rates of
different metrics for ship signals or modulation signals, we
aim to validate the superiority of DNTE in the application of
real measured signals.

A. Case (1): ShipsEar dataset

The ShipsEar dataset was recorded along the Atlantic coast
in northwest Spain and was obtained from [36,37]. Because of
the high intensity and diversity of port traffic, the ShipsEar
dataset includes recordings of various types of ships. The
collected signals are categorized into five major classes based
on ship size, including four classes of ships and one class of
environmental noise data. Each class of signal has a sampling
frequency of 52.734 Hz, and we select a signal segment from
each major class for experimentation. Further information on
the selected signals can be found in Table I.

For each category of ShipsEar signal, we randomly select
200 nonoverlapping samples, each with a length of 10 000
sampling points, to create the experimental sample set. We
then calculate the DNTE values Ec for these samples using
parameter settings of c = 15. In addition, we calculate ε1,
ε2, and ε3 for comparison purposes, and the resulting feature
distribution is displayed in the violin plot in Fig. 6, where the
black line represents the mean values.

In Fig. 6(a), it appears that only class D can effectively
distinguish itself from the other four classes of signals. Some
samples from class A overlap with those from class B and
class C, and a similar situation is observed between class B
and class E. In Fig. 6(b), the entropy values of samples from
the other four classes, except for class C, are mostly clustered
in one region, indicating a poorer discriminative effect of PE.
Additionally, the feature distributions in Figs. 6(c) and 6(d)
are highly analogous. This is due to the fact that both DE
and DNTE employ normal cumulative distribution mapping.
In DE, the distributions for class A and class C are more

024205-6



DISPERSION NETWORK-TRANSITION ENTROPY: A … PHYSICAL REVIEW E 110, 024205 (2024)

FIG. 6. Feature distributions of different metrics for five classes of the ShipsEar dataset: (a) LZC, (b) PE, (c) DE, and (d) DNTE.

closely aligned, while in DNTE, there is no discernible over-
lap between the two. In comparison, the effect of the feature
distributions is significantly superior to that of LZC and PE.

In order to demonstrate the effectiveness of DNTE more
intuitively, we also introduce the K-nearest neighbor (KNN)
classifier by virtue of its simplicity and intuition [38], and
validate the performance of DNTE through classification ac-
curacy. By calculating the Euclidean distance between the test
samples and all samples in the training set, the five nearest
training samples are chosen. The class of each test sample is
then determined using a majority voting method, achieving
signal classification. Figure 7 shows the recognition rates of
various metrics from the ShipsEar dataset.

Figure 7 shows that LZC and PE achieve 100% recogni-
tion rate for only one signal class, which is consistent with
the analysis from the violin plots. However, their recogni-
tion and discrimination performances are lower for the other
four classes in the sample set, resulting in lower recognition
rates. In contrast, both DNTE and DE demonstrated high
recognition rates across all five classes, although they did not
achieve perfect recognition for any single class. Specifically,
the DNTE proposed in this paper achieves a recognition rate
of 97.4% on the five classes of the ShipsEar dataset, sur-
passing DE by 1.6%. In summary, these results confirm the
effectiveness of DNTE in the classification of hydroacoustic
signals.
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FIG. 7. Recognition rates of various metrics from the ShipsEar
dataset.

B. Case (2): Modulation signals

In this subsection, we describe the measured data col-
lection involving five classes of modulation signals. The
modulation signals are collected at the Ganhe Reservoir in
Xianyang City, Shaanxi Province, China, and the modula-
tion classes include 2FSK, 4FSK, BPSK, DSSS, OFDM, and
QPSK.

The geographical coordinates of the Ganhe Reservoir are
latitude 34 °532 807′ and longitude 108 °429 436′. During the
signal acquisition process, the signal transmitting device is
deployed at the shore of the water area, while the sense recog-
nition node device is deployed on a small boat approximately
1000 m from the shoreline. The node device is equipped
with accessories such as batteries and waterproof enclosures,
as depicted in Fig. 8(a), and the device placement scene is
illustrated in Fig. 8(b). Special attention should be paid to the
fact that the distance between the small boat and the launching
equipment may change because of the water current, and the
overall control is between 800 and 1200 m. Other parameter
settings used in the experiment are detailed in Table II, includ-
ing the depth of the transmitter and hydrophone, the center
frequency of the carrier, and the sampling frequency of the
hydrophone.

The total acquisition duration for each signal is 240 s, with
the signal transmitter emitting a 20-s modulation signal at

FIG. 8. (a) Sense recognition node devices. (b) Device layout
diagram.

TABLE II. Specific information of modulation signals.

Parameter Setting

Transmit depth 3 m
Hydrophone depth 3 m
Signal carrier center frequency 8 KHz
Hydrophone sampling frequency 50 KHz
Modulation class 2FSK, 4FSK, BPSK, DSSS,

OFDM, and QPSK

10-s intervals. For each class of modulation signal, we take
the initial 20-s signal as the experimental data and divide it
into 100 samples at equal intervals, each with 10 000 sampling
points. The ε1, ε2, ε3, and Ec are calculated for these samples,
and the resulting violin distribution is shown in Fig. 9.

In Fig. 9, in terms of feature stability, both LZC and
DNTE exhibit feature distributions within relatively small
ranges without significant interval spans. In particular, DNTE
demonstrates stable representations for BPSK, DSSS, and
OFDM with a small range of entropy value fluctuations. Re-
garding the distribution of various modulation signals, LZC,
DE, and PE are capable of distinguishing a maximum of
two signal classes without any overlap with other classes.
However, the Ec’s for 4FSK, BPSK, DSSS, and OFDM
show clear distinctions, with only 2FSK and QPSK exhibit-
ing small regions of overlap. Therefore, it can be observed
that DNTE has the best stability in distinguishing among
the six modulation signal classes, and the feature distribu-
tions make it easy to differentiate between various modulation
signals.

Furthermore, the recognition results with the introduction
of a classifier are shown in Fig. 10, where 50% of the samples
are randomly selected as the training set and the remaining
samples are used as the test set. Figure 10 shows that LZC,
PE, and DE can achieve a 100% recognition rate for only
two modulation signal classes, whereas the proposed DNTE
accurately recognizes four of them. In terms of the average
recognition rate, DNTE achieves a recognition rate of 97.67%,
which is 6% higher than that of the second-ranked DE. These
findings demonstrate that the method proposed in this paper
offers an alternative approach for the application of nonlinear
signals.

C. Supplemental experiments

To further quantify the time complexity of various metrics
in the application of real measured signals, we conduct a sta-
tistical analysis of their computational time. Table III presents
the computation times of various metrics for two datasets. It

TABLE III. Computation times of various metrics for two datasets.

Metric ShipsEar (s) Modulation signal (s)

LZC 626.28 367.65
PE 802.4 523.27
DE 65.17 16.82
DNTE 33.82 8.79
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FIG. 9. Feature distributions of different metrics for six classes of modulation signals: (a) LZC, (b) PE, (c) DE, and (d) DNTE.

can be observed that, on any dataset, PE requires the longest
computation time, followed by LZC, while DNTE consumes
the least time. For a set of 600 samples with a length of 10 000
data points, DNTE requires only 8.79 s of computation time,

further demonstrating the efficiency of the proposed DNTE in
hydroacoustic applications.

Furthermore, to mitigate the impact of overfitting on
the experiments, we adjust the training percentage in the

TABLE IV. Recognition rates and standard deviations for the ShipsEar dataset under different training percentages.

Training Recognition rates (%)

percentage LZC PE DE DNTE

20% 91.14 ± 0.013 73.42 ± 0.020 95.49 ± 0.013 97.17 ± 0.009
30% 91.26 ± 0.010 72.92 ± 0.015 95.92 ± 0.011 97.20 ± 0.007
40% 90.95 ± 0.014 72.56 ± 0.013 96.11 ± 0.009 97.14 ± 0.005
50% 90.82 ± 0.011 72.48 ± 0.016 96.14 ± 0.012 97.08 ± 0.006
60% 90.74 ± 0.015 71.63 ± 0.014 96.25 ± 0.009 98.03 ± 0.007
70% 90.46 ± 0.009 71.49 ± 0.020 95.96 ± 0.016 97.11 ± 0.009
80% 90.32 ± 0.012 71.02 ± 0.024 95.79 ± 0.013 96.89 ± 0.011
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FIG. 10. Recognition rates of various metrics of modulation
signals.

comparative experiments to 20%, 30%, 40%, 50%, 60%, 70%,
and 80%. Additionally, for each classification experiment,
we conduct 200 trials and calculate the mean and standard
deviation of recognition rates to ensure the reliability of the
experimental data. The results obtained from the two datasets
are presented in Tables IV and V, respectively.

Analysis of Tables IV and V shows that DNTE consis-
tently achieves the highest recognition rates and has a smaller
standard deviation under any training percentage, whether it
is the ShipsEar dataset or the modulation signals we col-
lected, which indicates the robust performance of DNTE.
Importantly, the rankings of the various metrics remain sta-
ble, unaffected by changes in the training percentage. It is
noteworthy that in the modulation signal dataset, variations
in the training percentage affect the performance of the met-
rics. Specifically, the recognition rates of various metrics
tend to decrease as the training set decreases. For example,
compared with an 80% training percentage, the recognition
rate decreases by 4.35% under a 20% training percentage.
However, a similar trend is not observed for the ShipsEar
dataset, highlighting the importance of having sufficient data
in practical experiments. Despite these variations, our pro-
posed DNTE consistently outperforms other metrics under
any dataset, demonstrating superior performance in terms of
both robustness and efficiency.

V. CONCLUSIONS

This paper proposes a unique complexity measure, DNTE,
which combines complex networks and information entropy
to address the challenges in effective information extraction
for nonlinear signals. The performance of DNTE is validated
using both classical chaotic models and measured hydroa-
coustic signals. The main conclusions of this study are as
follows:

1. DN is proposed by using scaled cumulative distribution
function values as network nodes and establishing links based
on temporal information. The results indicate that the obtained
network can effectively reflect different dynamic regimes.

2. DNTE is proposed by simultaneously assessing the im-
portance of each node and various links in the DN. Then
quantification is achieved using the calculation formula of
Shannon entropy, ensuring a comprehensive capture of effec-
tive information within the network.

3. In the comparative experiments involving simulated
chaotic models, DNTE not only demonstrates superior effi-
cacy in capturing the dynamic changes of time series, but
also exhibits excellent performance in distinguishing between
different models compared to LZC, PE, and DE. Furthermore,
DNTE incurs the lowest computational cost.

4. In practical comparative experiments, regardless of
whether the ShipsEar dataset or measured modulation signals
were employed, the DNTE, combined with classifiers, con-
sistently outperforms other metrics, even when small-sample
training sets are used. Specifically, in classification experi-
ments across six modulation signal classes, the recognition
rate of DNTE reaches 97.67%, surpassing the second-ranking
DE by 6%, thus adequately demonstrating its superiority in
nonlinear signal complexity characterization.

In the future, we expect to expand DNTE to multivariate as
well as multiscale forms, enabling a wider range of applica-
tions.

The datasets analyzed during the current study are avail-
able from the corresponding author on reasonable request.
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024205-10



DISPERSION NETWORK-TRANSITION ENTROPY: A … PHYSICAL REVIEW E 110, 024205 (2024)

The author contributions are as follows: B.G.:
conceptualization, methodology, software, writing—original
draft; H.W.: data curation, project administration,
writing—review and editing; X.S.: visualization, inves-
tigation, writing—review and editing; H.Z.: software,

investigation, visualization; Y.Y.: supervision, data curation,
resources.

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

[1] B. Han, Y. Zhou, and G. Yu, Second-order synchro extracting
wavelet transform for nonstationary signal analysis of rotating
machinery, Signal Process. 186, 108123 (2021).

[2] A. Bariviera, Z. Luciano, and O. Rosso, An analysis of high-
frequency cryptocurrencies prices dynamics using permutation-
information-theory quantifiers, Chaos 28, 075511 (2018).

[3] E. S. Nejevenko and A. A. Sotnikov, Adaptive modeling for
hydroacoustic signal processing, Pattern Recognit. Image Anal.
16, 5 (2006).

[4] C. Zhang, A. Mousavi, S. Masri, G. Gholipour, K. Yan, and
X. Li, Vibration feature extraction using signal processing tech-
niques for structural health monitoring: A review, Mech. Syst.
Signal Process. 177, 109175 (2022).

[5] P. Shi, X. Fan, J. Ni, and G. Wang, A detection and classification
approach for underwater dam cracks, Struct. Health Monit. 15,
551 (2016).

[6] S. Jiao, B. Geng, Y. Li, Q. Zhang, and Q. Wang, Fluctuation-
based reverse dispersion entropy and its applications to signal
classification, Appl. Acoust. 175, 107857 (2021).

[7] Y. Li, B. Tang, S. Jiao, and Q. Su, Snake optimization-based
variable-step multiscale single threshold slope entropy for com-
plexity analysis of signals, IEEE Trans. Instrum. Meas. 72,
6505313 (2023).

[8] F. Liu, G. Li, and H. Yang, A new feature extraction method of
ship radiated noise based on variational mode decomposition,
weighted fluctuation-based dispersion entropy and relevance
vector machine, Ocean Eng. 266, 113143 (2022).

[9] Y. Li, Y. Zhou, and S. Jiao, Variable-step multiscale Katz fractal
dimension: A new nonlinear dynamic metric for ship-radiated
noise analysis, Fractal Fract. 8, 9 (2024).

[10] A. Lempel and J. Ziv, On the complexity of finite sequences,
IEEE Trans. Inf. Theory 22, 75 (1976).

[11] N. V. Kuznetsov, T. A. Alexeeva, and G. Leonov, Invariance of
Lyapunov exponents and Lyapunov dimension for regular and
irregular linearizations, Nonlinear Dyn. 85, 195 (2016).

[12] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 623 (1948).

[13] Y. Li, B. Geng, and S. Jiao, Dispersion entropy-based Lempel-
Ziv complexity: A new metric for signal analysis, Chaos
Solitons Fractals 161, 112400 (2022).

[14] J. Zhang and M. Small, Complex network from pseudoperiodic
time series: Topology versus dynamics, Phys. Rev. Lett. 96,
238701 (2006).

[15] H. Mo and Y. Deng, Identifying node importance based on
evidence theory in complex networks, Physica A (Amsterdam)
529, 121538 (2019).

[16] H. Li and Z. Liu, Multivariate time series clustering based on
complex network, Pattern Recognit. 115, 107919 (2021).

[17] Z. Zhang, Y. Qin, L. Jia, and X. Chen, Visibility graph feature
model of vibration signals: A novel bearing fault diagnosis
approach, Materials 11, 2262 (2018).

[18] X. Wang, X. Han, Z. Chen, Q. Bi, S. Guan, and Y.
Zou, Multi-scale transition network approaches for nonlin-
ear time series analysis, Chaos Solitons Fractals 159, 112026
(2022).

[19] X. Zheng, C. Feng, T. Li, and B. He, Analysis of autonomous
underwater vehicle (AUV) navigational states based on com-
plex networks, Ocean Eng. 187, 106141 (2019).

[20] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño,
From time series to complex networks: The visibility graph,
Proc. Natl. Acad. Sci. USA 105, 4972 (2008).

[21] R. Donner, M. Small, J. Donges, N. Marwan, Y. Zou, R. Xiang,
and J. Kurths, Recurrence-based time series analysis by means
of complex network methods, Int. J. Bifurcation Chaos 21, 1019
(2011).

[22] X. Sun, M. Small, Y. Zhao, and X. Xue, Characterizing system
dynamics with a weighted and directed network constructed
from time series data, Chaos 24, 024402 (2014).

[23] S. Bai and M. Niu, The visibility graph of n-Bonacci sequence,
Chaos Solitons Fractals 163, 112500 (2022).

[24] Y. Zou, R. Donner, N. Marwan, J. F. Donges, and J. Kurths,
Complex network approaches to nonlinear time series analysis,
Phys. Rep. 787, 1 (2018).

[25] N. Marwan, J. Donges, Y. Zou, R. K. Donner, and J. Kurths,
Complex network approach for recurrence analysis of time se-
ries, Phys. Lett. A 373, 4246 (2009).

[26] D. Watts and S. Strogatz, Collective dynamics of ‘small-world’
networks, Nature (London) 393, 440 (1998).

[27] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.
Hwang, Complex networks: Structure and dynamics, Phys.
Rep. 424, 175 (2006).

[28] D. Wang and Y. Xue, Average path length and degree distri-
bution of networks generated by random sequence, Mod. Phys.
Lett. B 35, 2150347 (2021).

[29] K. Iwayama, Y. Hirata, K. Takahashi, K. Watanabe, K. Aihara,
and H. Suzuki, Characterizing global evolutions of complex
systems via intermediate network representations, Sci. Rep. 2,
423 (2012).

[30] M. Rostaghi and H. Azami, Dispersion entropy: A measure
for time-series analysis, IEEE Signal Process. Lett. 23, 610
(2016).

[31] C. Bandt and B. Pompe, Permutation entropy: A natural com-
plexity measure for time series, Phys. Rev. Lett. 88, 174102
(2002).

[32] Y. Li, B. Tang, B. Geng, and S. Jiao, Fractional order fuzzy
dispersion entropy and its application in bearing fault diagnosis,
Fractal Fract. 6, 544 (2022).

[33] G.-C. Wu, D. Baleanu, H.-P. Xie, and F.-L. Chen, Chaos syn-
chronization of fractional chaotic maps based on the stability
condition, Physica A (Amsterdam) 460, 374 (2016).

[34] G. Wu and D. Baleanu, Chaos synchronization of the discrete
fractional logistic map, Signal Process. 102, 96 (2014).

024205-11

https://doi.org/10.1016/j.sigpro.2021.108123
https://doi.org/10.1063/1.5027153
https://doi.org/10.1134/S1054661806010020
https://doi.org/10.1016/j.ymssp.2022.109175
https://doi.org/10.1177/1475921716651039
https://doi.org/10.1016/j.apacoust.2020.107857
https://doi.org/10.1109/TIM.2023.3317908
https://doi.org/10.1016/j.oceaneng.2022.113143
https://doi.org/10.3390/fractalfract8010009
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1007/s11071-016-2678-4
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1016/j.chaos.2022.112400
https://doi.org/10.1103/PhysRevLett.96.238701
https://doi.org/10.1016/j.physa.2019.121538
https://doi.org/10.1016/j.patcog.2021.107919
https://doi.org/10.3390/ma11112262
https://doi.org/10.1016/j.chaos.2022.112026
https://doi.org/10.1016/j.oceaneng.2019.106141
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1142/S0218127411029021
https://doi.org/10.1063/1.4868261
https://doi.org/10.1016/j.chaos.2022.112500
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1016/j.physleta.2009.09.042
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1142/S0217984921503474
https://doi.org/10.1038/srep00423
https://doi.org/10.1109/LSP.2016.2542881
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.3390/fractalfract6100544
https://doi.org/10.1016/j.physa.2016.05.045
https://doi.org/10.1016/j.sigpro.2014.02.022


GENG, WANG, SHEN, ZHANG, AND YAN PHYSICAL REVIEW E 110, 024205 (2024)

[35] X. Mao, P. Shang, M. Xu, and C.-K. Peng, Measuring time se-
ries based on multiscale dispersion Lempel–Ziv complexity and
dispersion entropy plane, Chaos Solitons Fractals 137, 109868
(2020).

[36] ShipsEar: An underwater vessel noise database, available at
https://underwaternoise.atlanttic.uvigo.es/.

[37] D. Santos-Domínguez, S. Torres-Guijarro, A. Cardenal-López,
and A. Pena-Gimenez, ShipsEar: An underwater vessel noise
database, Appl. Acoust. 113, 64 (2016).

[38] L. Gao, D. Li, and L. Yao, Sensor drift fault diagnosis for chiller
system using deep recurrent canonical correlation analysis and
k-nearest neighbor classifier, ISA Trans. 122, 232 (2022).

024205-12

https://doi.org/10.1016/j.chaos.2020.109868
https://underwaternoise.atlanttic.uvigo.es/
https://doi.org/10.1016/j.apacoust.2016.06.008
https://doi.org/10.1016/j.isatra.2021.04.037

